
ar
X

iv
:1

00
5.

29
67

v2
 [

m
at

h.
O

C
]

 2
6

D
ec

 2
01

0

Controlled Hopwise Averaging: Bandwidth/Energy-Efficient

Asynchronous Distributed Averaging for Wireless Networks∗

Choon Yik Tang and Jie Lu

School of Electrical and Computer Engineering

University of Oklahoma, Norman, OK 73019, USA

{cytang,jie.lu-1}@ou.edu

November 2, 2018

Abstract

This paper addresses the problem of averaging numbers across a wireless network from an

important, but largely neglected, viewpoint: bandwidth/energy efficiency. We show that existing

distributed averaging schemes have several drawbacks and are inefficient, producing networked

dynamical systems that evolve with wasteful communications. Motivated by this, we develop

Controlled Hopwise Averaging (CHA), a distributed asynchronous algorithm that attempts to

“make the most” out of each iteration by fully exploiting the broadcast nature of wireless medium

and enabling control of when to initiate an iteration. We show that CHA admits a common

quadratic Lyapunov function for analysis, derive bounds on its exponential convergence rate,

and show that they outperform the convergence rate of Pairwise Averaging for some common

graphs. We also introduce a new way to apply Lyapunov stability theory, using the Lyapunov

function to perform greedy, decentralized, feedback iteration control. Finally, through extensive

simulation on random geometric graphs, we show that CHA is substantially more efficient than

several existing schemes, requiring far fewer transmissions to complete an averaging task.

1 Introduction

Averaging numbers across a network is a need that arises in many applications of mobile ad

hoc networks and wireless sensor networks. In order to collaboratively accomplish a task, nodes

often have to compute the network-wide average of their individual observations. For examples,

by averaging their individual throughputs, an ad hoc network of computers can assess how well

the network, as a whole, is performing, and by averaging their humidity measurements, a wireless

network of sensing agents can cooperatively detect the occurrence of local, deviation-from-average

∗This work was supported by the National Science Foundation under grant CMMI-0900806.

1

http://arxiv.org/abs/1005.2967v2

anomalies. Therefore, methods that enable such computation are of notable interest. Moreover, for

performance reasons, it is desirable that the methods developed be robust, scalable, and efficient.

In principle, computation of network-wide averages may be accomplished via flooding, whereby

every node floods the network with its observation, as well as centralized computation, whereby a

central node uses an overlay tree to collect all the node observations, calculate their average, and

send it back to every node. These two methods, unfortunately, have serious limitations: flooding is

extremely bandwidth and energy inefficient because it propagates redundant information across the

network, ignoring the fact that the ultimate goal is to simply determine the average. Centralized

computation, on the other hand, is vulnerable to node mobility, node membership changes, and

single-point failures, making it necessary to frequently maintain the overlay tree and occasionally

start over with a new central node, both of which are rather costly to implement.

The limitations of flooding and centralized computation have motivated the search for distributed

averaging algorithms that require neither flooding of node observations, nor construction of overlay

trees and routing tables, to execute. To date, numerous such algorithms have been developed in

continuous-time [1–3] as well as in discrete-time for both synchronous [1, 3–11] and asynchronous

[10,12–19] models. The closely related topic of distributed consensus, where nodes seek to achieve

an arbitrary network-wide consensus on their individual opinions, has also been extensively studied;

see [20,21] for early treatments, [1, 10,22–29] for more recent work, and [30] for a survey.

Although the current literature offers a rich collection of distributed averaging schemes along

with in-depth analysis of their behaviors, their efficacy from a bandwidth/energy efficiency stand-

point has not been examined. This paper is devoted to studying the distributed averaging problem

from this standpoint. Its contributions are as follows: we first show that the existing schemes—

regardless of whether they are developed in continuous- or discrete-time, for synchronous or asyn-

chronous models—have a few deficiencies and are inefficient, producing networked dynamical sys-

tems that evolve with wasteful communications. To address these issues, we develop Random

Hopwise Averaging (RHA), an asynchronous distributed averaging algorithm with several positive

features, including a novel one among the asynchronous schemes: an ability to fully exploit the

broadcast nature of wireless medium, so that no overheard information is ever wastefully discarded.

We show that RHA admits a common quadratic Lyapunov function, is almost surely asymptotically

convergent, and eliminates all but one of the deficiencies facing the existing schemes.

To tackle the remaining deficiency, on lack of control, we introduce the concept of feedback

iteration control, whereby individual nodes use feedback to control when to initiate an iteration.

Although simple and intuitive, this concept, somewhat surprisingly, has not been explored in the

literature on distributed averaging [1–19] and distributed consensus [1, 10, 20–30]. We show that

RHA, along with the common quadratic Lyapunov function, exhibits features that enable a greedy,

decentralized approach to feedback iteration control, which leads to bandwidth/energy-efficient

iterations at zero feedback cost. Based on this approach, we present two modified versions of RHA:

an ideal version referred to as Ideal Controlled Hopwise Averaging (ICHA), and a practical one

2

referred to simply as Controlled Hopwise Averaging (CHA). We show that ICHA yields a networked

dynamical system with state-dependent switching, derive deterministic bounds on its exponential

convergence rate for general and specific graphs, and show that the bounds are better than the

stochastic convergence rate of Pairwise Averaging [10,12] for path, cycle, and complete graphs. We

also show that CHA is able to closely mimic the behavior of ICHA, achieving the same bounds on

its convergence rate. Finally, via extensive simulation on random geometric graphs, we demonstrate

that CHA is substantially more bandwidth/energy efficient than Pairwise Averaging [12], Consensus

Propagation [18], Algorithm A2 of [19], and Distributed Random Grouping [17], requiring far fewer

transmissions to complete an averaging task. In particular, CHA is twice more efficient than the

most efficient existing scheme when the network is sparsely connected.

The outline of this paper is as follows: Section 2 formulates the distributed averaging problem.

Section 3 describes the deficiencies of the existing schemes. Sections 4 and 5 develop RHA and

CHA and characterize their convergence properties. In Section 6, their comparison with several

existing schemes is carried out. Finally, Section 7 concludes the paper. The proofs of the main

results are included in Appendix A.

2 Problem Formulation

Consider a multi-hop wireless network consisting of N ≥ 2 nodes, connected by L bidirectional

links in a fixed topology. The network is modeled as a connected, undirected graph G = (V, E),
where V = {1, 2, . . . , N} represents the set of N nodes (vertices) and E ⊂ {{i, j} : i, j ∈ V, i 6= j}
represents the set of L links (edges). Any two nodes i, j ∈ V are one-hop neighbors and can

communicate if and only if {i, j} ∈ E . The set of one-hop neighbors of each node i ∈ V is denoted

as Ni = {j ∈ V : {i, j} ∈ E}, and the communications are assumed to be delay- and error-free, with

no quantization. Each node i ∈ V observes a scalar yi ∈ R, and all the N nodes wish to determine

the network-wide average x∗ ∈ R of their individual observations, given by

x∗ =
1

N

∑

i∈V

yi. (1)

Given the above model, the problem addressed in this paper is how to construct a distributed

averaging algorithm—continuous- or discrete-time, synchronous or otherwise—with which each

node i ∈ V repeatedly communicates with its one-hop neighbors, iteratively updates its estimate

x̂i ∈ R of the unknown average x∗ in (1), and asymptotically drives x̂i to x∗—all while consuming

bandwidth and energy efficiently.

The bandwidth/energy efficiency of an algorithm is measured by the number of real-number

transmissions it needs to drive all the x̂i’s to a sufficiently small neighborhood of x∗, essentially

completing the averaging task. This quantity is a natural measure of efficiency because the smaller

it is, the lesser bandwidth is occupied, the lesser energy is expended for communications, and the

3

faster an averaging task may be completed. These, in turn, imply more bandwidth and time for

other tasks, smaller probability of collision, longer lifetime for battery-powered nodes, and possible

earlier return to sleep mode, all of which are desirable. The quantity also allows algorithms with

different numbers of real-number transmissions per iteration to be fairly compared. Although, in

networking, every message inevitably contains overhead (e.g., transmitter/receiver IDs and message

type), we exclude such overhead when measuring efficiency since it is not inherent to an algorithm,

may be reduced by piggybacking messages, and becomes negligible when averaging long vectors.

3 Deficiencies of Existing Schemes

As was pointed out in Section 1, the current literature offers a variety of distributed averaging

schemes for solving the problem formulated in Section 2. Unfortunately, as is explained below, they

suffer from a number of deficiencies, especially a lack of bandwidth/energy efficiency, by producing

networked dynamical systems that evolve with wasteful real-number transmissions.

The continuous-time algorithms in [1–3] have the following deficiency:

D1. Costly discretization: As immensely inefficient as flooding is, the continuous-time algorithms

in [1–3] may be more so: flooding only requires N2 real-number transmissions for all the N

nodes to exactly determine the average x∗ (since it takes N real-number transmissions for

each node i ∈ V to flood the network with its yi), whereas these algorithms may need far

more than that to essentially complete an averaging task. For instance, the algorithm in [1]

updates the estimates x̂i’s of x
∗ according to the differential equation

dx̂i(t)

dt
=

∑

j∈Ni

(x̂j(t)− x̂i(t)), ∀i ∈ V. (2)

To realize (2), each node i ∈ V has to continuously monitor the x̂j(t) of every one-hop neighbor

j ∈ Ni. If this can be done without wireless communications (e.g., by direct sensing), then

the bandwidth/energy efficiency issue is moot. If wireless communications must be employed,

then (2) has to be discretized, either exactly via a zero-order hold, i.e.,

x̂i((k + 1)T) =
∑

j∈V

hij x̂j(kT), ∀i ∈ V, (3)

or approximately via numerical techniques such as the Euler forward difference method, i.e.,

x̂i((k + 1)T)− x̂i(kT)

T
=

∑

j∈Ni

(x̂j(kT)− x̂i(kT)), ∀i ∈ V, (4)

where each hij ∈ R is the ij-entry of e−LT , L ∈ R
N×N is the Laplacian matrix of the graph

G that governs the dynamics (2), and T > 0 is the sampling period. Regardless of (3) or (4),

they may be far more costly to realize than flooding: with (3), N2 real-number transmissions

4

are already needed per iteration (since, in general, hij 6= 0 ∀i, j ∈ V, so that each node i ∈ V
has to flood the network with its x̂i(kT), for every k). In contrast, with (4), only N real-

number transmissions are needed per iteration (since each node i ∈ V only has to wirelessly

transmit its x̂i(kT) once, to every one-hop neighbor j ∈ Ni, for every k). However, the

number of iterations, needed for all the x̂i(kT)’s to converge to an acceptable neighborhood

of x∗, may be very large, since T must be sufficiently small for (4) to be stable. If this number

exceeds N—which is possible and likely so with a conservatively small T—then (4) would be

worse than flooding (flooding is, of course, more storage and bookkeeping intensive).

The discrete-time synchronous algorithms in [1, 3–11] have the following deficiencies:

D2. Clock synchronization: The discrete-time synchronous algorithms in [1, 3–11] require all the

N nodes to always have the same clock to operate. Although techniques for reducing clock

synchronization errors are available, it is still desirable that this requirement can be removed.

D3. Forced transmissions: The algorithms in [1,3,5–10] update the estimates x̂i’s of x
∗ according

to the difference equation

x̂i(k + 1) = wii(k)x̂i(k) +
∑

j∈Ni

wij(k)x̂j(k), ∀i ∈ V, (5)

where each wij(k) ∈ R is a weighting factor that is typically constant. The wij(k)’s may be

specified in several ways, including choosing them to maximize the convergence rate [5] or

minimize the mean-square deviation [9]. However, no matter how the wij(k)’s are chosen,

these algorithms are bandwidth/energy inefficient because the underlying update rule (5)

simply forces every node i ∈ V at each iteration k to transmit its x̂i(k) to its one-hop

neighbors, irrespective of whether such transmissions are worthy. It is possible, for example,

that the x̂i(k)’s of a cluster of nearby nodes are almost equal, so that their x̂i(k+1)’s, being

convex combinations of their x̂i(k)’s, are also almost equal, causing their transmissions to be

unworthy. The fact that N real-number transmissions are needed per iteration also implies

that (5) must drive all the x̂i(k)’s to an acceptable neighborhood of x∗ within at most N

iterations, in order to just outperform flooding.

D4. Computing intermediate quantities: The scheme in [8] uses two parallel runs of a consensus

algorithm to obtain two consensus values and defines each x̂i(k) as the ratio of these two

values. While possible, this scheme is likely inefficient because it attempts to compute two

intermediate quantities, as opposed to computing x∗ directly.

