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Abstract— We develop a Linear Matrix Inequality (LMI)
tool for analyzing the stability and performance of adaptive
controllers that employ σ−modification. The formulation
involves recasting the error dynamics composed of the
tracking error and the weight estimator error into a linear
parameter varying form. We show how stability, conver-
gence rate, domain of attraction, and the transient and
steady state behavior of the adaptive control system can be
analyzed using the developed LMI tool. It is guaranteed
that less conservative estimates for the convergence rate
and the size of the ultimate bound for the tracking error
are obtained compared to the standard analysis in the
literature.

I. INTRODUCTION

Despite numerous practical applications and success
stories of adaptive control, adaptive control is still not
well accepted in safety-critical applications with its main
criticism being the lack of an appropriate analysis tool
to quantify stability characteristics, such as convergence
rate, domain of attraction, transient behavior of the
tracking error, and the size of the ultimate bound on
the tracking error in the presence of bounded external
disturbances. Unlike linear system theory which is based
on exponential stability, adaptive controllers can only
guarantee asymptotic convergence of the tracking error,
and its robustness to uncertainties that are not perfectly
parametrized is in question [1]. Unlike exponential
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stability, asymptotic stability does not guarantee the
closed loop system remains asymptotically stable when
disturbed. This situation makes it essential to employ
additional modifications to adaptive laws in practice
because industrial applications can have variety of un-
certainties not supported by the parametrization assumed
in adaptive control. The lack of exponential stability has
also been an major obstacle in applying LMI analysis
for adaptive control because conventional LMI methods
require local exponential stability for being applied to
nonlinear systems [10].

In this paper, we employ σ−modification term [2] as
an essential ingredient and develop a Linear Matrix In-
equalities (LMI) tool for analysis of adaptive systems. A
key procedure in this study is to cast the error dynamics,
composed of the tracking error and the weight estimation
error, into a linear parameter varying (LPV) form in
which an exponentially stable system is perturbed by a
constant external disturbance. In particular, we show that
affine parameterization is possible. By this formulation,
we reveal that a series of standard LMI analysis tools can
also be employed for the stability analysis of adaptive
controllers, which include a guaranteed convergence
rate, domain of attraction, and the size of an ultimate
bound on the tracking error. Moreover, by showing that
the standard analysis in the literature is a special solution
to formulated LMIs, it is establshied that the formulated
LMIs are guaranteed to provide less conservative anal-
ysis for adaptive controllers.

The paper is organized as follows. We go through a
control architecture in Section II in which nominal linear
controllers are augmented by adaptive controllers as in
[3]–[5]. In Section III, we present the standard results
on the quadratic stability. In Section IV, we show how



adaptive control system can be cast into a LPV form
and present several LMI analysis tools. We conclude
the paper in Section V. Throughout the manuscript, ‖·‖
means Euclidean norm for a vector and the induced 2-
norm for a matrix.

II. ADAPTIVE CONTROL WITH σ− MODIFICATION

Consider a single-input single-output system de-
scribed by:

ẋ =Ax + b(u + W�φ(x))

y =c�x,
(1)

where x ∈ R
n is the state vector, u ∈ R is the input,

y ∈ R is the output, W ∈ R
N is a uncertain parameter

vector, φ(x) ∈ R
N is a known set of smooth basis

functions, and the system matrices A, b, c� are known.
A nominal linear controller:

unom = −K�
x x + Krr(t), (2)

is assumed to be designed such that the resulting closed-
loop system with W = 0 defines the following reference
model for the desired system behavior,

ẋm =Amxm + bmr(t)

ym =c�xm,
(3)

where Am = A− bK�
x is Hurwitz, bm = bKr , r(t) is

a bounded reference command, and the subscript m is
used to represent the reference model.

Let
u = unom − uad, (4)

where uad is an adaptive signal to approximately cancel
the uncertainty W �φ(x) that is given by:

uad = Ŵ (t)�φ(x), (5)

whose estimate Ŵ (t) for the unknown parameter vector
W in (1) is updated using:

˙̂
W = −γφ(x)e�Pb, (6)

where γ > 0 ∈ R is the adaptation gain, and P > 0
is obtained by solving the following Lyapunov function
with a chosen Q > 0:

A�
mP + PAm + Q = 0. (7)

The standard stability result of adaptive control has
been associated with the tracking error:

e = xm − x, (8)

whose dynamics are described by:

ė = Ame + bW̃ (t)�φ(x), (9)

where W̃ (t) = Ŵ (t) − W is the weight estimation
error.

