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Abstract— In this paper we consider a team of mobile nodes
that are in charge of cooperative target tracking. We propose
communication-aware navigation functions that allow the nodes
to perform their task while maintaining their connectivity to
a fixed base station and avoiding obstacles. More specifically,
we show how to incorporate measures of link qualities in
the navigation functions. We consider both centralized and
decentralized scenarios. We furthermore explore the impact of
stochastic channels and channel estimation error on the overall
performance.

I. INTRODUCTION

Recently, there has been considerable interest in coopera-

tive mobile sensor networks. Such networks have a variety

of applications from environmental monitoring, surveillance

and security to target tracking and military systems. Commu-

nication plays a key role in the overall performance of mobile

networks as each sensor relies on improving its status by

processing the information received from others. Most of the

current research in this area, however, assumes ideal or over-

simplified communication links. For instance, it is common

to assume links that are perfect within a certain radius of a

node. Such simple models, however, will not work well for

realistic communication scenarios as there are many factors

that can degrade the performance of wireless communication

in an indoor or outdoor environment. Studying the impact

of realistic communication channels on estimation/control

performance of wireless sensor networks is a new and

emerging area of research. Authors in [1]-[7] have looked

at the impact of some aspects of a communication link, like

noise, quantization, fading, medium access and packet loss,

on wireless control of a mobile sensor network.

In [4]-[6], Mostofi et al. introduced communication-aware

motion planning strategies, using an information-fusion ap-

proach, and considered the impact of distance-dependent

path loss and fading on decentralized motion-planning and

data fusion in mobile networks. An extension of [6], with

a modification of the cost function, appeared in [7]. In [8],

we proposed building communication-aware navigation func-

tions for centralized cooperative target tracking scenarios,

where we proved convergence to the optimum configuration.

Navigation functions [9] are special types of artificial poten-

tial fields and have been extensively used in motion planning
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literature [10]. In [8], we modified the definition of the classi-

cal navigation functions to include realistic communication

and sensing objectives. The resulting navigation functions

did not have all the properties of the classical navigation

functions introduced by Rimon and Koditschek [9]. For

example, it had multiple time-varying minima and a time-

varying structure. In this paper, we extend our previous work

to both centralized and decentralized target tracking cases.

We show how to build novel communication-aware naviga-

tion functions that allow the vehicles to perform their task

efficiently while staying connected and avoiding obstacles.

We consider realistic communication environments that can

experience path loss, shadowing and fading. We furthermore

explore the impact of the uncertainty in the estimation of the

SNR map on the performance of the proposed framework.

The rest of the paper is organized as follows. In Section

II, we formulate the cooperative target tracking problem

and show how to model realistic stochastic communication

links. In Section III, we show how to build both centralized

and decentralized communication-aware navigation functions

by incorporating link quality information in the classical

navigation function framework. We furthermore explore the

impact of the uncertainty in the estimation of the SNR map

on the cooperative operation. We conclude in Section IV.

II. PROBLEM FORMULATION

Consider a team of mobile robots that are cooperating to

track a moving target jointly. The robots are equipped with

sensing devices to measure their own positions as well as the

position of the target. Then they communicate their acquired

information to a fixed base station. The overall goal is for the

base station to have the best estimate of the target position.

Fig. 1 shows a schematic of the problem considered in this

paper.

We consider a spherical workspace W =
{

q ∈ R
2
∣

∣ ‖q‖ ≤
R
}

⊂ R
2 punctured by M disjoint disc-shaped obstacles

and N disc-shaped robots. The assumption of spherical

workspace, which is common in navigation function frame-

work, is not limiting as long as we can find a diffeomorphism

that properly translates the given workspace into a spherical

one. But even if such diffeomorphism cannot be found, any

non-spherical workspace can be conservatively approximated

with a spherical one. Therefore, in this paper we present our

results for a spherical workspace.

The robots and obstacles are specified by the following

sets:

Rj =
{

q ∈ R
2
∣

∣ ‖q − qj‖ ≤ rj

}

, 1 ≤ j ≤ M + N, (1)
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Fig. 1. Cooperative target tracking by a group of mobile robots.

where qj ∈ R
2 is the position of the jth robot (or the

jth obstacle) and rj is its radius. The first N sets specify

the robots and the rest specify the obstacles, which are

considered stationary robots. The overall state of the system

is denoted by q = [qT
1 · · · qT

N ]T . The position of the base

station is also denoted by qb ∈ R
2. We assume that the base

station does not impose any constraints on the movement of

the robots. Furthermore, we assume holonomic robots with

the following dynamics:

qj [k + 1] = qj [k] + uj[k], 1 ≤ j ≤ N, (2)

where uj ∈ R
2 is the control input to the jth robot.