The discrete-time asynchronous algorithms in [10,12–19] have the following deficiencies:

D5. Wasted receptions: Each iteration of Pairwise Averaging [12], Anti-Entropy Aggregation [13,

14], Randomized Gossip Algorithm [15], and Accelerated Gossip Algorithm [16] involves a

pair of nodes transmitting to each other their state variables. Due to the broadcast nature

5

of wireless medium, their transmissions are overheard by unintended nearby nodes, who

would immediately discard this “free” information, instead of using it to possibly speed up

convergence, enhancing bandwidth/energy efficiency. Hence, these algorithms result in wasted

receptions. The same can be said about Consensus Propagation [18] and Algorithm A2 of [19],

although they do not assume pairwise exchanges. It can also be said about Distributed

Random Grouping [17], which only slightly exploits such broadcast nature: the leader of a

group does, but the members, who contribute the majority of the transmissions, do not.

D6. Overlapping iterations: Pairwise Averaging [12], Anti-Entropy Aggregation [13,14], Random-

ized Gossip Algorithm [15], Accelerated Gossip Algorithm [16], and Distributed Random

Grouping [17] require sequential transmissions from multiple nodes to execute an iteration.

This suggests that before an iteration completes, the nodes involved may be asked to par-

ticipate in other iterations initiated by those unaware of the ongoing iteration. Thus, these

algorithms are prone to overlapping iterations and, therefore, to deadlock situations [19]. It

is noted that this practical issue is naturally avoided by Consensus Propagation [18] and

explicitly handled by Algorithms A1 and A2 of [19].

D7. Uncontrolled iterations: The discrete-time asynchronous algorithms in [12–19] do not let

individual nodes use information available to them during runtime (e.g., history of the state

variables they locally maintain) to control when to initiate an iteration and who to include in

the iteration. Indeed, Pairwise Averaging [12], Anti-Entropy Aggregation [13,14], Accelerated

Gossip Algorithm [16], Consensus Propagation [18], and Algorithm A2 of [19] focus mostly on

how nodes would update their state variables during an iteration, saying little about how they

could use such information to control the iterations. Randomized Gossip Algorithm [15] and

Distributed Random Grouping [17], on the other hand, let nodes randomly initiate an iteration

according to some probabilities. Although these probabilities may be optimized [15, 17], the

optimization is carried out a priori, dependent only on the graph G and independent of the

nodes’ state variables during runtime. Consequently, wasteful iterations may occur, despite

the optimality. For instance, suppose Randomized Gossip Algorithm [15] is utilized, and a

pair of adjacent nodes i, j ∈ V have just finished gossiping with each other, so that x̂i and

x̂j are equal. Since the optimal probabilities are generally nonzero, nodes i and j may gossip

with each other again before any of them gossips with someone else, causing x̂i and x̂j to

remain unchanged, wasting that particular gossip. Similarly, suppose Distributed Random

Grouping [17] is employed, and a node i ∈ V has just finished leading an iteration, so that

x̂i and x̂j ∀j ∈ Ni are equal. Due again to nonzero probabilities, node i may lead another

iteration before any of its one- or two-hop neighbors leads an iteration, causing x̂i and x̂j

∀j ∈ Ni to stay the same, wasting that particular iteration. These examples suggest that

not letting nodes control the iterations is detrimental to bandwidth/energy efficiency and,

conceivably, letting them do so may cut down on wasteful iterations, improving efficiency.

D8. Steady-state errors: Consensus Propagation [18] ensures that all the x̂i’s asymptotically con-

6

verge to the same steady-state value. However, this value is, in general, not equal to x∗ (see

Figure 3 of Section 6 for an illustration). Although the error can be made arbitrarily small,

it comes at the expense of increasingly slow convergence [18], which is undesirable.

D9. Lack of convergence guarantees: Accelerated Gossip Algorithm [16], developed based on the

power method in numerical analysis, is shown by simulation to have the potential of speeding

up the convergence of Randomized Gossip Algorithm [15] by a factor of 10. Furthermore,

whenever all the x̂i’s converge, they must converge to x∗. However, it was not established

in [16] that they would always converge.

4 Random Hopwise Averaging

Deficiencies D1–D9 facing the existing distributed averaging schemes raise a question: is it

possible to develop an algorithm, which does not at all suffer from these deficiencies? In this

section, we construct an algorithm that simultaneously eliminates all but issue D7 with uncontrolled

iterations. In the next section, we will modify the algorithm to address this issue.

To circumvent the costly discretization issue D1 facing the existing continuous-time algorithms

and the clock synchronization and forced transmissions issues D2 and D3 facing the existing discrete-

time synchronous algorithms, the algorithm we construct must be asynchronous, regardless of

whether the nodes have access to the same global clock. To avoid issue D6 with overlapping

iterations, each iteration of this algorithm must involve only a single node sending a single message

to its one-hop neighbors, without needing them to reply. To tackle issue D5 with wasted receptions,

all the neighbors, upon hearing the same message, have to “meaningfully” incorporate it into

updating their state variables, rather than simply discarding it. To overcome issues D8 and D9 with

steady-state errors and convergence guarantees, the algorithm must be asymptotically convergent

to the correct average. Finally, to eliminate D4, it has to avoid computing intermediate quantities.

To develop an algorithm having the aforementioned properties, consider a networked dynamical

system, defined on the graph G = (V, E) as follows: associated with each link {i, j} ∈ E are a

parameter c{i,j} > 0 and a state variable x{i,j} ∈ R of the system. In addition, associated with

each node i ∈ V is an output variable x̂i ∈ R, which represents its estimate of the unknown average

x∗ in (1). Since the graph G has L links and N nodes, the system has L parameters c{i,j}’s, L

state variables x{i,j}’s, and N output variables x̂i’s. To describe the system dynamics, let x{i,j}(0)

and x̂i(0) represent the initial values of x{i,j} and x̂i, and x{i,j}(k) and x̂i(k) their values upon

completing each iteration k ∈ P, where P denotes the set of positive integers. With these notations,

the state and output equations governing the system dynamics may be stated as

x{i,j}(k) =

∑

ℓ∈Nu(k)
c{u(k),ℓ}x{u(k),ℓ}(k − 1)

∑

ℓ∈Nu(k)
c{u(k),ℓ}

, if u(k) ∈ {i, j},

x{i,j}(k − 1), otherwise,

∀k ∈ P, ∀{i, j} ∈ E , (6)

7

x̂i(k) =

∑

j∈Ni
c{i,j}x{i,j}(k)

∑

j∈Ni
c{i,j}

, ∀k ∈ N, ∀i ∈ V, (7)

where u(k) ∈ V is a variable to be interpreted shortly and N denotes the set of nonnegative integers.

Equation (7) says that the output variable associated with each node is a convex combination of the

state variables associated with links incident to the node. Equation (6) says that at each iteration

k ∈ P, the state variables associated with links incident to node u(k) are set equal to the same

convex combination of their previous values. Equation (6) also implies that the system is a linear

switched system, since (6) may be written as

x(k) = Au(k)x(k − 1), ∀k ∈ P, (8)

where x(k) ∈ R
L is the state vector obtained by stacking the L x{i,j}(k)’s, Au(k) ∈ R

L×L is a

time-varying matrix taking one of N possible values A1,A2, . . . ,AN depending on u(k), and each

Ai ∈ R
L×L is a row stochastic matrix whose entries depend on the c{i,j}’s. Hence, the sequence

(u(k))∞k=1 fully dictates how the asynchronous iteration (6) takes place, or equivalently, how the

system (8) switches. Throughout this section, we assume that (u(k))∞k=1 is an independent and

identically distributed random sequence with a uniform distribution, i.e.,

P{u(k) = i} = 1

N
, ∀k ∈ P, ∀i ∈ V. (9)

Remark 1. Clearly, alternatives to letting (u(k))∞k=1 be random and equiprobable are possible, and

perhaps beneficial. We will explore such alternatives in Section 5, when we discuss control. �

For the system (6), (7), (9) to solve the distributed averaging problem, the x̂i(k)’s must asymp-

totically approach x∗ of (1), i.e.,

lim
k→∞

x̂i(k) = x∗, ∀i ∈ V. (10)

Due to (7), condition (10) is met if the x{i,j}(k)’s satisfy

lim
k→∞

x{i,j}(k) = x∗, ∀{i, j} ∈ E . (11)

To ensure (11), the parameters c{i,j}’s and initial states x{i,j}(0)’s must satisfy a condition. To derive

the condition, observe from (6) that no matter what u(k) is, the expression
∑

{i,j}∈E c{i,j}x{i,j}(k)

is conserved after every iteration k ∈ P, i.e.,

∑

{i,j}∈E

c{i,j}x{i,j}(k) =
∑

{i,j}∈E

c{i,j}x{i,j}(k − 1), ∀k ∈ P. (12)

Therefore, as it follows from (12) and (1), (11) holds only if the c{i,j}’s and x{i,j}(0)’s satisfy

∑

{i,j}∈E c{i,j}x{i,j}(0)
∑

{i,j}∈E c{i,j}
=

∑

i∈V yi

N
. (13)

8

To achieve (13), notice that the expressions
∑

{i,j}∈E c{i,j} and
∑

{i,j}∈E c{i,j}x{i,j}(0) each has L

terms, of which |Ni| terms are associated with links incident to node i, for every i ∈ V, where | · |
denotes the cardinality of a set. Hence, by letting each node i ∈ V evenly distribute the number 1

to the |Ni| terms in
∑

{i,j}∈E c{i,j}, i.e.,

c{i,j} =
1

|Ni|
+

1

|Nj |
, ∀{i, j} ∈ E , (14)

we get
∑

{i,j}∈E c{i,j} = N . Similarly, by letting each node i ∈ V evenly distribute its observation

yi to the |Ni| terms in
∑

{i,j}∈E c{i,j}x{i,j}(0), i.e.,

x{i,j}(0) =

yi
|Ni|

+
yj
|Nj |

c{i,j}
, ∀{i, j} ∈ E , (15)

we get
∑

{i,j}∈E c{i,j}x{i,j}(0) =
∑

i∈V yi. Thus, (14) and (15) together ensure (13), which is neces-

sary for achieving (11).

Remark 2. Obviously, (14) and (15) are not the only way to select the c{i,j}’s and x{i,j}(0)’s. In fact,

their selection may be posed as an optimization problem, analogous to the synchronous algorithms

in [5,9]. Nevertheless, (14) and (15) have the virtue of being simple and inexpensive to implement:

for every link {i, j} ∈ E , both c{i,j} and x{i,j}(0) depend only on local information |Ni|, |Nj|, yi,
and yj that nodes i and j know, as opposed to on global information derived from the graph G,
which is typically difficult and costly to gather, but often the outcome of optimization. �

The system (6), (7), (9) with parameters (14) and initial states (15) can be realized over the

wireless network by having the nodes take the following actions: for every link {i, j} ∈ E , nodes
i and j each maintains a local copy of x{i,j}(k), denoted as xij(k) and xji(k), respectively, where

they are meant to be always equal, so that the order of the subscripts is only used to indicate where

they physically reside. Each node i ∈ V, in addition to xij(k) ∀j ∈ Ni, also maintains c{i,j} ∀j ∈ Ni

and x̂i(k). To initialize the system, every node i ∈ V transmits |Ni| and yi each once, to every

one-hop neighbor j ∈ Ni, so that upon completion, each node i ∈ V can calculate c{i,j} ∀j ∈ Ni

from (14), xij(0) ∀j ∈ Ni from (15), and x̂i(0) from (7). To evolve the system, at each iteration

k ∈ P, a node u(k) ∈ V is selected randomly and equiprobably based on (9) to initiate the iteration.

To describe the subsequent actions, note that (6) and (7) imply: (i) x̂u(k)(k) = x̂u(k)(k − 1); (ii)

xu(k)j(k) = x̂u(k)(k) ∀j ∈ Nu(k); (iii) xju(k)(k) = x̂u(k)(k) ∀j ∈ Nu(k); (iv) xjℓ(k) = xjℓ(k − 1)

∀ℓ ∈ Nj − {u(k)} ∀j ∈ Nu(k); (v) x̂j(k) =

∑
ℓ∈Nj

c{j,ℓ}xjℓ(k)
∑

ℓ∈Nj
c{j,ℓ}

∀j ∈ Nu(k); (vi) xℓm(k) = xℓm(k − 1)

∀m ∈ Nℓ ∀ℓ ∈ V − ({u(k)} ∪ Nu(k)); and (vii) x̂ℓ(k) = x̂ℓ(k − 1) ∀ℓ ∈ V − ({u(k)} ∪ Nu(k)). To

execute (i) and (ii), node u(k), upon being selected to initiate iteration k, sets x̂u(k)(k) and xu(k)j(k)

∀j ∈ Nu(k) all to x̂u(k)(k − 1). To execute (iii), node u(k) then transmits x̂u(k)(k) once, to every

one-hop neighbor j ∈ Nu(k), so that upon reception, each of them can set xju(k)(k) to x̂u(k)(k).