Let
ζ = [e�, W̃

�
]�. (10)

Then the error dynamics composed of the tracking error
and the weight estimation error are described by:

ζ̇ =
[

Am bφ(x)�

−γφ(x)b�P 0

]
ζ. (11)

A stability analysis for the system in (11) is typically
carried out by considering the following Lyapunov can-
didate function:

V0(ζ) = e�Pe +
1
γ

W̃ (t)�W̃ (t) = ζ�X0ζ, (12)

where

X0 =
[

P 0
0 γ−1IN

]
. (13)

The time derivative of V along with (9) and (6) becomes:

V̇0(ζ) = −e�Qe ≤ 0. (14)

This guarantees that ζ ∈ L∞. Further analysis shows
that 1) e ∈ L2 ∩ L∞, and the tracking error converges
to the origin by Barbalat’s lemma (e(t) → 0 as t → ∞)
2) the weight errors remain bounded W̃ (t) ∈ L∞,

and limt→∞
˙̃

W (t) = limt→∞
˙̂

W (t) = 0. This re-
sult implies that the only guaranteed stability results
for adaptive control are asymptotic convergence of the
tracking error and boundedness of the weight estimate,
which is much weaker than exponential stability. One
consequence is that adaptive control systems are not
guaranteed to remain bounded when disturbed. A promi-
nent result in this regard is the possibility of parameter
drift in the presence of a bounded external disturbance
[6]. Whereas stable linear systems remain bounded in
the presence of bounded disturbances, adaptive control
systems may exhibit unbounded parameter drift even for
bounded disturbances. This has led to various modifica-
tions [6] for guaranteeing boundedness of closed-loop
signals.

In this paper, we employ σ−modification [2] and
make use of LMIs to study the stability properties of
the resulting adaptive control system. Towards this end,
the update law (6) is modified to:

˙̂
W (t) = −γφ(x)e�Pb − σŴ (t), (15)

which is equivalent to:

˙̃
W (t) = −γφ(x)e�Pb − σW̃ (t) − σW . (16)



Due to modification, the combined error ζ(t) evolves
according to:

ζ̇ =
[

Am bφ(x)�

−γφ(x)b�P −σIN

]
︸ ︷︷ ︸

Ā(x)

ζ +
[

0
−IN

]
︸ ︷︷ ︸

B̄

σW

e =
[

In 0n×N

]
︸ ︷︷ ︸

C̄

ζ.

(17)

Note that the tracking error e is considered as a per-
formance variable in the dynamics in (17). Stability
analysis using the Lyapunov candidate in (12) leads to:

V̇0(ζ) = −e�Qe − 2
σ

γ
W̃

�
Ŵ

= −e�Qe − σ

γ
[
∥∥∥W̃

∥∥∥2

+
∥∥∥Ŵ

∥∥∥2

− ‖W ‖2]

≤ −λmin(Q) ‖e‖2 − σ

γ

∥∥∥W̃
∥∥∥2

+
σ

γ
‖W ‖2

≤ −c1 ‖ζ‖2 +
σ

γ
‖W ‖2

,

(18)

where c1 = min{λmin(Q), σ
γ }. Whenever ‖ζ‖ ≥√

σ
γc1

‖W ‖, V̇0 ≤ 0. Hence, ζ(t) is uniformly ul-

timately bounded (UUB). Note that by employing
σ−modification, the resulting stability proof has weak-
ened to UUBness of the closed-loop signals. However,
with σ-modification it is possible to show that the
adaptive system remains bounded in the presence of
bounded external disturbances because the analysis in
(18) ensures that Ā(x) in (17) is exponentially stable.

III. QUADRATIC STABILITY OF LINEAR

AFFINE-PARAMETER MODELS

The viewpoint taken in our effort is to consider the
system in (17) as a linear parameter varying (LPV)
system and employ LMI tools of analysis. A major
complexity of a stability analysis for LPV systems is
associated with how parameters are characterized [7].
Before we describe the dynamics in (17) in LPV form,
we go over standard results on affine quadratic stability
in this section.

