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Analysis and Synthesis of Self-Powered Linear Structural Control with
Imperfect Energy Storage

J.T. Scruggs

Abstract— Self-powered vibration control systems are char-
acterized by a distributed network of regenerative force actu-
ators, which are interfaced with a common power bus. Also
connected to the power bus is an energy-storing subsystem,
such as a supercapacitor, flywheel, or battery. The entire system
is controlled using switch-mode power electronics, and the
only power required for system operation is that necessary
to perform these switching operations. The resultant energy
conservation constraint restricts the set of feedback laws that
are feasible. This paper reports on an LMI feasibility constraint
for linear self-powered feedback laws, in terms of actuator and
storage hardware parameters. Two design applications of this
constraint are illustrated. The first is the determination of the
least-efficient energy storage parameters necessary to realize
a given passive control law. It is shown that this problem is
quasiconvex, and may be posed as a generalized eigenvalue
problem. The second example uses an extension of positive-
real-constrained 7> optimal control, to optimize a control
law subject to the feasibility constraint. Both examples are
illustrated in the context of base-excited vibrating structures,
subjected to stationary stochastic excitation.

Index Terms— Vibration, Regeneration, Mechatronics

I. INTRODUCTION

In many structural control applications, restrictions on
power availability have generated considerable interest in
self-powered vibration suppression systems, capable of op-
erating entirely on the energy they absorb. For example,
supplemental passive electrical and mechanical impedances
accomplish this task. Over the last decade a new class of
actuation system, first formally defined in [1], has been
proposed that actively controls the storage, transmission, and
reuse of absorbed energy. Called Regenerative Force Actu-
ation (RFA), such systems have similarities with semiactive
(i.e., adaptive viscous damping) systems in that they have
external power supply demands that are orders of magnitude
below their power flow capabilities. Unlike semiactive sys-
tems, they are capable of electrically storing and reusing the
energy they remove from a mechanical system. Additionally,
when multiple actuators are used to control a structure, their
electronics are connected together, enabling them to “share”
power. Such a system of actuators is called an RFA Network
[2].

To illustrate an example of an RFA network, consider
first the electromechanical actuator depicted in Fig. 1a. This
diagram shows a linear brushless motor being used as a force
actuator. The drive circuitry, shown here simply as a box
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with a transistor symbol, consists of passive components
(i.e. inductors, capacitors, and diodes) and transistors. By
controlling the transistors in this circuit, the system con-
verts mechanical power fv to electrical power Vpip. The
transistors are operated as power-electronic switches, which
open and close different circuit paths. This mode of operation
requires very little external power, even if the electric power
flowing through the network is quite high. As these transistor
switches (together with the sensors and control intelligence)
constitute the only power requirements for operation, the
system is highly efficient.

Using a standard “H-bridge” drive topology, the actuator in
Fig. 1a is approximately equivalent to Fig. 1b. Thus, velocity
v produces a back-EMF V = Kv, which induces stator
current ¢. The resultant electromechanical force is fo = K yi.

An RFA network then consists of m forcing devices
situated throughout a mechanical system, and interfaced
through a DC-link power bus B — B’, as shown in Fig. 2.
Also interfaced to B — B’ is an energy-storage subsystem,
depicted as capacitor C's. (Other devices, such as flywheels
or batteries, could also be used.) This energy-storage sub-
system is non-ideal, in the sense that it dissipates energy
whenever it delivers or accepts power from bus B — B’, and
because it exhibits leakage. These effects are represented by
resistances Ry and Rg, respectively.

Decay of stored energy is characteristic of all storage
devices. However, the inclusion of Rg in the model also
serves another purpose. Suppose one of the purposes of the
RFA network is to harvest energy for other applications,
or for its own control intelligence, sensor, and switching
systems. Then Rg can be used to (crudely) model the power
demands of other electrical subsystems that are driven using
this harvested energy.