Each robot measures its own position as well as the

position of a moving target. Then, the objective is to navigate

the whole team to positions that give the best estimate of

target position at the base station.1 Let x ∈ R
2 represent the

position of the target. We consider the following dynamical

model for the moving target:

x[k + 1] = Ax[k] + w[k], (3)

where w ∈ R
2 is a zero-mean Gaussian noise with Q[k] =

E
{

w[k]wT [k]
}

representing its covariance matrix. It should

be noted that the dynamics of the moving target should be

slow enough in order to guarantee the stability of the whole

system [8]. Let zj[k] represent the measurement of the jth

robot of x at time k. We have

zj [k] = x[k] + vj [k], 1 ≤ j ≤ N, (4)

where vj is a zero-mean Gaussian observation noise with

Rj [k] = E
{

vj [k]vT
j [k]

}

representing its covariance. We

assume identical sensors and adopt the position-based sonar

model introduced in [11] for the observation noise covari-

ance:

Rj [k] = T T
(

φj [k]
)

R̃j [k] T
(

φj [k]
)

(5)

with

R̃j [k] =

[

Ξ
(

‖qj [k] − x[k]‖
)

0
0 λΞ

(

‖qj [k] − x[k]‖
)

]

,

(6)

1While in this paper we focus on target tracking problems, the proposed
framework is applicable to other multi-agent motion planning applications.

where φj [k] is the angle between the vector qj [k] − x[k]
and x-axis in a global frame, Ξ(.) is a real positive analytic

function representing the range noise variance, λ > 0 is a

scaling constant and T is the 2D rotation matrix given by

T (φ) =

[

cos(φ) − sin(φ)
sin(φ) cos(φ)

]

. (7)

We choose the following quadratic form for Ξ(.):

Ξ(r) = α
(

r − rs

)2
+ ε, (8)

where α and ε are positive constants and rs is the sweet

spot radius which gives the best sensing quality. As for

the positions of the robots, we assume that each robot can

estimate its own position perfectly. Our framework can be

easily extended to consider such estimation errors.

In this paper we consider both centralized and decentral-

ized target tracking scenarios. In the centralize case, there

is no inter-agent communication and the robots send their

raw measurements to the base station, which is in charge

of data fusion and motion control. The base station uses

an Information Filter (IF) [12] to fuse its received data

and decides where each robot should go next in order to

minimize its estimation error covariance (or alternatively

maximize its information). It can be easily confirmed that

the overall estimation error covariance at the base station is

minimized when
∑n

j=1 R−1
j [k] is maximized. Therefore, the

motion control objective at the base station is to navigate

the robots to the positions which maximizes
∑n

j=1 R−1
j [k]

while avoiding collisions and maintaining connectivity to the

base station. The base station then sends the control signals

to the robots. If the connection between a robot and the base

station is lost, that particular robot will not contribute to the

fusion process. Consequently, it will not receive a control

signal from the base station. It will then search in random

motions until it restores its connection.

In the decentralized case, on the other hand, each robot

runs its own local information filter and sends its filtered

information to the base station, which will then fuse the

received information to estimate the position of the target.

Similar to the centralized case, if the base station loses its

connection with a number of robots, those robots cannot

contribute to the fusion process. But in this case the control

signals are generated at the robots instead of the base

station. The inter-agent communication is crucial in this

case as the robots need the positions of their neighbors

for obstacle avoidance. However, the robots will not try to

optimize connectivity with any other robot. They simply use

the information of whoever they can talk to for obstacle

avoidance.

In this paper, we explore the impact of packet drop and

communication channel estimation errors on our proposed

communication-aware navigation framework for both cen-

tralized and decentralized cases.

A. Communication Model

In a realistic communication setting, such as an urban area,

Line-Of-Sight (LOS) communication may not be possible
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due to the existence of several blocking objects that can

attenuate, reflect or refract the transmitted signal. Then the

communication between the agents and the base station can

be degraded due to factors such as shadowing or fading [13].