Proposition 1: ( [8]) Let f : S → R be a convex
function where S := co(S0). Then f(x) ≤ γ for all
x ∈ S iff f(x) ≤ γ for all x ∈ S0.

Consider a system described by

ζ̇ = Ā(ρ(t))ζ, (19)

where ζ ∈ R
d is the state vector, and the state matrix

Ā(ρ) is a function of a real valued parameter vector
ρ := (ρ1, . . . , ρk) ∈ R

k.

Definition 1: ( [8]) The system (19) is quadratically
stable for perturbation P if there exists a matrix X =
X� such that

Ā(ρ(t))�X + XĀ(ρ(t)) < 0 (20)

for all perturbations ρ ∈ P .
Quadratic stability for perturbations P is equivalent to
the existence of a quadratic Lyapunov function V (ζ) =
ζ�Xζ, X > 0 such that V̇ = ζ�[Ā(ρ)�X +
XĀ(ρ)]ζ < 0 for all ρ ∈ P . Note that in general
quadratic stability of the system for an uncertainty
class P places an infinite number of constraints on the
symmetric matrix X . For the quadratic stability problem
to be numerically tractable, additional assumptions on
the way the uncertainty enters the system need to be
introduced. Suppose that Ā(ρ) is an affine function of
the parameter vector ρ. That is, suppose that there exits
real matrices A0, . . . , Ak, all of dimension d × d, such
that

Ā(ρ) = A0 + ρ1(t)A1 + . . . + ρk(t)Ak (21)

for all ρ ∈ P . Suppose that the uncertain parameters
ρj(t), j = 1, . . . , k, t ∈ R assume their values in an
interval [ρ

j
, ρj ], i.e.,

ρj(t) ∈ [ρ
j
, ρj ].

Define the set of corners of the uncertainty region as

P0 := {ρ = (ρ1, . . . , ρk) : ρj ∈ {ρ
j
, ρj}, j = 1, . . . , k}.

(22)
Proposition 2: ( [8]) If the system in (19) is an affine

parameter dependent model then it is quadratically stable
iff there exists X = X� > 0 such that

A(ρ)�X + XA(ρ) < 0, (23)

for all ρ ∈ P0.
The importance of this result lies in the fact that the
quadratic stability can be concluded from a finite set of
matrix inequalities.

IV. LMI ANALYSIS

A. Affine Parametrization

Applying Proposition 2 requires that Ā(x) in (17) be
written as an affine model. Towards this end, we set a
compact domain of interest, Ωx, such that x(t) ∈ Ωx

for all t ≥ 0 and x(0) ∈ Ωx. Without loss of generality,
Ωx is defined as a hypercube whose corners are Ωx0 :=
{x = (x1, . . . , xn) : xj ∈ {xj , xj}, j = 1, . . . , n}.
Note that Ωx0 is a set of corners: xi ∈ Ωx0 , i =
1, . . . , 2n.



Let Ā(x) in (17) be decomposed as follows:

Ā(x) =
[

Am 0n×N

0N×n −σIN

]
︸ ︷︷ ︸

A0

+
[

0n×n bφ(x)�

−γφ(x)b�P 0N×N

]
︸ ︷︷ ︸

Ar(x)

.

(24)

Then, Figure 1 illustrates in the two-dimensional
Euclidean space the complexity associated with
parametrization when one attempts to directly obtain

vertices Ai =
[

0n×n bφ(xi)�

−γφ(xi)b�P 0N×N

]
such that

Ar(x) ∈ co{Ai} from Ωx0 . Since φ(x) may distort the
rectangle in the transformed space, it is generally not
guaranteed that φ(x) ∈ co{φ(xi)}. Nevertheless, for a

x1 x2

x3 x4

φ(x1)

φ(x2)

φ(x3)

φ(x4)

Fig. 1. Diagram for mapping φ(x)

simple LMI technique to be applicable to the system in
(17), it is desirable for the resulting parametrization to be
convex and independent of the rate at which parameter
variations occur. It has been shown that considering the
time-rate of parameter variation leads to partial differen-
tial LMIs and makes the analysis problem complicated
[7].