Regenerative actuation has been examined in the context
of automotive suspension systems using hydraulic as well as
electromechanical devices [1]. It has also received attention
in flexible aerospace structures with the use of a piezoelectric
actuator with an inductor for energy storage [3], [4]. In civil
engineering applications, regenerative actuation was first
proposed in [5]. This work, along with similar approaches
proposed in [6], focused on single-device implementations
with energy storage. The concept of power-sharing between
actuators was examined in [2], which presented an approach
to the realization and electronic control of an arbitrary m-
device electromechanical RFA network.

Fig. 3 shows three examples of the many potential uses of
RFA networks in structural vibration control systems. Fig. 3a
shows a civil structure application, for use in the reduction
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Fig. 1. Mechanical (a) and electrical (b) schematic of an electromechanical
actuator
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Fig. 2. Schematic for an m-device RFA network

of earthquake response. Fig. 3b shows an RFA network, for
use in automotive suspensions. Fig. 3c shows a potential
aerospace application in which many piezoelectric actuators,
located along the length of a flexible cantilever beam, are
used to control vibrations and/or harvest energy.

Although a number of device realizations have been pro-
posed for RFA networks, the area of control synthesis for
these systems has been slower to develop. A development in
[1] establishes a criterion for linear control laws for which
in steady-state excitation, the average energy generated is
positive. However this approach does not account for dis-
sipation in the network, or losses in the energy storage
system, and does not guard against the circumstance where
the controller fully drains the energy supply in the course of
the transient dynamic response. In [7], it was shown that
RFA networks with no energy storage (i.e., with energy
transmission capability only) may be viewed as imposing
non-local and asymmetric supplemental damping matrices
on structures. It was further illustrated that such damping
concepts could be extended to RFA networks with energy-
storage subsystems. However, such approaches fall short of
exploiting the full capability of the energy storage subsystem.

This paper presents some new results, toward a generalized
approach to the design of linear feedback controllers for
energy-storing RFA networks such as the one in Fig. 2.

II. CONSTRAINTS ON POWER FLOW

Let f. be the vector of electromechanical forces for each
actuator in an RFA network, and let v be the corresponding

Fig. 3.
networks

Civil (a), automotive (b), and aerospace (c) applications of RFA

vector of actuator velocities. The fact that bus B — B’ in
Fig. 2 does not interface with an external power source
imposes an “energy conservation” constraint on the system.
This manifests itself as a dynamic constraint on f., which
depends on v. It is reminiscent of the familiar passivity
constraint from robust control theory [8]; i.e.,

t
/ fL(r)v(r)dr <0 , Vt>0 (1)
0

Such a constraint would dictate that the cumulative energy
injected into the structure, by the actuation system, must al-
ways be negative. In fact, this would exactly characterize the
system forcing constraint if the electrical network (i.e., the
actuators, energy storage subsystem, and switching network)
were lossless. However, this circumstance is unrealistic. In
reality, the RFA network is not capable of reusing all the
electrical energy it generates.
The total resistive power dissipation for the network is

Polt) = £ (02 5.0 + Rui(0) + V2D @)

where
Z. = diag {...K};/Ry...} 3)

Meanwhile, the total power delivered to storage is
Pa(t) = £ ()v(t) + Vs(t) (is(t) — Vs(t)/Rs) ()

Then the total power flowing out of bus B — B’ at time ¢
is Pa(t) + Pp(t). Assuming this bus has minimal energy
storage capability, P4 + Pp = 0; i.e.,

£ (v (1) + (D2 e (8) + Vs ()is () + Rrif(t) = 0 (5)

Technically, this assumption is untrue because bus B — B’
has some capacitance, which is necessary to smooth out the
high-frequency oscillations in the power bus voltage resulting
from the switching operations. However, the energy stored
in this capacitance is assumed to be small.

From a basic power flow analysis, it is straight-forward
to show that the differential equation for the stored energy
Es(t) in capacitor Cy is
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where
Ts = RsCys 7. = R.Cs @)

This total stored energy must always be real and positive;
ie.,
Es(t) e RT ¥Vt >0 (8)

This expression is the most general form of the dynamic
constraint imposed on an RFA network due to energy con-
servation. As one would expect, it is a more conservative
constraint than the pure passivity constraint (1). Furthermore,
one arrives at the passivity constraint from (6) and (8) by
letting 7 — oo, 7, — 0, and Z, — oc.