While these factors can degrade the overall performance of

the network considerably, multi-agent robotic and navigation

literature typically consider ideal or over-simplified commu-

nication links.

A fundamental parameter that characterizes the perfor-

mance of a communication channel is the received Signal

to Noise Ratio (SNR). Received Signal to Noise Ratio is

defined as the ratio of the received signal power divided

by the receiver thermal noise power. The instantaneous

received SNR determines whether the received packet will

be kept and used in the fusion and motion planning process.

In general, there are three time-scales associated with the

spatio-temporal changes of the channel quality and therefore

the received SNR as is shown in Fig. 2 [13]. The slowest

dynamic, path loss, is associated with the signal attenuation

due to the distance-dependent power fall-off. Depending on

the environment, there could be a faster variation, referred

to as shadow fading (or shadowing), which is due to the

blocking objects. Finally, multiple replicas of the transmitted

signal can arrive at the receiver due to the reflection from

the surrounding objects, resulting in even a faster variation

in the received signal power called multi-path fading.
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Fig. 2. A multi-scale representation of channel dynamics.

Let γb,j [k] represent the instantaneous received SNR be-

tween the jth robot and the base station at time k.2 We

can model γb,j [k] as a random variable whose square root

is Rician distributed. Then, γb,j [k] will have the following

probability density function (pdf) [13]:

pγb,j [k](γ) =
(1 + Kb)

γ̄b,j [k]
e
−

Kbγ̄b,j [k]+(1+Kb)γ

γ̄b,j [k]

× I0

(

2

√

γKb(Kb + 1)

γ̄b,j[k]

)

, (9)

where γ̄b,j [k] is the average of γb,j [k], I0(.) is the zeroth

order modified Bessel function of the first kind and Kb is

2We assume the same link quality from the base station to each robot
and vice versa. Our framework can be easily extended to asymmetric links.

the Rician K-factor which is defined as the ratio of the non-

scattered (line of sight) part of the channel power divided

by the scattered (multi-path) part of it. For Kb = 0, Eq.

9 reduces to the pdf of an exponentially-distributed random

variable. The average of γb,j [k] can be modeled as:

γ̄b,j[k] (dB) = γb
0 − 10np log

(

‖qj [k]− qb‖
)

+ sb,j [k], (10)

where sb,j [k] is a zero-mean Gaussian random variable

representing the shadowing effect and γ0 and np are positive

constants. For a given configuration space, the shadowing

contribution can be approximated by considering the sum of

the degradations caused by the obstacles (assuming that the

robots and the base station do not cause any degradation on

the transmitted signal).

In order to maintain the connectivity to the base station,

the exact SNR map is required. Such a map, however, will

not be available in practice and can only be estimated based

on online learning and/or using a model-based approach. In

this paper, we explore the impact of the estimation error of

the SNR map on navigation and connectivity.

Another factor that plays a key role in devising

communication-aware motion planning techniques is the way

the receiver of each robot or the base station handles the

received packets. Based on the received SNR, the receiver

can decide to either keep or drop the received data. We will

then have the following two designs:

• Packet-Dropping Receiver: By a packet-dropping re-

ceiver, we refer to a receiver that drops all the erroneous

packets. In order to do so, the receiver compares the

received SNR with a pre-calculated threshold necessary

for error-free reception. Any packet with the received

SNR below this level will be dropped (in practice

this is done by looking at the output of the decoder.

However, it is equivalent to using a threshold for SNR as

demonstrated in [14]). We have shown in [1] that drop-

ping all the erroneous packets is not a suitable design

for delay-sensitive control applications. However, the

current literature on networked control systems typically

assumes that all the erroneous packets are dropped.

• Communication-Noise Receiver: By a communication-

noise receiver, we refer to a receiver that keeps all the

packets, even the erroneous ones. Then the robot can

build a trust factor for every reception by using the

corresponding measured received SNR [1], [2], [5].

The design of communication-aware navigation functions

can change drastically depending on this underlying assump-

tion on the receiver design. In this paper, we focus on

the packet-dropping receivers and leave the communication-

noise case to future extensions.