In this paper, we note that the basis function φ(x) =
[φ1(x), . . . , φN (x)]� is known and the domain Ωx =
co{xi} is compact, and hence we can calculate the do-
main to which each basis function belongs, i.e., φj(x) ∈
[min(φj(x)), max(φj(x))] = [φ

j
, φj ]. Moreover, this

parametrization leads to:

Ar(x) =
N∑

j=1

φj(x)Aj , (25)

where Aj ∈ R
(n+N)×(n+N) is a matrix such that

Aj(1 : n, k) = b, Aj(k, 1 : n) = −γb�P if k = j,
and Aj(k, l) = 0 otherwise (k 	= j nor l 	= j). The

notation 1 : n is used to represent indices from 1 to n.
Then, it is immediately clear that the parametrization

Ā(x) = A0 +
N∑

j=1

φj(x)Aj = Ā(ρ(t)) (26)

is affine with respect to ρ(t) = φ(x(t)) and ρ ∈ P :=
co(P0) where P0 := {ρ = (φ1, . . . , φN ) : φj ∈
{φ

j
, φj}, j = 1, . . . , N} (In regard to Section III, we

can see that k = N and d = n + N ).
Remark 1: For a neural network (NN)-based adaptive

approach, the basis function φ(x) have a uniform struc-
ture, and obtaining min and max values for the basis
vector on the compact domain collapses into finding
those values with a single basis function.

B. LMI Analysis

The rationale in performing our LMI-based stability
analysis is that the dynamics in (17) is viewed as an
exponentially stable system perturbed by the unknown
but constant disturbance σW . Exponential stability for
the homogeneous system in (17)

ζ̇ = Ā(x)ζ = Ā(ρ)ζ (27)

is checked as a feasibility problem of the following LMI
by Proposition 2.

Lemma 1: The system in (27) is exponentially stable
if there exists X = X� > 0 such that

Ā(ρ)�X + XĀ(ρ) < 0, ∀ρ ∈ P0. (28)
Note that the analysis in (18) guarantees the feasibility
of the LMI in (28) because X0 in (13) satisfies (28).
Once exponential stability is established, the UUBness
of ζ is ensured by the following lemma.

Lemma 2: Suppose that there exists X = X� >
0, μ > 0 such that

Ā(ρ)�X + XĀ(ρ) < −μI, ∀ρ ∈ P0. (29)

Then the system in (17) is UUB.
Proof: Consider V (ζ) = ζ�Xζ. For ζ ∈ R

n+N ,
define fζ(ρ) := ζ�[Ā(ρ)�X + XĀ(ρ) + μI]ζ with
ρ ∈ P . Since fζ(ρ) is an affine function of ρ, fζ(ρ) is
a convex function of ρ. By Proposition 1, Eq. (29) is
equivalent to fζ(ρ) < 0 for ∀ρ ∈ P . Therefore, we have
V̇ (ζ) = fζ(ρ) − μ ‖ζ‖2 + 2ζ�XB̄σW ≤ −μ ‖ζ‖2 +
2 ‖ζ‖ ∥∥XB̄

∥∥ σ ‖W ‖ ≤ −μ ‖ζ‖ [‖ζ‖ − dζ ], where dζ =
2σ/μ

∥∥XB̄
∥∥ ‖W ‖. Therefore, V̇ ≤ 0 whenever ‖ζ‖ ≥

dζ , and ζ(t) is UUB.
For an LMI implementation (for example MATLAB
[9]), the feasibility test in Lemma 1 can be solved by
obtaining the maximal μ in Lemma 2. Moreover, affine



parametrization allows for maximizing the quadratic
stability region. That is, even if the study of stability
characteristics for the system in (17) is initiated with
setting up the compact domain Ωx, the resulting affine
parametrization in (26) in turn enables us to find how
far the domain can be expanded while still guaranteeing
quadratic stability. The expanded domain can be derived
as follows. For ρ ∈ P , each parameter ρi(t) ∈ [ρ

i
, ρi].

Let ρci = 1
2 (ρ

i
+ ρi) and ri = 1

2 (ρi − ρ
i
) be the center

and radius of each interval. Then, an LMI tool can solve
the largest dilation factor θ such that the system remains
quadratically stable whenever ρi ∈ [ρci − θri, ρci + θri]
by formulating it as a general eigenvalue problem [9],
[10]. Let Pe := {ρ : ρi ∈ [ρci − θri, ρci + θri], i =
1, . . . , N}, then Pe ⊃ P if θ ≥ 1. The domain of
attraction for x can then be determined as the pre-image
of Pe, φ−1(Pe).