ITI. FEASIBLE LINEAR CONTROL LAWS

We now ask the interesting question of what linear, time-
invariant feedback laws adhere to (8) for an arbitrary exter-
nal excitation. We restrict our attention to collocated (i.e.,
“velocity feedback™) controllers Z : v — f. where Z is a
LTI transfer function with a finite-dimensional state-space

realization A B
_ Z Z
Z = [—‘702 D, } 9)

It will be convenient to refer to a particular state space
realization for Z by the set Ay = {A, By, Cz,D}. The
set of all Z of order n, that satisfy (8) for all v € R™ x E;‘
shall be denoted Z™<. One may ask why Z™¢ has been
restricted to velocity feedback rather than, say, the more
general domain of n.-order full-state feedback controllers.
However, it is a straight-forward proof to show that for any
linear feedback controller that does not belong to Z™<, there
exists a v € R™ x L7 that violates (8).

If there were no dissipation in the electronic system, all
controllers in Z™< would be required to satisfy (1); the pure
passivity constraint. In this case, the Positive Real Lemma
[9] provides the necessary and sufficient condition that there
exist state space realization Ay for Z, and Pz = Pg > 0,
such that

AEPZ +PzA; PzBy — Cg
BZP; - Cy -DZ - Dy

In the more complicated case where the RFA network con-
tains dissipation, it is more difficult to exactly characterize
the complete set of linear control laws satisfying the energy
conservation constraint. However, it is possible to determine
sufficient conditions for Z € Z™-. In fact, such a condition
can be found, which is reminiscent of the LMI above, albeit
somewhat more complicated.

THEOREM 1: For arbitrary 7;, > 0 and 7¢ > 0, a
controller Z € Z"¢ if 3 an n.-dimensional state-space
realization Az € D", where D™ connotes all Az for which
dP, = Pg > 0 and X satisfying the following two LMIs:

<0 (10)

AZP; +PzAZ + 2P, + X+ X7 <0 (11a)
X" -X PyzBy Cc? -xXT
BEPZ _%Ze Dg + %Ze BEPZ < 0
Cz Dz + %Ze —%Ze 0 =
-X P,B, 0 —5-Py
(11b)

The proof to this theorem is rather lengthy, and will be
published in a forthcoming journal paper. Here, we simply
note some of its implications.

First of all, we note that (11) is sufficient, but not necessary
to ensure satisfaction of (8). However, it can be seen by
inspection that the LMIs above distill to (10), the passivity
constraint, in the case where 7¢ — oo, 7, — 0, and Z, —
oo. It is also straight-forward to show that, as expected, the
constraints in Theorem 1 are always more conservative than
those of pure passivity.

Further examination gives some insight into how the
different resistances in the RFA network confine the set
of feasible control laws. Consider, for example, the case
where 7¢ — 0, but where Z. and 7, are finite. This case
corresponds to the case where the energy storage system is
so lossy that it cannot retain energy for any significant time.
In this case, the LMIs in Theorem 1 reduce to requirements
Ay =0,B; =0, Cz =0, and that Dy satisfy

_Ze
2Dy + Z.

2DZ + Z,

<
—Z. <0

(12)
(In this case, it can be shown that the above constraint is
also necessary.) As such, the capability of the RFA network
reduces to static velocity feedback.

For any 75 and 71, the LMIs in Theorem 1 require that

APz +PzAz+ 2ZP; <0 (13)

which confines the poles of Z to have real parts less than
—1/7s. This constraint arises from leakage in the stored
energy. Speaking qualitatively, the inequality above requires
that the controller dynamics “decay faster than the stored
energy does.”

In the case where 77, — 0, the LMIs in (11) reduce to

A5P2+P2Az+%PZ P;B; Cg
P,BY ~lz, DL+1z.| <0
c;Z DZ + %Ze _%Ze

(14)
In this case, as well, the constraint above can be shown to
be necessary as well as sufficient. This case corresponds to a
system for which significant dissipation exists in the coils of
the actuators, as well as in the leakage of the storage system,
but for which energy can be transmitted between storage and
bus B — B’ at very high efficiency. As this efficiency is
made lower (i.e., as 77, is increased), the domain of feasible
controllers shrinks beyond those characterized by the LMI
above, to exclude those controllers that require significant
oscillatory or pulse power flow to and from storage.