Equations (iv) and (v) say that every neighbor j ∈ Nu(k) experiences no change in the rest of its

9

local copies and, hence, can compute x̂j(k) from (v) upon finishing (iii). Finally, (vi) and (vii) say

that the rest of the N nodes, i.e., excluding node u(k) and its one-hop neighbors, experience no

change in the variables they maintain.

The above node actions define a distributed averaging algorithm that runs iteratively and asyn-

chronously on the wireless network. We refer to this algorithm as Random Hopwise Averaging

(RHA), since every iteration is randomly initiated and involves state variables associated with links

within one hop of each other. RHA may be expressed in a compact algorithmic form as follows:

Algorithm 1 (Random Hopwise Averaging).

Initialization:

1. Each node i ∈ V transmits |Ni| and yi to every node j ∈ Ni.

2. Each node i ∈ V creates variables xij ∈ R ∀j ∈ Ni and x̂i ∈ R and initializes them sequentially:

xij ←
yi

|Ni|
+

yj
|Nj |

c{i,j}
, ∀j ∈ Ni,

x̂i ←
∑

j∈Ni
c{i,j}xij

∑
j∈Ni

c{i,j}
.

Operation: At each iteration:

3. A node, say, node i, is selected randomly and equiprobably out of the set V of N nodes.

4. Node i updates xij ∀j ∈ Ni:

xij ← x̂i, ∀j ∈ Ni.

5. Node i transmits x̂i to every node j ∈ Ni.

6. Each node j ∈ Ni updates xji and x̂j sequentially:

xji ← x̂i,

x̂j ←
∑

ℓ∈Nj
c{j,ℓ}xjℓ

∑
ℓ∈Nj

c{j,ℓ}
. �

Observe from Algorithm 1 that RHA requires an initialization overhead of 2N real-number

transmissions to perform Step 1 (the |Ni|’s are counted as real numbers, for simplicity). However,

each iteration of RHA requires only transmission of a single message, consisting of exactly one

real number, by the initiating node, in Step 5. Also notice that RHA fully exploits the broadcast

nature of wireless medium, allowing everyone that hears the message to use it for revising their

local variables, in Step 6. Therefore, RHA avoids issues D6 and D5 with overlapping iterations

and wasted receptions. Furthermore, as RHA operates asynchronously and calculates the average

directly, it circumvents issues D1–D4 with costly discretization, clock synchronization, forced trans-

missions, and computing intermediate quantities. To show that it overcomes issues D8 and D9 with

steady-state errors and convergence guarantees, consider a quadratic Lyapunov function candidate

V : RL → R, defined as

V (x(k)) =
∑

{i,j}∈E

c{i,j}(x{i,j}(k)− x∗)2. (16)

10

Clearly, V in (16) is positive definite with respect to (x∗, x∗, . . . , x∗) ∈ R
L, and the condition

lim
k→∞

V (x(k)) = 0 (17)

implies (11) and thus (10). The following lemma shows that V (x(k)) is always non-increasing and

quantifies its changes:

Lemma 1. Consider the wireless network modeled in Section 2 and the use of RHA described in

Algorithm 1. Then, for any sequence (u(k))∞k=1, the sequence (V (x(k)))∞k=0 is non-increasing and

satisfies

V (x(k)) − V (x(k − 1)) = −
∑

j∈Nu(k)

c{u(k),j}(x{u(k),j}(k − 1)− x̂u(k)(k − 1))2, ∀k ∈ P. (18)

Proof. From (16) and the bottom of (6), V (x(k))−V (x(k−1)) = −∑

j∈Nu(k)
c{u(k),j}(−x2{u(k),j}(k)+

2x{u(k),j}(k)x
∗ + x2{u(k),j}(k − 1) − 2x{u(k),j}(k − 1)x∗) ∀k ∈ P. Due to the top of (6), the second

term −∑

j∈Nu(k)
2c{u(k),j}x{u(k),j}(k)x

∗ cancels the fourth term
∑

j∈Nu(k)
2c{u(k),j}x{u(k),j}(k−1)x∗.

Moreover, note from (6) and (7) that x{u(k),j}(k) = x̂u(k)(k − 1) ∀j ∈ Nu(k). Hence, V (x(k)) −
V (x(k− 1)) = −∑

j∈Nu(k)
c{u(k),j}(x̂

2
u(k)(k− 1)− 2x̂u(k)(k− 1)x{u(k),j}(k)+x2{u(k),j}(k− 1)) ∀k ∈ P.

Due again to the top of (6), the second term
∑

j∈Nu(k)
2c{u(k),j}x̂u(k)(k − 1)x{u(k),j}(k) equals

∑

j∈Nu(k)
2c{u(k),j}x̂u(k)(k − 1)x{u(k),j}(k − 1). Thus, (18) holds. Since the right-hand side of (18)

is nonpositive, (V (x(k)))∞k=0 is non-increasing.

Lemma 1 says that V (x(k)) ≤ V (x(k− 1)) ∀k ∈ P. Since V (x(k)) ≥ 0 ∀x(k) ∈ R
L, this implies

that limk→∞ V (x(k)) exists and is nonnegative. The following theorem asserts that this limit is

almost surely zero, so that RHA is almost surely asymptotically convergent to x∗:

Theorem 1. Consider the wireless network modeled in Section 2 and the use of RHA described in

Algorithm 1. Then, with probability 1, (17), (11), and (10) hold.

Proof. By associating the line graph of G with the graph in [10], RHA may be viewed as a special

case of the algorithm (1) in [10]. Note from (6) and (14) that the diagonal entries of Ai ∀i ∈ V are

positive, from (9) that P{Au(k) = Ai} = 1
N ∀k ∈ P ∀i ∈ V, and from the connectedness of G that

its line graph is connected. Thus, by Corollary 3.2 of [10], with probability 1, ∃x̃ ∈ R such that

limk→∞ x{i,j}(k) = x̃ ∀{i, j} ∈ E . Due to (1), (12), and (13), x̃ = x∗, i.e., (11) holds almost surely.

Because of (16) and (7), so do (17) and (10).

As it follows from Theorem 1 and the above, RHA solves the distributed averaging problem,

while eliminating deficiencies D1–D9 facing the existing schemes except for D7, on lack of control.

Lemma 1 above also says that V in (16) is a common quadratic Lyapunov function for the linear

switched system (8). This V will be used next to introduce control and remove D7.

11

5 Controlled Hopwise Averaging

5.1 Motivation for Feedback Iteration Control

RHA operates by executing (6) or (8) according to (u(k))∞k=1. Although, by Theorem 1, almost

any (u(k))∞k=1 can drive all the x̂i(k)’s in (7) to any neighborhood of x∗, certain sequences require

fewer iterations (and, hence, fewer real-number transmissions) to do so than others, yielding better

bandwidth/energy efficiency. To see this, consider the following proposition:

Proposition 1. The matrices A1,A2, . . . ,AN in (8) are idempotent, i.e., A2
i = Ai ∀i ∈ V.

Moreover, Ai and Aj are commutative whenever {i, j} /∈ E, i.e., AiAj = AjAi ∀i, j ∈ V, {i, j} /∈ E.

Proof. Notice from (6) and (8) that for any i ∈ V, if x(k) = Aix(k− 1), then x{i,j}(k) ∀j ∈ Ni are

set equal to the same convex combination of x{i,j}(k − 1) ∀j ∈ Ni, and x{p,q}(k) = x{p,q}(k − 1)

∀{p, q} ∈ E − ∪j∈Ni
{{i, j}}. Thus, Aix(k) = x(k), so that A2

i = Ai. Moreover, for any i, j ∈ V
with {i, j} /∈ E , because {{i, ℓ} : ℓ ∈ Ni} ∩ {{j, ℓ} : ℓ ∈ Nj} = ∅, AiAj = AjAi.

The idempotence and partial commutativity of A1,A2, . . . ,AN from Proposition 1, together

with the fact that the switched system (8) may be stated as x(k) = Au(k)Au(k−1) · · ·Au(1)x(0)

∀k ∈ P, imply that for a given (u(k))∞k=1, the event x(k) = x(k − 1) can occur for quite a few

k’s, each of which signifies a wasted iteration. Furthermore, if the event x(k) = x(k − 1) does

occur for at least one k, then by deleting from (u(k))∞k=1 some of its elements that correspond to

the wasted iterations, we obtain a new sequence (u′(k))∞k=1 that is more efficient. To illustrate

these two points, consider, for instance, a 5-node cycle graph with V = {1, 2, 3, 4, 5} and E =

{{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}}. Notice that if (u(k))∞k=1 = (1, 1, 3, 4, 1, 2, 4, 5, 2, 5, . . .), then as

many as 5 out of the first 10 iterations—namely, those underlined elements—are wasted. By deleting

these underlined elements and keeping the rest intact, we obtain a new sequence (u′(k))∞k=1 =

(1, 3, 4, 2, 5, . . .) that is 5 real-number transmissions more efficient than (u(k))∞k=1.

The preceding analysis shows that RHA is prone to wasteful iterations, which is a primary

reason why certain sequences are more efficient than others. RHA, however, makes no attempt

to distinguish the sequences, as it lets every possible (u(k))∞k=1 be equiprobable, via (9). In other

words, it does not try to control how the asynchronous iterations occur and, thus, suffers from D7.

Remark 3. Wasteful iterations incurred by idempotent and partially commutative operations are

not an attribute unique to RHA, but one that is shared by Pairwise Averaging [12], Anti-Entropy

Aggregation [13, 14], Randomized Gossip Algorithm [15], and Distributed Random Grouping [17]

(indeed, the examples provided in D7 against the latter two algorithms were created from this

attribute). What is different is that in this paper, we view the attribute as a limitation and find

ways to overcome it, whereas in [12–15,17], the attribute was not viewed as such. �

One way to control the iterations, alluded to in Remark 1, is to replace (9) with a general

distribution P{u(k) = i} = pi ∀k ∈ P ∀i ∈ V and then choose the pi’s to maximize efficiency, before

12

any averaging task begins. This approach, however, has an inherent shortcoming: because the pi’s

are optimized once-and-for-all, they are constant and do not adapt to x(k) during runtime. Hence,

optimal or not, the pi’s almost surely would produce inefficient, wasteful (u(k))∞k=1. The fact that

the nodes do not adjust the pi’s based on information they pick up during runtime also suggests

that this way of controlling the iterations may be considered open loop.

The aforementioned shortcoming of open-loop iteration control raises the question of whether it

is possible to introduce some form of closed-loop iteration control as a means to generate efficient,

non-wasteful (u(k))∞k=1. Obviously, to carry out closed-loop iteration control, feedback is needed.

Due to the distributed nature of the network, however, feedback may be expensive to acquire: if an

algorithm demands that the feedback used by a node be a function of state variables maintained

by other nodes, then additional communications are necessary to implement the feedback. Such

communications can produce plenty of real-number transmissions, which must all count toward

the total real-number transmissions, when evaluating the algorithm’s bandwidth/energy efficiency.

Thus, in the design of feedback algorithms, the cost of “closing the loop” cannot be overlooked.

In this section, we first describe an approach to closed-loop iteration control, which leads to

highly efficient and surely non-wasteful (u(k))∞k=1 at zero feedback cost. Based on this approach,

we then present and analyze two modified versions of RHA: an ideal version and a practical one.

5.2 Approach to Feedback Iteration Control

Note that with RHA, (u(k))∞k=1 is undefined at the moment an averaging task begins and is

gradually defined, one element per iteration, as time elapses, i.e., when a node i ∈ V initiates an

iteration k ∈ P, the element u(k) becomes defined and is given by u(k) = i. Thus, by controlling

when to initiate an iteration, the nodes may jointly shape the value of (u(k))∞k=1. With RHA, this

opportunity to shape (u(k))∞k=1 is not utilized, as the nodes simply randomly and equiprobably

decide when to initiate an iteration. To exploit the opportunity, suppose henceforth that the nodes

wish to control when to initiate an iteration using some form of feedback. The questions are:

Q1. What feedback to use, so that the corresponding feedback cost is minimal?

Q2. How to control, so that the resulting (u(k))∞k=1 is highly efficient?

Q3. How to control, so that the resulting (u(k))∞k=1 is surely non-wasteful?

To answer questions Q1–Q3, we first show that RHA, along with the common quadratic Lya-

punov function V of (16), exhibits the following features:

F1. Although the nodes never know the value of V , every one of them at any time knows by how

much the value would drop if it suddenly initiates an iteration.