Lemma 3: Suppose that there exists X = X� >
0, μ > 0 such that

Ā(ρ)�X + XĀ(ρ) < −μX, ∀ρ ∈ P0. (30)

Then ζ(t) in (27) is exponentially bounded by:

‖ζ(t)‖ ≤
√

κ(X) ‖ζ(0)‖ e−
µ
2 t

+ 2
√

κ(X)σ ‖W ‖ [1 − e−
µ
2 t],

(31)

where κ(X) = λmax(X)/λmin(X).
Proof: Let ζ(t) = Φ(t, 0)ζ(0) be a solution to the

system in (27), where Φ(t, 0) is the transition matrix
[11]. Consider V (ζ) = ζ�Xζ. Then following similar
lines as in Lemma 2, we have: V̇ (t) ≤ −μV , which
leads to V (t) ≤ V (0)e−μt for all ρ ∈ P . From the
fact that λmin(X) ‖ζ‖2 ≤ V (ζ) ≤ λmax(X) ‖ζ‖2 it
follows that ‖ζ(t)‖2 ≤ κ(X)e−μt ‖ζ(0)‖2. Since ζ(0)
is arbitrary,

‖Φ(t, 0)‖ ≤
√

κ(X)e−
µ
2 t. (32)

From this, the solution for the system in (17) is derived
as ζ(t) = Φ(t, 0)ζ(0)+

∫ t

0
Φ(t, s)B̄σWds. Considering

that
∥∥B̄

∥∥ ≤ 1 together with (32) leads to (31).
Lemma 3 implies that the constant external disturbance
σW in (17) does not change the convergence rate that
is determined by the homogeneous system in (27) even
though the state ζ does not converge to the origin.
In fact, it is only guaranteed that limt→∞ ‖ζ(t)‖ ≤
2
√

κ(X)σ ‖W ‖.
The guaranteed convergence rate can be obtained by

finding the maximal μ that makes the LMI in (30)
feasible, which is a standard problem in LMI meth-
ods [9]. Moreover, notice that the standard analysis
in the literature [12]–[14] given in Eq. (18), which
is based on λmin(X0) ‖ζ‖2 ≤ V0 ≤ λmax(X0) ‖ζ‖2,

also leads to the convergence rate ,μ0 := c1
c2

, where
c2 = max{λmax(P ), 1/γ}. In other words, the Lya-
punov candidate X0 and μ0 in the standard analysis
are a solution for the LMI in (30). This implies that
the maximal convergence rate μopt by solving the op-
timization problem for (30) is guaranteed to be larger
than the standard convergence rate, μ0.

Remark 2: The convergence rate μ can also indicate
the degree to which norm-bounded unmatched uncer-
tainty can be tolerated because the LMI in (30) guaran-
tees Ā(ρ(t)+ μ

2 I < 0. This in turn implies that the LMI-
based approach has a potential for a less conservative
estimate for the size of unmatched uncertainty compared
to the standard analysis. The rigorous treatment of
unmatched uncertainties will be presented in a future
publication.

In the case of adaptive control, the weight estimation
error W̃ can only be shown to be bounded, unless a per-
sistency of excitation condition [6] is met. Therefore, Eq.
(31) is not as meaningful in studying the performance
of an adaptive controller, hence performance has been
associated only with the tracking error, e. The following
lemma sheds light on how the tracking error can be
analyzed.

Lemma 4: Suppose that there exists X = X� > 0,
μ > 0, and β1, β2, ν > 0 such that[

A(ρ)�X + XA(ρ) + μX XB̄
B̄�X −νIN

]
< 0,⎡

⎣ μX 0 C̄�

0 (β2 − ν)I 0
C̄ 0 β1IN

⎤
⎦ > 0, ∀ρ ∈ P0,

(33)

Then the tracking error is upper bounded by:

‖e(t)‖ ≤
√

β1μλmax(X) ‖ζ(0)‖ e−
µ
2 t+

√
β1β2σ ‖W ‖ .