III. COMMUNICATION-AWARE MOTION

PLANNING

In this section, we propose centralized and decentralized

communication-aware motion planning algorithms based on

using navigation functions. The communication-aware nav-

igation functions that we introduce in this section, do not

have all the properties of the traditional navigation functions
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as studied by Rimon and Koditschek [9]. For instance, they

may have multiple minima in the free configuration space or

may be dynamic when the target is moving.3

In the rest of the paper, we make the following assump-

tions which are necessary for convergence of the proposed

framework:

• The probability of more than one simultaneous collision

is too low to be considered.4

• The target is slow enough (or equivalently the robots

are fast enough) to guarantee convergence. In [8], we

found an upper bound for the speed of the target in

order to guarantee the convergence for the centralized

case. For the ease of derivations, we furthermore assume

that the target is small enough such that it can be

considered a point. Hence, the collision with the target

is negligible. We can easily relax this assumption for

non-point targets.

In the next section, we first consider building

communication-aware navigation functions, for both

centralized and decentralized cases, when perfect knowledge

of the SNR map is available. We then proceed to explore

the impact of the SNR map uncertainty on cooperative

operation.

A. Centralized Navigation Functions for Packet-Dropping

Receivers

A packet dropping receiver drops any reception with

received SNR below a certain threshold. Let γt represent

this threshold. Furthermore, let “safe communication region”

denote the regions with SNR to the base station above γt.

In order to enforce all the robots to remain connected to

the base station, we constrain their movements to the safe

communication region. We will have

γb,j > γt ⇔ Λ(qb, qj) > 0, (11)

where Λ is a piecewise continuous function which is zero on

the boundary of the safe communication region and positive

inside. Since we considered homogeneous transceivers for

all the robots, Λ will not be a function of j. Generally, the

boundary of the safe communication region (specified by

Λ = 0) is not smooth and may intersect some of the obstacles

as well as the boundary of the workspace. This can introduce

a narrower workspace with a new boundary. We assume

that the initial positions of the robots as well as the whole

trajectory of the target are within this new workspace. We

furthermore conservatively approximate the new workspace

with a spherical one. Although these assumptions are limiting

in some cases, they provide a good starting point for building

the mathematical framework of communication-aware mo-

tion planning using navigation functions.

We next introduce our communication-aware obstacle

function, an extension to the classical definition given in [9],

3It can still be shown that these functions have good properties that can
result in stability and collision avoidance. See [8] for more details.

4This assumption can be relaxed for the decentralized case. In that case,
we need the probability of more than one simultaneous collision for each
robot to be negligible.

which embraces the impact of obstacles, moving robots and

connectivity issues [8]:

β(q) ,

N
∏

i=1

N+M ′+1
∏

j=i+1

βi,j(q), (12)

where M ′ is the total number of obstacles in the new

spherical workspace, after the approximation is applied to

the original workspace, and

βi,j(q) ,

{

‖qi − qj‖
2 − (ri + rj)

2 1 ≤ i < j ≤ N + M ′,

(rc − ri)
2 − ‖qi − q0‖

2 j = N + M ′ + 1.

(13)

The constants rc and q0 ∈ R
2 can be found based on the

applied approximation.

We first consider the case where the SNR map to the

base station is perfectly known. As long as the robots are

within the new spherical workspace, the communication

can be considered perfect and the goal is to design a

communication-aware navigation strategy that can guide the

robots to the optimum configurations around the target while

keeping them connected to the base station and avoiding

collisions. Then the base station should build an objec-

tive function whose minima are achieved at the optimum

configurations. An optimum configuration is achieved when

det
(
∑N

j=1 R−1
j

)

is maximized, where Rj , the observation

noise covariance of the jth robot, is as defined in Eq. 5.

It can be easily confirmed that the optimum configuration

is reached when ‖qj − x‖ = rs for all 1 ≤ j ≤ N (the

robots are at the sweet spot) and the angles, φjs, maximize
∑N

i=1

∑N
j=i+1 sin2(φi − φj) [15]. It can be seen that there

are several possible optimum configurations all with the same

cost. Furthermore, if λ = 1 or ε = 0, any configuration on

the sweet spot radius will be optimum independent of the

angles.

The nature of our cooperative target tracking problem is,

therefore, different from the typical applications of naviga-

tion functions. Traditionally, the goal is to guide a robot to

a fixed destination point while avoiding fixed obstacles [9].