F2. The faster (u(k))∞k=1 makes the value of V drop to zero, the more efficient it is.

F3. If the value of V does not drop after an iteration, then the iteration is wasted, causing

(u(k))∞k=1 to be wasteful. The converse is also true.

13

The first part of feature F1 can be seen by noting that V (x(k)) in (16) depends on c{i,j}

∀{i, j} ∈ E , x{i,j}(k) ∀{i, j} ∈ E , and x∗, whereas each node i ∈ V only knows c{i,j} ∀j ∈ Ni and

x{i,j}(k) ∀j ∈ Ni. To see the second part, suppose a node i ∈ V initiates an iteration k ∈ P at

some time instant t, so that u(k) = i by definition. Observe from Lemma 1 that whoever node

u(k) is, upon completing this iteration, the value of V would drop from V (x(k− 1)) to V (x(k)) by

an amount equal to the right-hand side of (18). To compactly represent this drop, for each i ∈ V
let ∆Vi : R

L → R be a positive semidefinite quadratic function, defined as

∆Vi(x(k)) =
∑

j∈Ni

c{i,j}(x{i,j}(k)− x̂i(k))
2, ∀k ∈ N, (19)

where x̂i(k) is as in (7). Then, with (19), (18) may be written as

V (x(k)) − V (x(k − 1)) = −∆Vu(k)(x(k − 1)), ∀k ∈ P, (20)

where ∆Vu(k)(x(k − 1)) in (20) represents the amount of drop, i.e.,

∆Vu(k)(x(k − 1)) =
∑

j∈Nu(k)

c{u(k),j}(x{u(k),j}(k − 1)− x̂u(k)(k − 1))2, ∀k ∈ P. (21)

Notice that ∆Vu(k)(x(k−1)) in (21) depends on parameters and variables maintained by node u(k),

whose values are known to node u(k) prior to iteration k at time t. Therefore, before initiating this

iteration at time t, node u(k) already knows that the value of V would drop by ∆Vu(k)(x(k − 1)).

Since t, k, and u(k) are arbitrary, this means that every node i ∈ V at any time knows by how

much the value of V would drop if it suddenly initiates an iteration (i.e., by ∆Vi(x(·))). This

establishes feature F1. To show feature F2, recall that: (i) V (x(k)) in (16) is a measure of the

deviation of the x{i,j}(k)’s from x∗; (ii) the x̂i(k)’s in (7) are convex combinations of the x{i,j}(k)’s;

(iii) bandwidth/energy efficiency is measured by the number of real-number transmissions needed

for all the x̂i(k)’s to converge to a given neighborhood of x∗; and (iv) RHA in Algorithm 1 has a

fixed, one real-number transmission per iteration. Hence, the faster (u(k))∞k=1 drives V (x(k)) to

zero, the faster it drives the x{i,j}(k)’s and x̂i(k)’s to x∗ (due to (i) and (ii)), and the more efficient

it is (due to (iii) and (iv)). Finally, to show feature F3, suppose V (x(k)) = V (x(k − 1)) after an

iteration k ∈ P. Then, it follows from (20) that ∆Vu(k)(x(k−1)) = 0, from (21) that x{u(k),j}(k−1)

∀j ∈ Nu(k) are equal, and from (6) that x(k) = x(k− 1). Thus, iteration k is wasted. The converse

is also true, as x(k) = x(k − 1) implies V (x(k)) = V (x(k − 1)).

Having demonstrated features F1–F3, we now use them to answer questions Q1–Q3. Feature F1

suggests that every node i ∈ V may use ∆Vi(x(·)), which it always knows, as feedback to control,

on its own, when to initiate an iteration. As the feedbacks ∆Vi(x(·))’s are locally available and the

control decisions are made locally, the resulting feedback control architecture is fully decentralized,

requiring zero communication cost to realize. Therefore, an answer to question Q1 is:

A1. Each node i ∈ V uses ∆Vi(x(·)) as feedback to control when to initiate an iteration.

14

Feature F2 suggests that, to produce highly efficient (u(k))∞k=1, the nodes may focus on making

the value of V drop significantly after each iteration, especially initially. In other words, they may

focus on letting every iteration be initiated by a node i with a relatively large ∆Vi(x(·)). With

architecture A1, this may be accomplished if nodes with larger ∆Vi(x(·))’s would rush to initiate,

while nodes with smaller ∆Vi(x(·))’s would wait longer. Hence, an answer to question Q2 is:

A2. The larger ∆Vi(x(·)) is, the sooner node i initiates an iteration (i.e., the smaller ∆Vi(x(·)) is,
the longer node i waits).

Finally, feature F3 suggests that, to generate surely non-wasteful (u(k))∞k=1, the value of V must

strictly decrease after each iteration. With architecture A1, this can be achieved if nodes with zero

∆Vi(x(·))’s would refrain from initiating an iteration. Thus, an answer to question Q3 is:

A3. Whenever ∆Vi(x(·)) = 0, node i refrains from initiating an iteration.

Answers A1–A3 describe a greedy, decentralized approach to feedback iteration control, where

potential drops ∆Vi(x(·))’s in the value of V are used to drive the asynchronous iterations. This

approach may be viewed as a greedy approach because the nodes seek to make the value of V

drop as much as possible at each iteration, without considering the future. Because the nodes

also seek to fully exploit the broadcast nature of every wireless transmission (a feature inherited

from Steps 5 and 6 of RHA), this approach strives to “make the most” out of each iteration. Note

that although Lyapunov functions have been used to analyze distributed averaging and consensus

algorithms (e.g., in the form of a disagreement function [1] or a set-valued convex hull [24]), their

use for controlling such algorithms has not been reported. Therefore, this approach represents a

new way to apply Lyapunov stability theory.

5.3 Ideal Version

In this subsection, we use the aforementioned approach to create an ideal, modified version of

RHA, which possesses strong convergence properties that motivate a practical version.

The above approach wants the nodes to try to be greedy. Thus, it is of interest to analyze an

ideal scenario where, instead of just trying, the nodes actually succeed at being greedy, ensuring

that every iteration k ∈ P is initiated by a node i ∈ V with the maximum ∆Vi(x(k − 1)), i.e.,

u(k) ∈ argmax
i∈V

∆Vi(x(k − 1)), ∀k ∈ P, (22)

so that V (x(k − 1)) drops maximally to V (x(k)) for every k ∈ P. Notice that (22) does not

always uniquely determine u(k): when multiple nodes have the same maximum, u(k) may be any

of these nodes. Although u(k) can be made unique (e.g., by letting u(k) be the minimum of

argmaxi∈V ∆Vi(x(k − 1))), in the analysis below we will allow for arbitrary u(k) satisfying (22).

Also note that in the rare case where ∆Vi(x(k
∗ − 1)) = 0 ∀i ∈ V for some k∗ ∈ P, due to (1),

15

(12), (13), (19), and the connectedness of the graph G, we have x{i,j}(k
∗ − 1) = x∗ ∀{i, j} ∈ E and

x̂i(k
∗− 1) = x∗ ∀i ∈ V, thereby solving the problem in finite time. Furthermore, due to A3, all the

nodes would refrain from initiating iteration k∗ (and beyond), thereby terminating the algorithm

in finite time and causing x{i,j}(k) ∀{i, j} ∈ E , x̂i(k) ∀i ∈ V, u(k), and V (x(k)) to be undefined

∀k ≥ k∗. In the analysis below, however, we will allow the algorithm to keep executing according

to (22), so that x{i,j}(k) ∀{i, j} ∈ E , x̂i(k) ∀i ∈ V, u(k), and V (x(k)) are defined ∀k.
Equation (22), together with (6), (7), (14), (15), and (19), defines a networked dynamical system

that switches among N different dynamics, depending on where the state is in the state space, i.e.,

if x(k − 1) is such that ∆Vi(x(k − 1)) > ∆Vj(x(k − 1)) ∀j ∈ V − {i}, then x(k) = Aix(k − 1).

This system may be expressed in the form of an algorithm—which we refer to as Ideal Controlled

Hopwise Averaging (ICHA)—as follows:

Algorithm 2 (Ideal Controlled Hopwise Averaging).

Initialization:

1. Each node i ∈ V transmits |Ni| and yi to every node j ∈ Ni.

2. Each node i ∈ V creates variables xij ∈ R ∀j ∈ Ni, x̂i ∈ R, and ∆Vi ∈ [0,∞) and initializes

them sequentially:

xij ←
yi

|Ni|
+

yj
|Nj |

c{i,j}
, ∀j ∈ Ni,

x̂i ←
∑

j∈Ni
c{i,j}xij

∑
j∈Ni

c{i,j}
,

∆Vi ←
∑

j∈Ni
c{i,j}(xij − x̂i)

2.

Operation: At each iteration:

3. Let i ∈ argmaxj∈V ∆Vj.

4. Node i updates xij ∀j ∈ Ni and ∆Vi sequentially:

xij ← x̂i, ∀j ∈ Ni,

∆Vi ← 0.

5. Node i transmits x̂i to every node j ∈ Ni.

6. Each node j ∈ Ni updates xji, x̂j , and ∆Vj sequentially:

xji ← x̂i,

x̂j ←
∑

ℓ∈Nj
c{j,ℓ}xjℓ

∑
ℓ∈Nj

c{j,ℓ}
,

∆Vj ←
∑

ℓ∈Nj
c{j,ℓ}(xjℓ − x̂j)

2. �

Algorithm 2, or ICHA, is identical to RHA in Algorithm 1 except that each node i also maintains

∆Vi, in Steps 2, 4, and 6, and that each iteration is initiated by a node i experiencing the maximum

∆Vi, in Step 3. Note that “∆Vi ← 0” in Step 4 is equivalent to “∆Vi ←
∑

j∈Ni
c{i,j}(xij − x̂i)

2”

since xij ∀j ∈ Ni and x̂i are equal at that point. The fact that ∆Vi goes from being the maximum

to zero whenever node i initiates an iteration also suggests that it may be a while before ∆Vi

becomes the maximum again, causing node i to initiate another iteration.

The convergence properties of ICHA on general networks are characterized in the following

16

theorem, in which 1n ∈ R
n and x̂(k) ∈ R

N denote, respectively, the vectors obtained by stacking

n 1’s and the N x̂i(k)’s:

Theorem 2. Consider the wireless network modeled in Section 2 and the use of ICHA described

in Algorithm 2. Then,

V (x(k)) ≤ (1− 1
γ)V (x(k − 1)), ∀k ∈ P, (23)

‖x(k) − x∗1L‖ ≤
√

V (x(0)) maxi∈V |Ni|
2 (1− 1

γ)
k/2, ∀k ∈ N, (24)

‖x̂(k)− x∗1N‖ ≤
√

2V (x(0))maxi∈V |Ni|
mini∈V |Ni|+maxi∈V |Ni|

(1− 1
γ)

k/2, ∀k ∈ N, (25)

where γ ∈ [N2 + 1, N3 − 2N2 + N
2 + 1] is given by

γ =
N

2
+ α+

(N2 − β)(3(N − 1)−D)(D + 1)

2N
, (26)

and where α = max{i,j}∈E
bi+bj
c{i,j}

∈ [1, N
2−2N+2

2], β =
∑

i∈V

∑

j∈Ni∪{i}
bibj ∈ [N + L

2 (1+
1

N−1)
2, N2],

bi =
1
2

∑

j∈Ni
c{i,j} ∀i ∈ V, and D is the network diameter.

Proof. See Appendix A.1.

Theorem 2 says that ICHA is exponentially convergent on any network, ensuring that V (x(k)),

‖x(k)−x∗1L‖, and ‖x̂(k)−x∗1N‖ all go to zero exponentially fast, at a rate that is no worse than

1− 1
γ or (1− 1

γ)
1/2, so that γ in (26) represents a bound on the convergence rate. It also says that

the bound γ is between Ω(N) and O(N3) and depends only on N , D, and the |Ni|’s, making it

easy to compute. The following corollary lists the bound γ for a number of common graphs:

Corollary 1. The constant γ in (26) becomes:

G1. γ = N3 − 4N2 + 9
2N + 5

4 for a path graph with N ≥ 5,

G2. γ = 5
8N

3 − 15
8 N

2 − 1
8N + 31

8 if N is odd and γ = 5
8N

3 − 11
8 N

2 − 5
2N + 13

2 if N is even for a

cycle graph,

G3. γ = N
2 +K + (N−K−1)(3(N−1)−D)(D+1)

2 for a K-regular graph with K ≥ 2,

G4. γ = 3
2N − 1 for a complete graph.