(34)
Proof: The LMIs in (33) are slightly modified from

those in [8] that provide an upper bound for the L 1-norm
(the peak-to-peak norm) when the initial condition is
set as zero. The proof given here is tailored from that
in [8] in order to account for the fact that the external
disturbance is constant. Consider V (ζ) = ζ�Xζ. By
following the same lines from Lemma 2, from the first
inequality, we have V̇ + μV − νσ2W�W < 0. This
leads to:

V (t) ≤ V (0)e−μt + νσ2 ‖W ‖2
∫ t

0

e−μ(t−s)ds

≤ V (0)e−μt + ν/μσ2 ‖W ‖2
.

(35)

From the second inequality, we have ‖e(t)‖2
<

β1[μV (t) + (β2 − ν)σ2 ‖W ‖2]. By substituting (35),
we have ‖e(t)‖2

< β1[μV (0)e−μt + β2σ
2 ‖W ‖2] ≤



β1μλmax(X) ‖ζ(0)‖2
e−μt +β1β2σ

2 ‖W ‖2. This leads
to (34).
Since the full state is available for feedback, by setting
xm(0) = x(0), we can set e(0) = 0. Then, Eq.(34)
leads to:

lim
t→∞ ‖e‖ ≤

√
β1β2σ ‖W ‖ ,

‖e‖L∞ ≤
√

β1μλmax(X)
∥∥∥W̃ (0)

∥∥∥ +
√

β1β2σ ‖W ‖ ,

(36)

where ‖e‖L∞ := supt≥0 ‖e(t)‖.
The guaranteed size of the ultimate bound is obtained

by solving the optimization problem min β1β2 such that
the LMIs in (33) holds. In case of standard analysis in
the literature [12]–[14], based on X0 and μ0, an upper
bound for the tracking error is estimated by V0(t) ≤
V0(0)e−μ0t + ν0

μ0
‖σW ‖2 and ‖e(t)‖2 ≤ 1

λmin(P )V0(t).
This leads to:

‖e(t)‖2 ≤ 1
λmin(P )

[c2 ‖ζ(0)‖2
e−μ0t +

ν0

μ0
‖σW ‖2]

(37)

where ν0 = 1
γσ . Therefore, the standard stability analy-

sis in the literature is a single solution for the LMIs in
Lemma 4 in which X = X0, μ = μ0, ν = ν0, β1 =

1
μ0λmin(P ) , and β2 = ν0. This implies that the resulting
ultimate bound from optimizing β1β2 in Lemma 4 is
guaranteed to be smaller than the one in (37).

Remark 3: The LMIs in Lemma 4 is guaranteed to be
feasible for any fixed μ that is obtained from Lemma 3.
Let ‖e(t)‖est1

be the estimate for the tracking error with
μ = μopt in (33) and ‖e(t)‖est2

be the estimate with μ
as a decision variable, for both of which β1β2 is min-
imized. Then, ‖e(t)‖est = min{‖e(t)‖est1

, ‖e(t)‖est2
}

denotes the best estimate for the maximal convergence
rate with the smallest ultimate bound possible in the
LMI analysis proposed in this paper.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we show that by casting the error
dynamics of the tracking error and the weight estimation
error into a proper form LMI-based analysis tools can
be developed for stability and performance analysis of
adaptive controllers with σ−modification. The analysis
establishes guaranteed convergence rate, domain of at-
traction, and the transient and steady-state upper bound
of the tracking error for adaptive systems. These tools
provide less conservative estimates for the convergence
rate and the ultimate bound than the standard analysis
in the literature.

An additional benefit of employing LMI methods is
that stability margins and robustness to uncertainties that

cannot be parameterized can also be carried out under
the framework of linear parameter varying systems.
LMI-based analysis tools for guaranteed gain margin,
phase margin, and time-delay margins, and robustness
measures for unmatched uncertainties will be presented
in forthcoming publications.

ACKNOWLEDGMENTS

This research is supported under NASA Cooperative
Agreement NNX08AC61A.

REFERENCES

[1] Rohrs, C., Valavani, L., Athans, M., and Stein, G., “Robustness
of Continuous-Time Adaptive Control Algorithms in the Pres-
ence of Unmodeled Dynamics,” IEEE Transactions on Automatic
Control, Vol. 30, 1985, pp. 881–889.
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