At this point, it is reasonable to ask the following question:
If RFA networks have a more restricted linear control domain
than pure passivity, why not just implement Z using passive
mechanical or electrical components? In truth, this may in
many cases be a preferable option, especially for single-
actuator control laws with n. equal to 1 or 2. However,
for single-actuator systems of higher order, such realizations
can quickly become very impractical, involving the use of
transformers (for electrical realizations [10]) or levers (for
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mechanical realizations [11]). For the multi-actuator case,
they will require the use of gyrators, which although theoreti-
cally passive, generally require a power source for operation.
As such, the theory here may be viewed as presenting an
alternative approach to such passive realizations, in which
all these components are replaced by a single storage system
and a power electronic network. Also, because the RFA
network stores energy rather than controllably dissipating
it, this approach may be useful for applications where this
harvested energy might be useful to power other systems.

IV. PARETO-OPTIMAL STORAGE PARAMETERS FOR
PASSIVE FEEDBACK LAWS

In this section and the next, we consider some uses of
LMI constraints (11) in design of RFA networks. The issue
addressed in this section concerns the design of hardware
parameters 7z, Ts, and Z., to realize a given passive control
law Z. In other words, we consider the case where Z is
known to be passive, and the task at hand is to find the
hardware to realize it. The key is to avoid overdesign of
the system components. For example, the mass of energy
storage is often inversely correlated with 71 ; i.e., storage sys-
tems with more efficient pulse power and charge/discharge
capabilities often weigh more. Moreover, it is often the case
that storage technologies are either very good at pulse power
(i.e., low 71), very good at long-term storage (i.e., high 7g),
or some compromise of the two. For the actuator hardware,
higher values in the diagonal of Z. correspond to actuators
with higher motor constants, which usually implies higher
size and weight. Thus, there is a tangible benefit to the
determination of the least efficient parameters (i.e., smallest
combinations of 7, 7g L and Z.) that will accomplish a
given control objective.

Consider again the feasibility LMIs in (11), and its use in
the optimization problem

given: Az, 75, L,
minimize: A=1/7p
over: APy X
subject to:  (11)

This is a generalized eigenvalue problem, and is therefore
readily solvable for a global minimum through the use of
any of several LMI-based optimization algorithms, such as
interior-point or primal-dual methods [9].

We demonstrate the optimization through a simple ex-
ample. Fig. 4a shows a nondimensionalized two-mass, one-
actuator system. The controller for this system was designed
through root-locus techniques, and is equal to

252 +4s +2
s24+1.25+1.36

which can readily be verified to be passive. State space
parameters Az, in controllable canonical form, can be found
by inspection form (15).

Fig. 4b shows the resultant optimization, obtained using
the standard tools in the Matlab Robust Control toolbox.
Each pareto front in the figure corresponds to a different

Z(s) = (15)

Fig. 4. Nondimensional 2-degree-of-freedom example structure (a), and
successive {77, Ts} pareto fronts for various values of Z. (b)

value for the nondimensionalized Z., which in this single-
actuator case is a scalar quantity. The results are intuitive. As
Z. increases, the feasible domain of {77, 75 !} combinations
(indicated by the shaded regions in the plot) increases as
well, implying that if an actuator is more efficient, the
storage system can afford to be less so, and still produce Z.
Furthermore, each pareto front implies that as the dissipation
due to transmission of stored energy (related to the size of
Tr,) increases, the storage system must be more efficient at
retaining energy (i.e., T must be higher) in order to produce
Z. The plot also implies that as Z. is made to increase, there
is a point of diminishing returns, above which the losses in
storage become the “weak link” in the power management
system. Clearly, an increase in Z, from 100 to 1000 is of
only marginal benefit for storage redesign.