Proof. For a path graph with N ≥ 5, α = 9
4 , β = 3N − 1, and D = N − 1. For a cycle graph,

α = 2, β = 3N , D = N−1
2 if N is odd, and D = N

2 if N is even. For a K-regular graph with K ≥ 2,

α = K and β = N(K+1). For a complete graph, α = N −1 and β = N2. Hence, G1–G4 hold.

Each bound γ in Corollary 1 is obtained by specializing (26) for arbitrary graphs to a specific one.

Conceivably, tighter bounds may be obtained by working with each of these graphs individually,

exploiting their particular structure. Theorem 3 below shows that this is indeed the case with path

and cycle graphs (6 and 15 times tighter, respectively), besides providing additional bounds for

regular and strongly regular graphs:

17

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Number of nodes N
R

a
ti

o
γ
I
C
H

A
/
γ
P
A

Path graph
Cycle graph
Complete graph

Figure 1: Comparison between the stochastic convergence rate 1− 1
γPA

of PA and the deterministic

bound 1− 1
γICHA

on convergence rate of ICHA for path, cycle, and complete graphs.

Theorem 3. Consider the wireless network modeled in Section 2 and the use of ICHA described

in Algorithm 2. Then, (23)–(25) hold with:

S1. γ = N3

6 − 13
6 N + 3 for a path graph with N ≥ 4,

S2. γ = N3

24 + 7
12N − 2+ 11

8N if N is odd and γ = N3

24 + 5
6N − 3+ 4

N if N is even for a cycle graph,

S3. γ = N
2 +K + KD(D+1)(N−K−1)

2 for a K-regular graph with K ≥ 2,

S4. γ = N
2 +K + K(µ+2)(N−K−1)

µ for a (N,K, λ, µ)-strongly regular graph with µ ≥ 1.

Proof. See Appendix A.2.

Recently, [10] studied, among other things, the convergence rate of Pairwise Averaging (PA) [12].

The results in [10] are different from those above in three notable ways: first, the convergence rate

of PA is defined in [10] as the decay rate of the expected value of a Lyapunov-like function d(k).

Although this stochastic measure captures the average behavior of PA, it offers little guarantee

on the decay rate of each realization (d(k))∞k=0. In contrast, the bounds γ on convergence rate of

ICHA above are deterministic, providing guarantees on the decay rate of (V (x(k)))∞k=0. Second,

even if the first difference is disregarded, the bounds of ICHA are still roughly 20% better than

the convergence rate of PA for a few common graphs. To justify this claim, let 1− 1
γPA

denote the

convergence rate of PA. Since PA requires two real-number transmissions per iteration while ICHA

requires only one, to enable a fair comparison we introduce a two-iteration bound γICHA for ICHA,

defined as γICHA = γ2

2γ−1 so that 1− 1
γICHA

= (1− 1
γ)

2. Figure 1 plots the ratio γICHA
γPA

versus N for

path, cycle, and complete graphs, where γPA is computed according to [10], while γICHA is computed

using γ in S1, S2, and G4. Observe that for N > 50, γICHA is 18% smaller than γPA for path and

cycle graphs, and 25% so for complete graphs. The latter can also be shown analytically: since

γPA = N − 1 and γICHA =
(3
2
N−1)2

2(3
2
N−1)−1

, limN→∞
γICHA
γPA

= 3
4 . This justifies the claim. Finally, unlike

γ and γICHA, γPA in general cannot be expressed in a form that explicitly reveals its dependence on

18

the graph invariants. Indeed, it generally can only be computed by numerically finding the spectral

radius of an invariant subspace of an N2-by-N2 matrix, which may be prohibitive for large N .

5.4 Practical Version

The strong convergence properties of ICHA suggest that its greedy behavior may be worthy of

emulating. In this subsection, we derive a practical algorithm that closely mimics such behavior.

Reconsider the system (6), (7), (14), (15) and suppose this system evolves in a discrete event

fashion, according to the following description: associated with the system is time, which is real-

valued, nonnegative, and denoted as t ∈ [0,∞), where t = 0 represents the time instant at which

the nodes have observed the yi’s but have yet to execute an iteration. In addition, associated with

each node i ∈ V is an event, which is scheduled to occur at time τi ∈ (0,∞] and is marked by

node i initiating an iteration, where τi = ∞ means the event will not occur. Each event time τi

is a variable, which is initialized at time t = 0 to τi(0), is updated only at each iteration k ∈ P

from τi(k − 1) to τi(k), and is no less than t at any time t, so that no event is scheduled to

occur in the past. Starting from t = 0, time advances to t = mini∈V τi(0), at which an event,

marked by node u(1) ∈ argmini∈V τi(0) initiating iteration 1, occurs, during which τi(1) ∀i ∈ V are

determined. Time then advances to t = mini∈V τi(1), at which a subsequent event, marked by node

u(2) ∈ argmini∈V τi(1) initiating iteration 2, occurs, during which τi(2) ∀i ∈ V are determined. In

the same way, time continues to advance toward infinity, while events continue to occur one after

another, except if τi(k) =∞ ∀i ∈ V for some k ∈ N, for which the system terminates.

Having described how the system evolves, we now specify how τi(k) ∀k ∈ N ∀i ∈ V are recursively

determined. First, consider the time instant t = 0, at which τi(0) ∀i ∈ V need to be determined.

To behave greedily, nodes with the maximum ∆Vi(x(0))’s should have the minimum τi(0)’s. This

may be accomplished by letting

τi(0) = Φ(∆Vi(x(0))), ∀i ∈ V, (27)

where Φ : [0,∞)→ (0,∞] is a continuous and strictly decreasing function satisfying limv→0 Φ(v) =

∞ and Φ(0) = ∞. Although, mathematically, (27) ensures that V (x(0)) drops maximally to

V (x(1)), in reality it is possible that multiple nodes have the same minimum τi(0)’s, leading to

wireless collisions. To address this issue, we insert a little randomness into (27), rewriting it as

τi(0) = Φ(∆Vi(x(0))) + ε(∆Vi(x(0))) · rand(), ∀i ∈ V, (28)

where ε : [0,∞) → (0,∞) is a continuous function meant to take on small positive values and

each call to rand() returns a uniformly distributed random number in (0, 1). With (28), with high

probability iteration 1 is initiated by a node i with the maximum, or a near-maximum, ∆Vi(x(0)).

Next, pick any k ∈ P and consider the time instant t = mini∈V τi(k − 1), at which node

u(k) ∈ argmini∈V τi(k − 1) initiates iteration k, during which τi(k) ∀i ∈ V need to be determined.

19

Again, to be greedy, nodes with the maximum ∆Vi(x(k))’s should have the minimum τi(k)’s. At

first glance, this may be approximately accomplished following ideas from (28), i.e., by letting

τi(k) = Φ(∆Vi(x(k))) + ε(∆Vi(x(k))) · rand(), ∀i ∈ V. (29)

However, with (29), it is possible that τi(k) turns out to be smaller than t, causing an event to

be scheduled in the past. Moreover, nodes who are two or more hops away from node u(k) are

unaware of the ongoing iteration k and, thus, are unable to perform an update. Fortunately, these

issues may be overcome by slightly modifying (29) as follows:

τi(k) =

max{Φ(∆Vi(x(k))), t} + ε(∆Vi(x(k))) · rand(), if i ∈ Nu(k) ∪ {u(k)},
τi(k − 1), otherwise,

∀i ∈ V. (30)

Using (28) and (30) and by induction on k′ ∈ P, it can be shown that τi(k
′) satisfies

max{Φ(∆Vi(x(k
′))), t′} ≤ τi(k

′) ≤ max{Φ(∆Vi(x(k
′))), t′}+ ε(∆Vi(x(k

′))), ∀k′ ∈ P, ∀i ∈ V,

where t′ = minj∈V τj(k
′− 1). Hence, with (30), it is highly probable that iteration k+1 is initiated

by a node i with the maximum or a near-maximum ∆Vi(x(k)). It follows that with (28) and

(30), the nodes closely mimic the greedy behavior of ICHA. Note that (28) and (30) represent a

feedback iteration controller, which uses architecture A1 and follows the spirit of A2 (since Φ is

strictly decreasing and ε is small) and A3 (since Φ(0) =∞). Also, Φ and ε represent the controller

parameters, which may be selected based on practical wireless networking considerations (e.g., all

else being equal, Φ(v) = 1
v and ε(v) = 0.001 yield faster convergence time than Φ(v) = 10

v and

ε(v) = 0.01 but higher collision probability).

The above description defines a discrete event system, which can be realized via a distributed

asynchronous algorithm, referred to as Controlled Hopwise Averaging (CHA) and stated as follows:

Algorithm 3 (Controlled Hopwise Averaging).

Initialization:

1. Let time t = 0.

2. Each node i ∈ V transmits |Ni| and yi to every node j ∈ Ni.

3. Each node i ∈ V creates variables xij ∈ R ∀j ∈ Ni, x̂i ∈ R, ∆Vi ∈ [0,∞), and τi ∈ (0,∞] and

initializes them sequentially:

xij ←
yi

|Ni|
+

yj
|Nj |

c{i,j}
, ∀j ∈ Ni,

x̂i ←
∑

j∈Ni
c{i,j}xij

∑
j∈Ni

c{i,j}
,

∆Vi ←
∑

j∈Ni
c{i,j}(xij − x̂i)

2,

τi ← Φ(∆Vi) + ε(∆Vi) · rand().
Operation: At each iteration:

4. Let t = minj∈V τj and i ∈ argminj∈V τj.

20

5. Node i updates xij ∀j ∈ Ni, ∆Vi, and τi sequentially:

xij ← x̂i, ∀j ∈ Ni,

∆Vi ← 0,

τi ←∞.

6. Node i transmits x̂i to every node j ∈ Ni.

7. Each node j ∈ Ni updates xji, x̂j , ∆Vj , and τj sequentially:

xji ← x̂i,

x̂j ←
∑

ℓ∈Nj
c{j,ℓ}xjℓ

∑
ℓ∈Nj

c{j,ℓ}
,

∆Vj ←
∑

ℓ∈Nj
c{j,ℓ}(xjℓ − x̂j)

2,

τj ← max{Φ(∆Vj), t}+ ε(∆Vj) · rand(). �

Algorithm 3, or CHA, is similar to ICHA in Algorithm 2 except that each node i maintains

an additional variable τi, in Steps 3, 5, and 7, and that each iteration is initiated, in a discrete

event fashion, by a node i having the minimum τi, in Step 4. Note that “τi ← ∞” in Step 5 is

due to “∆Vi ← 0” and to Φ(0) = ∞. Moreover, every step of CHA is implementable in a fully

decentralized manner, making it a practical algorithm.

To analyze the behavior of CHA, recall that ε is meant to take on small positive values, creating

just a little randomness so that the probability of wireless collisions is zero. For the purpose of

analysis, we turn this feature off (i.e., set ε(v) = 0 ∀v ∈ [0,∞)) and let the symbol “∈” in Step 4

take care of the randomness (i.e., randomly pick an element i from the set argminj∈V τj whenever

it has multiple elements). We also allow Φ to be arbitrary (but satisfy the conditions stated when it

was introduced). With this setup, the following convergence properties of CHA can be established:

Theorem 4. Theorems 2 and 3, intended for ICHA described in Algorithm 2, hold verbatim for

CHA described in Algorithm 3 with any Φ and with ε satisfying ε(v) = 0 ∀v ∈ [0,∞). In addition,

limk→∞ t(k) = ∞ and V (x(k)) ≤ (γ − 1)Φ−1(t(k)) ∀k ∈ P, where t(0) = 0 and t(k) is the time

instant at which iteration k occurs.

Proof. See Appendix A.3.

Theorem 4 characterizes the convergence of CHA in two senses: iteration and time. Iteration-

wise, it says that CHA converges exponentially and shares the same bounds γ on convergence rate

as ICHA, regardless of Φ. This result suggests that CHA does closely emulate ICHA. Time-wise,

the theorem says that CHA converges asymptotically and perhaps exponentially, depending on Φ.

For example, Φ(v) = 1
v does not guarantee exponential convergence in time (since Φ−1(v) = 1

v),

but Φ(v) = W (1v), where W is the Lambert W function, does (since Φ−1(v) = 1
ve

−v). Therefore,

the controller parameter Φ may be used to shape the temporal convergence of CHA.

Remark 4. CHA has a limitation: it assumes no clock offsets among the nodes. Note, however,

that although such offsets would cause CHA to deviate from its designed behavior, they would not

21

render it “inoperable,” i.e., V (x(k)) would still strictly decrease after every iteration k, and the

conservation (12) would still hold, so that the x{i,j}(k)’s and x̂i(k)’s would still approach x∗.