In this paper, we need to design an appropriate well-behaved

objective function in R
2N whose minima will occur at the

optimum configurations, which is a considerably challenging

problem. While one could use det
(
∑N

j=1 R−1
j

)

as a possible

objective function to maximize, the generated navigation

function will not have its minima at the desired configura-

tions. Therefore, in this paper, we use a suboptimal objective

function which reaches its minimum at any configuration on

the sweet spot that does not result in collision. In this paper,

we assume that the target and as a result the sweet spot radius

around it does not get too close to any fixed obstacle or the

boundary of the space, which will ensure that no collision

with fixed obstacles or boundary occurs when the objective

is minimized. We then use the following objective function

to prevent inter-robot collision [8]:

J(q, x) =

N
∑

j=1

(

‖qj − x‖− rs

)2
+

N
∑

i=1

N
∑

j=i+1

gi,j

(

‖qi − qj‖
)

,

(14)
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where the scalar function gi,j : [0,∞) → [0,∞) is differen-

tiable everywhere but the origin and is defined as follows:

gi,j(r) ,

{

a(di,j − r)3 0 ≤ r < di,j

0 r ≥ di,j
(15)

for a positive constant a and (ri + rj) < di,j < 2rs. The

first term of Eq. 14 results in an objective function that

has its minima at the sweet spot radius from the target.

It should be noted that we have a ring of minima where

all the points have the same cost. By adding the second

term, i.e.
∑N

i=1

∑N
j=i+1 gi,j

(

‖qi−qj‖
)

, we guarantee that we

only keep those points on the sweet spot radius that result

in no collision (see [8] for more details). Note that if the

information of the optimal angles is available at the base

station, it can be used to build more sophisticated objective

functions that are well-behaved with minima at the original

optimal configurations (minima of det
[

∑N
j=1 R−1

j

]−1

).

We now propose the following centralized navigation

function for the whole system, which will be calculated at

the base station:

ϕ(q, x) =
J(q, x)

(

Jκ(q, x) + β(q)
)1/κ

, (16)

where κ is a tuning parameter. The control signals are then

calculated as u[k] = −µ∇qϕ(q[k], x̂[k|k]) where u[k] =
[

uT
1 [k] · · · uT

N [k]
]T

, µ is a positive gain5 and x̂[k|k] is

the estimate of the base station of target position using the

received information. The key points that differentiate our

navigation function from the traditional ones are its time-

varying nature as well as the existence of multiple minima

(due to the minima of J). For more details and proof of

convergence see [8].

Fig. 3 demonstrates a sample centralized target tracking

scenario where a team of four mobile robots, with the same

radius of 2.0, track a point target in the x-y plane. The

channel is generated using the path-loss and shadowing com-

ponents with no multi-path fading. The empty circles/boxes

and the filled ones denote the initial and final positions

respectively. It can be seen that the robots converge to the

sweet spot radius.

Next we consider the impact of uncertainty in the estima-

tion of the SNR map. If the assumed map is not accurate,

then some of the nodes will lose their connectivity to the base

station from time to time. Let Nb[k] ,
{

j | γb,j [k] > γt

}

represent the set of nodes that are connected to the base

station at time k. Then the base station will generate the

time-varying obstacle and objective functions based on the

5
µ can be constant or time-varying when a gain-scheduling algorithm is

used.
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Fig. 3. Trajectories of the robots in the centralized case with packet
dropping receivers and perfect SNR map.

partial information available through these nodes as follows:

β(q, k) =

[

∏

i∈Nb[k]

∏

j∈Nb [k]
j>i

βi,j(q)

]

×

[

∏

i∈Nb[k]

N+M ′+1
∏

j=N+1

βi,j(q)

]

,

J(q, x, k) =
∑

j∈Nb[k]

(

‖qj − x‖ − rs

)2

+
∑

i∈Nb[k]

∑

j∈Nb[k]
j>i

gi,j

(

‖qi − qj‖
)

. (17)

It should be noted that the base station generates the trans-

formed spherical workspace based on its estimate of the SNR

map.