V. CONTROL SYNTHESIS FOR FIXED HARDWARE
PARAMETERS

The previous section concerned the optimization of hard-
ware parameters necessary to produce a given Z which
is known to be passive. In this section, we consider the
complimentary case, in which the hardware parameters are
fixed, and Z is to be optimized. This is a considerably more
difficult design problem because it is in general nonconvex.

Consider the dynamics of a passive, linear, vibrating
structure, characterized by

x = Ax+B,a+ Bsf. (16)
y = Cyx+D,f, (17)
v=0C,x (18)

The structure is assumed to be passive. We will also assume,
without loss of generality, that the particular realization for
x is chosen such that C, can be partitioned as

Cv = [Cvl 0] (19)

where C,; is square. We also assume C,; is invertible,
which is equivalent to stating that no combination of ac-
tuators can apply forces that do not affect the structural
dynamics. In (16), a is a vector of exogenous stochastic
inputs, taken to be uncorrelated white noise processes with
spectral intensity ®, = I. In (17), y(¢) is a vector of
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response quantities by which performance is assessed. The
standard Hs (i.e., LQG) performance measure is assumed:

J=Elyl; (20)

where ||-||, is the Euclidean norm. However, note that strictly
speaking, the above problem does not fall into the standard
H2/LQG paradigm, because no noise injection is assumed
on v, which is the feedback signal. As such, the optimal Z
is not required to be strictly proper.
For this system, the following theorem is a standard result.
THEOREM 2: Let Z € Z"<. Then

J = Jo+E||D,(Zv — Kx)| 1)
where
-1
K =-[D/D,] " [BfPx +D]C,] (22)
0=A"Px+PxA+C[C,-K'D/D,K (23)
and
Jo =tr [ BIPkB,] (24)

In this paper we consider a special form for Z, which will
facilitate its design for favorable J. Let K in Theorem 2 be
partitioned with the same dimensions as C,1, as

K=[K K (25)

and define

Kz =[0 Koy Gz =K,C,;* (26)

Then specifically, we restrict our attention to Z of the same

order as the structure (i.e., n. = n,), and which permit the

realization

[A+BjKz+LC, |B;G;—L
K ‘ Gz

where L is to be designed. This controller just implements
feedback gain K on a standard Luenberger observer, except
that because v is assumed to be measured precisely, the
first m components of the system state are known as well
(i.e. Cvflv) and are used instead of the observed states to
effect control. Our focus on this controller form is due to the
following two corollaries, to Theorem 1 and 2, respectively.

COROLLARY 1: For Z as in (27), Z € Z™< if and only
if 3Pz = PZ > 0 and X such that

Z

27)

AP, +CIF"+P,A+FC,+ 2P, +X+X" <0 (28)

-XT -X (sym)
GEB?PZ —FT —%Ze
K Gz+1iz. -1z,
-X P;B;Gz - F 0 *iPz
<0 (29
where R
A=A+B/Ky 30)
and
F=P,L (3D

COROLLARY 2: For Z as in (27), J < ~ if and only if
AT =T7 and Y = Y7 such that

Jo+tr[Dy,YD]] <~ (32
Y K
[K% TZ] >0 (33)
ATT + TA + TLC, + CTLTT TB,
BTT v <0 @

Corollary 1 is directly evident, through substitution of
(27) into (11). Corollary 2 follows as the standard LMI
interpretation of Theorem 2, with appropriate substitutions
of (27). (See, for example, [9] for a proof.)

The objective here is to take Corollaries 1 and 2, and unify
them in some way to produce a convex optimization problem
for minimization of -y, subject to LMI constraints. However
this cannot be done without some kind of relaxation, because
the union of the two sets of LMIs results in a nonconvex
problem. Here, we make relaxation analogous to that made
by Gapski and Geromel [12], who examined similar prob-
lems related to positive-real-constrained Ho optimal control.
Specifically, for some scalar 6, we force the equality

P; =0T (35)

This gives the following theorem

THEOREM 3: For Z as in (27), J < v and Z € Z"« if
Pz =PL, Y = Y7, X, and 6 such that LMIs (28) and
(29) hold, together with

0Jo + tr [D,YD]] <6y (36)

Y 0Kz
{ng Pz} >0 (37)

AP, +P4A +FC, +CIFT P;B,
[ “ T Brp, <0 69

and where (31) relates L to F.