6 Performance Comparison

In this section, we compare the performance of RHA and CHA with that of Pairwise Averaging

(PA) [12], Consensus Propagation (CP) [18], Algorithm A2 (A2) of [19], and Distributed Random

Grouping (DRG) [17] via extensive simulation on multi-hop wireless networks modeled by random

geometric graphs. For completeness, PA, CP, A2, and DRG are stated below, in which E ′ = {(i, j) ∈
V × V : {i, j} ∈ E} denotes the set of 2L directed links:

Algorithm 4 (Pairwise Averaging [12]).

Initialization:

1. Each node i ∈ V creates a variable x̂i ∈ R and initializes it: x̂i ← yi.

Operation: At each iteration:

2. A link, say, link {i, j}, is selected randomly and equiprobably out of the set E of L links.

Node i transmits x̂i to node j. Node j updates x̂j : x̂j ← x̂i+x̂j

2 . Node j transmits x̂j to node

i. Node i updates x̂i: x̂i ← x̂j. �

Algorithm 5 (Consensus Propagation [18]).

Initialization:

1. Each node i ∈ V creates variables Kji ≥ 0 ∀j ∈ Ni, µji ∈ R ∀j ∈ Ni, and x̂i ∈ R and

initializes them sequentially: Kji ← 0 ∀j ∈ Ni, µji ← 0 ∀j ∈ Ni, x̂i ← yi.

Operation: At each iteration:

2. A directed link, say, link (i, j), is selected randomly and equiprobably out of the set E ′ of
2L directed links. Node i transmits Fij ,

1+
∑

ℓ∈Ni,ℓ 6=j Kℓi

1+ 1
β
(1+

∑
ℓ∈Ni,ℓ 6=j Kℓi)

and Gij ,
yi+

∑
ℓ∈Ni,ℓ 6=j Kℓiµℓi

1+
∑

ℓ∈Ni,ℓ 6=j Kℓi

to node j. Node j updates Kij , µij, and x̂j sequentially: Kij ← Fij , µij ← Gij , x̂j ←
yj+

∑
ℓ∈Nj

Kℓjµℓj

1+
∑

ℓ∈Nj
Kℓj

. �

Algorithm 6 (Algorithm A2 [19]).

Initialization:

1. Each node i ∈ V creates variables δij ∈ R ∀j ∈ Ni and x̂i ∈ R and initializes them sequentially:

δij ← 0 ∀j ∈ Ni, x̂i ← yi.

Operation: At each iteration:

2. A directed link, say, link (i, j), is selected randomly and equiprobably out of the set E ′ of 2L
directed links. Node i transmits x̂i to node j. Node j updates δji: δji ← δji + φ(x̂i − x̂j).

Node j transmits φ(x̂i− x̂j) to node i. Node i updates δij : δij ← δij −φ(x̂i− x̂j). Each node

ℓ ∈ V updates x̂ℓ: x̂ℓ ← x̂ℓ +
γ

|Nℓ|+1((
∑

m∈Nℓ
δℓm) + yℓ − x̂ℓ). �

22

Figure 2: A 100-node, 1000-link multi-hop wireless network.

Algorithm 7 (Distributed Random Grouping [17]).

Initialization:

1. Each node i ∈ V creates a variable x̂i ∈ R and initializes it: x̂i ← yi.

Operation: At each iteration:

2. A node, say, node i, is selected randomly and equiprobably out of the set V of N nodes.

Node i transmits a message to every node j ∈ Ni, requesting their x̂j’s. Each node j ∈ Ni

transmits x̂j to node i. Node i updates x̂i: x̂i ←
∑

j∈{i}∪Ni
x̂j

|Ni|+1 . Node i transmits x̂i to every

node j ∈ Ni. Each node j ∈ Ni updates x̂j : x̂j ← x̂i. �

Note that RHA and CHA require 2N real-number transmissions as initialization overhead,

whereas PA, CP, A2, and DRG require none. However, PA, CP, and A2 require two real-number

transmissions per iteration and DRG requires |Ni|+1 (where i is the node that leads an iteration),

whereas RHA and CHA require only one. Also note that CP has a parameter β ∈ (0,∞] and A2

has two parameters γ ∈ (0, 1) and φ ∈ (0, 12). Moreover, PA and DRG are assumed to be free of

overlapping iterations, i.e., deficiency D6.

To compare the performance of these algorithms, two sets of simulation are carried out. The first

set corresponds to a single scenario of a multi-hop wireless network with N = 100 nodes, where each

node i observes yi ∈ (0, 1) and has, on average, 2L
N = 20 one-hop neighbors, as shown in Figure 2.

The second set corresponds to multi-hop wireless networks modeled by random geometric graphs,

with the number of nodes varying from N = 100 to N = 500, and the average number of neighbors

varying from 2L
N = 10 to 2L

N = 60. For each N and 2L
N , we generate 50 scenarios. For each scenario,

we randomly and uniformly place N nodes in the unit square (0, 1) × (0, 1), gradually increase

23

Number of R transmissions

x̂
i
’s

a
n
d

x
∗

Pairwise Averaging (PA)

0 2000 4000 6000 8000 10000
0

0.5

1
x̂i ’s
x∗

Number of R transmissions

x̂
i
’s

a
n
d

x
∗

Consensus Propagation (CP)

0 2000 4000 6000 8000 10000
0

0.5

1

Number of R transmissions

x̂
i
’s

a
n
d

x
∗

Algorithm A2 (A2)

0 2000 4000 6000 8000 10000
0

0.5

1

Number of R transmissions
x̂

i
’s

a
n
d

x
∗

Distributed Random Grouping (DRG)

0 2000 4000 6000 8000 10000
0

0.5

1

Number of R transmissions

x̂
i
’s

a
n
d

x
∗

Random Hopwise Averaging (RHA)

0 2000 4000 6000 8000 10000
0

0.5

1

Number of R transmissions

x̂
i
’s

a
n
d

x
∗

Controlled Hopwise Averaging (CHA)

0 2000 4000 6000 8000 10000
0

0.5

1

All x̂i’s converge to x∗ ± 0.005
after 6982 R transmissions

Do not converge to x∗ ± 0.005
after 10000 R transmissions

Converge after 7500 Converge after 2167

Converge after 3081 Converge after 1353

Figure 3: Convergence of the estimates x̂i(k)’s to the unknown average x∗ under PA, CP, A2, DRG,

RHA, and CHA for the network in Figure 2.

the one-hop radius until there are L links (or 2L
N neighbors on average), randomly and uniformly

generate the yi’s in (0, 1), and repeat this process if the resulting network is not connected. We then

simulate PA, CP, A2, DRG, RHA, and CHA until 3N2 real-number transmissions have occurred

(i.e., three times of what flooding needs), record the number of real-number transmissions needed

to converge (including initialization overhead, if any), and assume that this number is 3N2 if an

algorithm fails to converge after 3N2. For both sets of simulation, we let the convergence criterion

be |x̂i − x∗| ≤ 0.005 ∀i ∈ V and the parameters be β = 106 for CP (obtained after some tuning),

γ = 0.3 and φ = 0.49 for A2 (ditto), and Φ(v) = 1
v and ε(v) = 0.001 for CHA.

Results from the first set of simulation are shown in Figure 3. Observe that PA and A2

have roughly the same performance, requiring approximately 7, 000 real-number transmissions to

24

converge. In contrast, CP fails to converge after 10, 000 transmissions, although it does achieve

a consensus. On the other hand, DRG is found to be quite efficient, needing only approximately

2, 100 transmissions for convergence. Note that RHA outperforms PA, CP, and A2, but not DRG,

while CHA is the most efficient, requiring only roughly 1, 300 transmissions to converge.

Results from the second set of simulation are shown in Figure 4, where the number of real-

number transmissions needed to converge, averaged over 50 scenarios, is plotted as a function of

the number of nodes N and the average number of neighbors 2L
N . Also included in the figure, as

a baseline for comparison, is the performance of flooding (i.e., N2). Observe that regardless of N

and 2L
N , CP has the worst bandwidth/energy efficiency, followed by PA and A2. In addition, DRG,

RHA, and CHA are all fairly efficient, with CHA again having the best efficiency. In particular,

CHA is at least 20% more efficient than DRG, and around 50% more so when the network is sparsely

connected, at 2L
N = 10. Notice that the performance of DRG is achieved under the assumption that

overlapping iterations cannot occur, a condition that CHA does not require. Finally, the significant

difference in efficiency between RHA and CHA demonstrates the benefit of incorporating greedy,

decentralized, feedback iteration control.

7 Conclusion

In this paper, we have shown that the existing distributed averaging schemes have a few draw-

backs, which hurt their bandwidth/energy efficiency. Motivated by this, we have devised RHA, an

asynchronous algorithm that exploits the broadcast nature of wireless medium, achieves almost sure

asymptotic convergence, and overcomes all but one of the drawbacks. To deal with the remaining

drawback, on lack of control, we have introduced a new way to apply Lyapunov stability theory,

namely, the concept of greedy, decentralized, feedback iteration control. Based on this concept, we

have developed ICHA and CHA, established bounds on their exponential convergence rates, and

shown that CHA is practical and capable of closely mimicking the behavior of ICHA. Finally, we

have shown via extensive simulation that CHA is substantially more bandwidth/energy efficient

than several existing schemes.

Several extensions of this work are possible, including design and analysis of “controlled” dis-

tributed averaging algorithms that are applicable to more general wireless networks (e.g., with

directed links, time-varying topologies, and dynamic observations) and more realistic communica-

tion channels (e.g., with random delays, packet losses, and quantization effects), and that take into

account MAC/PHY layer design issues (e.g., retransmission and backoff strategies).

25

A Appendix

A.1 Proof of Theorem 2

To prove Theorem 2, we first prove the following lemma:

Lemma 2. V (x(k)) ≤ γmaxi∈V ∆Vi(x(k)) ∀k ∈ N, where γ is as in (26).

Proof. Let k ∈ N. Notice from (14) that
∑

i∈V bi = N and from (1), (7), (12), and (13) that
∑

i∈V bix̂i(k) =
∑

i∈V bix
∗. Thus,

∑

i∈V

∑

j∈V bibj(x̂i(k)− x̂j(k))
2 =

∑

j∈V bj
∑

i∈V bi(x̂i(k)−x∗)2+
∑

i∈V bi
∑

j∈V bj(x̂j(k)−x∗)2−2
∑

i∈V bi(x̂i(k)−x∗)
∑

j∈V bj(x̂j(k)−x∗) = 2N
∑

i∈V bi(x̂i(k)−x∗)2.
It follows from (16), (19), and (7) that

V (x(k)) =
1

2

∑

i∈V

∑

j∈Ni

c{i,j}(x{i,j}(k)− x̂i(k))
2 +

1

2

∑

i∈V

∑

j∈Ni

c{i,j}(x̂i(k)− x∗)2

+
∑

i∈V

(x̂i(k)− x∗)
∑

j∈Ni

c{i,j}(x{i,j}(k)− x̂i(k)) =
1

2

∑

i∈V

∆Vi(x(k)) +
∑

i∈V

bi(x̂i(k)− x∗)2 (31)

≤ N
2 max

i∈V
∆Vi(x(k)) +

∑
i∈V

∑
j∈V bibj(x̂i(k)−x̂j(k))2

2N

= N
2 max

i∈V
∆Vi(x(k)) +

∑
i∈V

∑
j∈Ni

bibj(x̂i(k)−x̂j(k))2

2N +

∑
i∈V

∑
j∈V−Ni−{i} bibj(x̂i(k)−x̂j(k))2

2N . (32)

Note from (19) thatN maxi∈V ∆Vi(x(k)) ≥
∑

i∈V bi∆Vi(x(k)) =
∑

{i,j}∈E bic{i,j}(x̂i(k)−x{i,j}(k))2+
bjc{i,j}(x̂j(k) − x{i,j}(k))

2 ≥∑

{i,j}∈E
bibjc{i,j}
bi+bj

(x̂i(k)− x̂j(k))
2. Hence,

∑

i∈V

∑

j∈Ni

bibj(x̂i(k)− x̂j(k))
2 ≤ 2αN max

i∈V
∆Vi(x(k)). (33)

Next, it can be shown via (19) that ∀i ∈ V with |Ni| ≥ 2, ∀j, ℓ ∈ Ni with j 6= ℓ, c{i,j}c{i,ℓ}(x{i,j}(k)−
x{i,ℓ}(k))