One possible scenario that can result in a mismatch in the

estimation of the SNR map could arise when the base station

can estimate the path loss and shadowing components (see

Eq. 10) by using the information of the obstacles. However,

it cannot estimate the multi-path fading component, which is

considerably more challenging to estimate. As an example,

Fig. 4 and 5 show such a scenario, where there is a mismatch

in the estimation of SNR due to the impact of multi-path

fading. Fig. 4 shows the trajectories of the robots in a

scenario similar to Fig. 3 but with Rician fading with Kb = 2
added. The base station, however, cannot estimate the multi-

path fading component and uses the same estimate of the

SNR map that was used in Fig. 3. Since the robots move

randomly in case they lose their connectivity, jitters can be

seen along their trajectories. Furthermore, it takes more time

for the robots to reach the optimal configurations in this case

(if we still have convergence). Fig. 5 shows a comparison

between the noisy map and its estimate which is used at

the base station. It can be seen that the mismatch can be

drastic. Finally, Fig. 6 shows the percentage of time that

each node is connected to the base station as a function of

the Rician K-factor, averaged over 20 runs. It can be seen

that channel estimation error can result in a considerable loss

of connectivity, specially at low Kb. By increasing Kb, the
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line of sight component increases as compared to the multi-

path fading component, which results in less uncertainty in

the SNR map and better communication.
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B. Decentralized Navigation Functions for Packet-Dropping

Receivers

In the decentralized case, unlike the centralized one, each

robot runs its own local information filter and generates

its own motion. It then sends its estimate as well as its

corresponding covariance to the base station. The base station

then fuses the received information.

The inter-agent communication is crucial in this case as

the robots need the positions of their neighbors for obstacle

avoidance. In this case, each robot considers the positions

of those robots that it can communicate with in its motion

planner. However, it still only optimizes its connectivity to

the base station. Assume that the receiver of each robot drops

all the received packets if the received SNR is below γr. We

take the links i → j and j → i to have the same quality.

Then we define the time-varying neighbor set of the jth node

as Nj [k] ,
{

i | γi,j [k] > γr

}

, where γi,j [k] denotes the

instantaneous received SNR between the ith and jth robots.

We now propose the decentralized and time-varying ver-

sion of the previously defined obstacle, objective and navi-

gation functions for the jth robot as:

βj(q, k) =

[

∏

i∈Nj [k]

βi,j(q)

][

N+M ′+1
∏

i=N+1

βi,j(q)

]

,

Jj(q, x, k) =
(

‖qj − x‖ − rs

)2
+

∑

i∈Nj [k]

gi,j

(

‖qi − qj‖
)

,

ϕj(q, x, k) =
Jj(q, x, k)

(

Jκ
j (q, x, k) + βj(q, k)

)1/κ
, (18)

where βi,j and gi,j are as defined for the centralized case and

κ is a tuning parameter. The control signal for the jth robot

is then calculated as uj[k] = −µj∇qj
ϕj(q[k], x̂j [k|k], k)

where x̂j [k|k] is the estimate of the jth robot of the target

position at time k and µj is a positive gain.

Fig. 7 demonstrates the trajectories of the robots for the

decentralized case, using the same parameters of Fig. 3. The

map is taken to be perfect in this example. It should be noted

that the performance of both centralized and decentralized

cases can be improved by increasing κ.
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Fig. 7. Trajectories of the robots in the decentralized case with packet
dropping receivers and perfect SNR map.

Fig. 8 shows the effect of SNR estimation error on

the overall performance of the decentralized scenario. For

this case, we added Rician fading with Kb = 2 to the

communication with the base station as well as inter-agent

communications. However, the robots cannot estimate the

added multi-path fading term, which results in an estimation

error in the SNR map (see Fig. 5). It can be seen that the

decentralized case performs more robustly in the presence

of SNR map uncertainty. This is expected as the control

commands are generated locally.
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Finally, Fig. 9 shows the percentage of time that each node

is connected to the base station as a function of the Rician

K-factor. Similar behavior to Fig. 6 can be seen.
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Fig. 9. Percentage of the time that the nodes are connected to the
base station in the decentralized case as a function of Rician K-
factor.

IV. CONCLUSIONS

In this paper we considered a cooperative target tracking

scenario in which the robots need to maintain their connec-

tivity to a fixed base station. We proposed communication-

aware motion planning approaches based on using navigation

functions, which enforced the nodes to maintain their con-

nectivity while performing their task and avoiding obstacles.

More specifically, we showed how to incorporate measures of

link qualities in the navigation functions for both centralized

and decentralized scenarios. We furthermore explored the

impact of stochastic channels and channel estimation error

on the overall performance.
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