It is emphasized that this theorem provides sufficient but
not necessary conditions for J < +, because of equation
(35). As such, the above LMIs can be used to conservatively
design F' (and, through it, L) to meet performance objectives
subject to energy conservation constraints. The degree of
conservativeness is compounded, by the particular mathemat-
ical structure of Z in (27). However, as with the hardware
optimization in the previous section, the resultant problem
is quasiconvex, and thus may be solved easily. Specifically,
this optimization can be stated as

given: TL, TS, Lie, A, By, By, Cy, Dy
minimize: 7y

over: F.P;, Y, X, 0,v

subject to:  (28), (29), (36), (37), (38)

As an example, consider the civil structure shown in Fig. 5.
As shown, this five-story, base-isolated structure has control
devices installed between the base and the ground, and be-
tween the roof and a mass damper. The structure was adapted
from one considered by [13]. (The mass damper, tuned to the
second natural frequency, has been added for this example.)
The spectral content of the ground acceleration a is assumed
to be a Kanai-Tajimi spectrum with a natural frequency of 17
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Z,=810kNs/m

m =362 kg k=426 kN/m
/% ¢,=2.5 Ns/m
m =5897 kg
k;=19059 kN/m
¢;=38 kNs/m
m,=5897 kg
k,=24954 kN/m
¢,=50 kNs/m
m,=5897 kg
k,=28621 kN/m
¢,=57 kNs/m
m,=5897 kg
k,=29093 kN/m
¢,=58 kNs/m
m,=5897 kg
k,=33732 kN/m
¢,=67 kNs/m
m,=6800 kg

%—L.—Ith: 154 kKN/m
7, =3240

¢,=2.5 kNs/m
kNs/m +——
a
Fig. 5. Example structure

rad/s and a damping ratio of 0.3. Components of y(t) € R4
are defined as

Y1 = db/4CH1 Yi = di_l/lmm , 1 E {26} 39)
Y7 = ab/O.lg Yi = a¢_7/0.1g , 1€ {8..12} 40)
Y13 = f1/10kN  y14 = fo/10kN 41)

The Z.; parameters shown in the figure are similar to those
used in [14].

To model the energy storage system, we need only spec-
ify 7¢ and 7;. Here, we consider the design of Z for
Ts € (1s,100s). Note that this is conservative, as many
supercapacitors can store energy for days. Similarly, we
consider 7, € (1ms, 100ms). Fig. 6 shows a surface plot
of the performance of the optimized Z, normalized by Jp,
the performance of the optimal full-state controller. This
surface clearly shows the benefit of small 77 and 74 1, as
well as their relevance to control design. With a very efficient
storage system, the self-powered control design comes close
to achieving the performance of a fully-active system.

VI. CONCLUSIONS

In this paper we have shown how imperfections in stored
energy can affect the feasibility of linear control, for self-
powered vibration suppression systems. The primary effort
here has been to illustrate that it is possible to design a
storage system with a given controller in mind, as well as to
design a controller with knowledge about the storage system
that will be used to implement it. The main result is the
pair of feasibility LMIs (11), and their implications for these
two design tasks. We showed that the problem of storage
optimization for a given passive controller is quite tractable,
as it can be posed as a generalized eigenvalue problem, and
solved through convex optimization. Although the problem
of control optimization, for a given storage system, is more

JIJ,

0

-1.5

10g10(TL) -3 -2 'logm(rs)

Fig. 6. Performance .J/.Jo, for optimized Z, as a function of 71, and g

complex, we illustrated how some extant methods in the
literature for positive-real-constrained H, optimal control
might be extended to this problem.

Still, the control design methods discussed in this paper are
conservative, and therefore sub-optimal. One open question
concerns the determination of the frue optimal performance
achievable with a given storage system. Another avenue for
extension of these ideas concerns the use of more accurate
models of the nonlinear dynamic behavior of energy storage
and power electronic systems. These remain challenging
problems requiring further work.
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