2 ≤ (c{i,j}+c{i,ℓ})(c{i,j}(x{i,j}(k)−x̂i(k))2+c{i,ℓ}(x{i,ℓ}(k)−x̂i(k))2) ≤ (c{i,j}+c{i,ℓ})∆Vi(x(k)),

implying that |x{i,j}(k) − x{i,ℓ}(k)| ≤
(

maxp∈V ∆Vp(x(k))(
1

c{i,j}
+ 1

c{i,ℓ}
)
)

1
2 . In addition, ∀i ∈ V,

∀j ∈ Ni, |x̂i(k) − x{i,j}(k)| ≤
(maxp∈V ∆Vp(x(k))

c{i,j}

)
1
2 because of (19). For any i, j ∈ V with i 6= j,

let the sequence (a1, a2, . . . , amij
) represent a shortest path from node i to node j, where a1 = i,

amij
= j, {aℓ, aℓ+1} ∈ E ∀ℓ ∈ {1, 2, . . . ,mij − 1}, and 2 ≤ mij ≤ D + 1. Then, it follows from (14),

the triangle inequality, and the root-mean square-arithmetic mean-geometric mean inequality that

|x̂i(k) − x̂j(k)| ≤
(

maxp∈V ∆Vp(x(k))
)

1
2

(

(|Na1 |·|Na2 |
|Na1 |+|Na2 |

)
1
2 +

∑mij−1
ℓ=2

(|Naℓ−1
|·|Naℓ

|

|Naℓ−1
|+|Naℓ

| +
|Naℓ

|·|Naℓ+1
|

|Naℓ
|+|Naℓ+1

|

)
1
2 +

(|Namij−1 |·|Namij
|

|Namij−1 |+|Namij
|

)
1
2

)

≤
(

mij maxp∈V ∆Vp(x(k))
)

1
2

(

|Na1 |+|Na2 |
4 +

∑mij−1
ℓ=2

(|Naℓ−1
|+|Naℓ

|

4 +
|Naℓ

|+|Naℓ+1
|

4

)

+

|Namij−1 |+|Namij
|

4

)
1
2 ≤

(

mij maxp∈V ∆Vp(x(k))
∑mij

ℓ=1 |Naℓ |
)

1
2 . Next, we show that ∀i, j ∈ V with

i 6= j, each node ℓ ∈ V − {a1, a2, . . . , amij
} has at most 3 one-hop neighbors in {a1, a2, . . . , amij

}.
Clearly, this statement is true for mij ≤ 3. For mij ≥ 4, assume to the contrary that ∃ℓ ∈
V − {a1, a2, . . . , amij

} such that Nℓ ∩ {a1, a2, . . . , amij
} = {ai1 , ai2 , . . . , ain} for some 1 ≤ i1 <

26

i2 < · · · < in ≤ mij and n ≥ 4. Then, (a1, . . . , ai1 , ℓ, ain , . . . , amij
) is a path shorter than

the shortest path (a1, a2, . . . , amij
), which is a contradiction. Therefore, the statement is true.

Consequently,
∑mij

ℓ=1 |Naℓ | ≤ 3(N − mij) + 2(mij − 1) = 3N − mij − 2. It follows that ∀i, j ∈
V with i 6= j, (x̂i(k) − x̂j(k))

2 ≤ mij(3N − mij − 2)maxp∈V ∆Vp(x(k)). Since mij ≤ D +

1 ≤ N , (x̂i(k) − x̂j(k))
2 ≤

(

3(N − 1) − D
)

(D + 1)maxp∈V ∆Vp(x(k)). Due to this and to
∑

i∈V

∑

j∈V−Ni−{i} bibj =
∑

i∈V

∑

j∈V bibj − β = N2 − β, we have
∑

i∈V

∑

j∈V−Ni−{i} bibj(x̂i(k) −
x̂j(k))

2 ≤ (N2−β)
(

3(N −1)−D
)

(D+1)maxp∈V ∆Vp(x(k)). This, along with (33), (32), and (26),

implies V (x(k)) ≤ γmaxi∈V ∆Vi(x(k)).

Because of (20), (22), and Lemma 2, we have V (x(k − 1)) − V (x(k)) ≥ V (x(k−1))
γ ∀k ∈ P,

which is exactly (23). To prove (24) and (25), note that (23) implies V (x(k)) ≤ (1 − 1
γ)

kV (x(0))

∀k ∈ N. Moreover, note from (16) and (14) that V (x(k)) ≥ (min{i,j}∈E c{i,j})‖x(k) − x∗1L‖2
∀k ∈ N where min{i,j}∈E c{i,j} ≥ 2

maxi∈V |Ni|
. Furthermore, note from (31) and (14) that V (x(k)) ≥

(mini∈V bi)‖x̂(k) − x∗1N‖2 ∀k ∈ N where mini∈V bi ≥ 1
2 (1 + mini∈V |Ni|

maxi∈V |Ni|
). Thus, (24) and (25)

hold. To derive the bounds on α, notice from (14) that
bi+bj
c{i,j}

= 1
2 + (1 + 1

2

∑

ℓ∈Ni−{j}
1

|Nℓ|
+

1
2

∑

ℓ∈Nj−{i}
1

|Nℓ|
)/(1

|Ni|
+ 1

|Nj |
) ≤ 1

2 + (1 + maxℓ∈V |Nℓ|−1
minℓ∈V |Nℓ|

)/(2
maxℓ∈V |Nℓ|

) ≤ N2−2N+2
2 ∀{i, j} ∈ E .

Similarly, it can be shown that
bi+bj
c{i,j}

≥ 1 ∀{i, j} ∈ E . Hence, α ∈ [1, N
2−2N+2

2]. To derive the bounds

on β, observe that β ≤∑

i∈V

∑

j∈V bibj = N2. Also,
∑

i∈V

∑

j∈Ni
bibj ≥ 2L ·

(

1
2(1+

minℓ∈V |Nℓ|
maxℓ∈V |Nℓ|

)
)2 ≥

L
2 (1+

1
N−1)

2 and
∑

i∈V b2i ≥ 1
N (

∑

i∈V bi)
2 = N . Therefore, β ∈ [N+L

2 (1+
1

N−1)
2, N2]. Finally, using

(26), the bounds on α and β, and the properties L ≥ N−1 and
(

3(N−1)−D
)

(D+1) ≤ 2N(N−1),
we obtain γ ∈ [N2 + 1, N3 − 2N2 + N

2 + 1].

A.2 Proof of Theorem 3

Lemma 3. V (x(k)) ≤ γmaxi∈V ∆Vi(x(k)) ∀k ∈ N, where γ is as in S1 for a path graph with N ≥ 4,

S2 for a cycle graph, S3 for a K-regular graph with K ≥ 2, and S4 for a (N,K, λ, µ)-strongly regular

graph with µ ≥ 1.

Proof. Let k ∈ N. First, suppose G is a path graph with N ≥ 4 and E = {{1, 2}, {2, 3}, . . . , {N −
1, N}}. Note from (1), (12), (13), and (14) that

∑

{i,j}∈E

∑

{p,q}∈E c{i,j}c{p,q}(x{i,j}(k)−x{p,q}(k))2 =

2N
∑

{i,j}∈E c{i,j}(x{i,j}(k)− x∗)2. This, along with (16) and (14), implies that

V (x(k)) =
1

2N

∑

{i,j}∈E

∑

{p,q}∈E

c{i,j}c{p,q}(x{i,j}(k)− x{p,q}(k))
2 (34)

=
1

2N

(

∑

{i,j}∈E ′

∑

{p,q}∈E ′

(x{i,j}(k)− x{p,q}(k))
2 + 3

∑

{i,j}∈E ′

(x{1,2}(k)− x{i,j}(k))
2

+ 3
∑

{i,j}∈E ′

(x{N−1,N}(k)− x{i,j}(k))
2 +

9

2
(x{1,2}(k)− x{N−1,N}(k))

2
)

, (35)

27

where E ′ = E − {{1, 2}, {N − 1, N}}. Observe from (7), (14), and (19) that (x{i−1,i}(k) −
x{i,i+1}(k))

2 = 5
3∆Vi(x(k)) ∀i ∈ {2, N − 1} and (x{i−1,i}(k) − x{i,i+1}(k))

2 = 2∆Vi(x(k)) ∀i ∈
{3, 4, . . . , N−2}. By the root-mean square-arithmetic mean inequality,

∑

{i,j}∈E ′

∑

{p,q}∈E ′(x{i,j}(k)−
x{p,q}(k))

2 = 2
∑N−3

i=2

∑N−2
j=i+1(x{i,i+1}(k)−x{j,j+1}(k))

2 ≤ 2
∑N−3

i=2

∑N−2
j=i+1(j−i)

∑j
ℓ=i+1(x{ℓ−1,ℓ}(k)−

x{ℓ,ℓ+1}(k))
2 = 2(N − 3)

∑N−2
i=3 (N − i − 1)(i − 2)∆Vi(x(k)). Moreover, 3

∑

{i,j}∈E ′(x{1,2}(k) −
x{i,j}(k))

2 ≤ 3
∑N−2

i=2 (i − 1)
∑i

j=2(x{j−1,j}(k) − x{j,j+1}(k))
2 = 5

2(N − 2)(N − 3)∆V2(x(k)) +

3
∑N−2

i=3 (N + i− 4)(N − i− 1)∆Vi(x(k)). Similarly, 3
∑

{i,j}∈E ′(x{N−1,N}(k)− x{i,j}(k))
2 ≤ 5

2(N −
2)(N−3)∆VN−1(x(k))+3

∑N−2
i=3 (2N−i−3)(i−2)∆Vi(x(k)). Finally,

9
2 (x{1,2}(k)−x{N−1,N}(k))

2 ≤
9
2(N−2)

∑N−1
i=2 (x{i−1,i}(k)−x{i,i+1}(k))

2 = 3(N−2)
(

5
2∆V2(x(k))+

5
2∆VN (x(k))+3

∑N−2
i=3 ∆Vi(x(k))

)

.

Combining the above with (35) yields V (x(k)) ≤ γmaxi∈V ∆Vi(x(k)) where γ is as in S1.

Now suppose G is a cycle graph with E = {{1, 2}, {2, 3}, . . . , {N − 1, N}, {N, 1}}. Also suppose

N is odd. Let y ∈ R
N be a permutation of x(k) such that y{N,1} ≤ y{1,2} ≤ y{N,N−1} ≤ y{2,3} ≤

y{N−1,N−2} ≤ · · · ≤ y{N−1
2

,N+1
2

} ≤ y{N+3
2

,N+1
2

}. Then, since (34) holds for any graph and due to (14),

V (y) = V (x(k)). Also, due to (19) and (14), maxi∈V ∆Vi(y) ≤ maxi∈V ∆Vi(x(k)). For convenience,

let M = 2maxi∈V ∆Vi(y) and relabel (y{N,1}, y{1,2}, y{N,N−1}, y{2,3}, y{N−1,N−2}, . . . , y{N−1
2

,N+1
2

},

y{N+3
2

,N+1
2

}) as (z1, z2, . . . , zN). Then, we can write V (y) = 1
2N

∑N
i=1

∑N
j=1(zi−zj)

2 = 1
N (C1+C2),

where C1 =
∑

N−1
2

i=1 (z1 − z2i)
2 + (z1 − z2i+1)

2 + (z2i − z2i+1)
2 and C2 =

∑

N−3
2

i=1

∑

N−1
2

j=i+1(z2i −
z2j+1)

2 + (z2i+1 − z2j)
2 + (z2i − z2j)

2 + (z2i+1 − z2j+1)
2. Moreover, from (7), (14), and (19),

we get z2 − z1 ≤
√
M , zN − zN−1 ≤

√
M , and zi+2 − zi ≤

√
M ∀i ∈ {1, 2, . . . , N − 2}. Due

to the property (a − b)2 + (a − c)2 + (b − c)2 ≤ 2(a − c)2 ∀a, b, c ∈ R with a ≤ b ≤ c, we

have C1 ≤
∑

N−1
2

i=1 2(z1 − z2i+1)
2 ≤ ∑

N−1
2

i=1 2i2M = N(N2−1)
12 M . In addition, from the property

(a − d)2 + (b − c)2 ≤ (a − b)2 + (a − c)2 + (b − d)2 + (c − d)2 ∀a, b, c, d ∈ R, we have C2 ≤
∑

N−3
2

i=1

∑

N−1
2

j=i+1 2(z2i−z2j)
2+2(z2i+1−z2j+1)

2+(z2i−z2i+1)
2+(z2j−z2j+1)

2 ≤∑

N−3
2

i=1

∑

N−1
2

j=i+1

(

4(i−
j)2M + 2M

)

= (N−1)(N−3)(N2+11)
48 M . Combining the above, we obtain V (x(k)) = V (y) ≤

γ
2M ≤ γmaxi∈V ∆Vi(x(k)) where γ is as in S2. Next, suppose N is even. Similarly, let y ∈
R
N be a permutation of x(k) such that y{N,1} ≤ y{1,2} ≤ y{N,N−1} ≤ y{2,3} ≤ y{N−1,N−2} ≤
· · · ≤ y{N

2
−1,N

2
} ≤ y{N

2
+2,N

2
+1} ≤ y{N

2
,N
2
+1}. Observe from (34), (14), and (19) that V (y) =

V (x(k)) and maxi∈V ∆Vi(y) ≤ maxi∈V ∆Vi(x(k)). As before, let M = 2maxi∈V ∆Vi(y) and relabel

(y{N,1}, y{1,2}, y{N,N−1}, y{2,3}, y{N−1,N−2}, . . . , y{N
2
−1,N

2
}, y{N

2
+2,N

2
+1}, y{N

2
,N
2
+1}) as (z1, z2, . . . , zN).

Then, V (y) = 1
2N

∑N
i=1

∑N
j=1(zi − zj)

2 = 1
N (C1 + C2 + C3), where C1 =

∑

N
2
−1

i=1 (z1 − z2i)
2 + (z1 −

z2i+1)
2+(z2i−z2i+1)

2+(zN−z2i)2+(zN−z2i+1)
2, C2 =

∑

N
2
−2

i=1

∑

N
2
−1

j=i+1(z2i−z2j+1)
2+(z2i+1−z2j)2+

(z2i − z2j)
2 + (z2i+1 − z2j+1)

2, and C3 = (z1 − zN)2. Moreover, z2 − z1 ≤
√
M , zN − zN−1 ≤

√
M ,

and zi+2 − zi ≤
√
M ∀i ∈ {1, 2, . . . , N − 2}. Using the above properties, it can be shown that

C1 ≤ C1 +
∑

N
2
−1

i=1 (z2i − z2i+1)
2 ≤ ∑

N
2
−1

i=1 2(z1 − z2i+1)
2 + 2(zN − z2i)

2 ≤ ∑

N
2
−1

i=1 2i2M + 2(N2 −
i)2M = N(N−1)(N−2)

6 M , C2 ≤
∑

N
2
−2

i=1

∑

N
2
−1

j=i+1

(

4(i − j)2M + 2M
)

= (N−2)(N−4)(N2−2N+12)
48 M , and

C3 ≤ N2

4 M . It follows that V (x(k)) ≤ γmaxi∈V ∆Vi(x(k)) where γ is as in S2.

28

Next, suppose G is a K-regular graph with K ≥ 2. Due to (14) and (19),
∑

i∈V ∆Vi(x(k)) =
2
K

∑

{i,j}∈E(x̂i(k) − x{i,j}(k))
2 + (x̂j(k)− x{i,j}(k))

2 ≥ 1
K

∑

{i,j}∈E(x̂i(k)− x̂j(k))
2, implying that

∑

i∈V

∑

j∈Ni

(x̂i(k)− x̂j(k))
2 ≤ 2K

∑

i∈V

∆Vi(x(k)). (36)

Again, because of (14) and (19), ∀i ∈ V, ∀j ∈ Ni, (x{i,j}(k) − x̂i(k))
2 ≤ K

2 maxp∈V ∆Vp(x(k)).

Moreover, ∀i ∈ V, ∀j, ℓ ∈ Ni with j 6= ℓ, (x{i,j}(k)−x{i,ℓ}(k))
2 ≤ 2

(

(x{i,j}(k)− x̂i(k))
2+(x{i,ℓ}(k)−

x̂i(k))
2
)

≤ Kmaxp∈V ∆Vp(x(k)). Via the preceding two inequalities and the root-mean square-

arithmetic mean inequality, it can be shown that ∀i ∈ V, ∀j ∈ V − Ni − {i}, (x̂i(k) − x̂j(k))
2 ≤

(D+1)(K2 maxp∈V ∆Vp(x(k)) ·2+K maxp∈V ∆Vp(x(k)) · (D−1)) = KD(D+1)maxp∈V ∆Vp(x(k)).

It then follows from (32), (14), and (36) that V (x(k)) ≤ γmaxi∈V ∆Vi(x(k)) where γ is as in S3.

Finally, suppose G is a (N,K, λ, µ)-strongly regular graph with µ ≥ 1, which means that it

is a K-regular graph with K ≥ 2 and with every two non-adjacent nodes having µ common

neighbors. For every i ∈ V and j ∈ V − Ni − {i}, let {qij1, qij2, . . . , qijµ} = Ni ∩ Nj. Then, from

(14) and (19), µ
∑

i∈V

∑

j∈V−Ni−{i}(x̂i(k) − x̂j(k))
2 =

∑

i∈V

∑

j∈V−Ni−{i}

∑µ
ℓ=1(x̂i(k) − x̂j(k))

2 ≤
4
∑

i∈V

∑

j∈V−Ni−{i}

∑µ
ℓ=1

(

(x̂i(k)−x{i,qijℓ}(k))2+(x{i,qijℓ}(k)−x̂qijℓ(k))2+(x̂qijℓ(k)−x{j,qijℓ}(k))2+
(x{j,qijℓ}(k) − x̂j(k))

2
)

≤ 2K
∑

i∈V

∑

j∈V−Ni−{i}

(

∆Vi(x(k)) +
∑µ

ℓ=1∆Vqijℓ(x(k)) + ∆Vj(x(k))
)

≤
2KN(N − K − 1)(2 + µ)maxp∈V ∆Vp(x(k)). This, along with (32), (14), and (36), implies that

V (x(k)) ≤ γmaxi∈V ∆Vi(x(k)) where γ is as in S4.

Note that in the proof of Theorem 2 in Appendix A.1, Lemma 2 is used to derive (23)–(25). In

the same way, (23)–(25) can be derived using Lemma 3, completing the proof of Theorem 3.

A.3 Proof of Theorem 4

Let γ be as in (26) for a general graph or as in S1–S4 for a specific graph. Note that Lemmas 2

and 3 are independent of (u(k))∞k=1 and, thus, hold for CHA as well. Hence,

V (x(k)) ≤ γmax
i∈V

∆Vi(x(k)), ∀k ∈ N. (37)

Next, analyzing Algorithm 3 with ε(v) = 0 ∀v ∈ [0,∞), we see that

V (x(1)) = V (x(0)) −max
i∈V

∆Vi(x(0)), (38)

V (x(k + 1)) ≤ V (x(k)) −min{max
i∈V

∆Vi(x(k)),Φ
−1(t(k))}, ∀k ∈ P, (39)

t(k + 1) = max{Φ(max
i∈V

∆Vi(x(k))), t(k)}, ∀k ∈ N. (40)

With (37)–(40), we now show by induction that ∀k ∈ P, V (x(k)) ≤ (1 − 1
γ)V (x(k − 1)) and

t(k) ≤ Φ(V (x(k−1))
γ). Let k = 1. Then, because of (37), (38), and (40) and because Φ is strictly

decreasing, we have V (x(1)) ≤ (1 − 1
γ)V (x(0)) and t(1) = Φ(maxi∈V ∆Vi(x(0))) ≤ Φ(V (x(0))

γ).

29

Next, let k ≥ 1 and suppose V (x(k)) ≤ (1 − 1
γ)V (x(k − 1)) and t(k) ≤ Φ(V (x(k−1))

γ). To show

that V (x(k +1)) ≤ (1− 1
γ)V (x(k)) and t(k+1) ≤ Φ(V (x(k))

γ), consider the following two cases: (i)

maxi∈V ∆Vi(x(k)) < Φ−1(t(k)) and (ii) maxi∈V ∆Vi(x(k)) ≥ Φ−1(t(k)). For case (i), due to (37),

(39), and (40), we have V (x(k+1)) ≤ V (x(k))−maxi∈V ∆Vi(x(k)) ≤ (1− 1
γ)V (x(k)) and t(k+1) =

Φ(maxi∈V ∆Vi(x(k))) ≤ Φ(V (x(k))
γ). For case (ii), due to (39), (40), and the hypothesis, we have

V (x(k+1)) ≤ V (x(k))−Φ−1(t(k)) ≤ V (x(k))− V (x(k−1))
γ ≤ V (x(k))− V (x(k))

γ(1− 1
γ
)
≤ (1− 1

γ)V (x(k)) and

t(k + 1) = t(k) ≤ Φ(V (x(k−1))
γ) ≤ Φ(V (x(k))

γ(1− 1
γ
)
) ≤ Φ(V (x(k))

γ). This completes the proof by induction.

It follows that (23) and therefore (24) and (25) hold, so that Theorems 2 and 3 hold verbatim here.

Next, observe from (40) that (t(k))∞k=0 is non-decreasing. To show that limk→∞ t(k) =∞, assume

to the contrary that ∃t̄ ∈ (0,∞) such that t(k) ≤ t̄ ∀k ∈ N. For each k ∈ P, reconsider the above two

cases. Because of (39) and (40), for case (i), V (x(k))−V (x(k+1)) ≥ maxi∈V ∆Vi(x(k)) = Φ−1(t(k+

1)) ≥ Φ−1(t̄). Similarly, for case (ii), V (x(k))−V (x(k+1)) ≥ Φ−1(t(k)) ≥ Φ−1(t̄). Combining these

two cases, we get V (x(k+1)) ≤ V (x(1))− kΦ−1(t̄) ∀k ∈ N. Since Φ−1(t̄) > 0, V (x(k+1)) < 0 for

sufficiently large k, which is a contradiction. Thus, limk→∞ t(k) =∞. Finally, from the statement

shown earlier by induction, we obtain V (x(k)) ≤ (1− 1
γ) · γΦ−1(t(k)) = (γ − 1)Φ−1(t(k)) ∀k ∈ P.

References

[1] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with switching

topology and time-delays,” IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1520–

1533, 2004.

[2] J. Cortés, “Finite-time convergent gradient flows with applications to network consensus,”

Automatica, vol. 42, no. 11, pp. 1993–2000, 2006.

[3] A. Tahbaz-Salehi and A. Jadbabaie, “Small world phenomenon, rapidly mixing Markov chains,

and average consensus algorithms,” in Proc. IEEE Conference on Decision and Control, New

Orleans, LA, 2007, pp. 276–281.

[4] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of aggregate information,”

in Proc. IEEE Symposium on Foundations of Computer Science, Cambridge, MA, 2003, pp.

482–491.

[5] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,” Systems & Control

Letters, vol. 53, no. 1, pp. 65–78, 2004.

[6] D. S. Scherber and H. C. Papadopoulos, “Distributed computation of averages over ad hoc

networks,” IEEE Journal on Selected Areas in Communications, vol. 23, no. 4, pp. 776–787,

2005.

30

[7] D. B. Kingston and R. W. Beard, “Discrete-time average-consensus under switching network

topologies,” in Proc. American Control Conference, Minneapolis, MN, 2006, pp. 3551–3556.

[8] A. Olshevsky and J. N. Tsitsiklis, “Convergence rates in distributed consensus and averaging,”

in Proc. IEEE Conference on Decision and Control, San Diego, CA, 2006, pp. 3387–3392.

[9] L. Xiao, S. Boyd, and S.-J. Kim, “Distributed average consensus with least-mean-square de-

viation,” Journal of Parallel and Distributed Computing, vol. 67, no. 1, pp. 33–46, 2007.

[10] F. Fagnani and S. Zampieri, “Randomized consensus algorithms over large scale networks,”

IEEE Journal on Selected Areas in Communications, vol. 26, no. 4, pp. 634–649, 2008.

[11] M. Zhu and S. Mart́ınez, “Dynamic average consensus on synchronous communication net-

works,” in Proc. American Control Conference, Seattle, WA, 2008, pp. 4382–4387.

[12] J. N. Tsitsiklis, “Problems in decentralized decision making and computation,” Ph.D. Thesis,

Massachusetts Institute of Technology, Cambridge, MA, 1984.

[13] M. Jelasity and A. Montresor, “Epidemic-style proactive aggregation in large overlay net-

works,” in Proc. IEEE International Conference on Distributed Computing Systems, Tokyo,

Japan, 2004, pp. 102–109.

[14] A. Montresor, M. Jelasity, and O. Babaoglu, “Robust aggregation protocols for large-scale

overlay networks,” in Proc. IEEE/IFIP International Conference on Dependable Systems and

Networks, Florence, Italy, 2004, pp. 19–28.

[15] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algorithms,” IEEE

Transactions on Information Theory, vol. 52, no. 6, pp. 2508–2530, 2006.

[16] M. Cao, D. A. Spielman, and E. M. Yeh, “Accelerated gossip algorithms for distributed compu-

tation,” in Proc. Allerton Conference on Communication, Control, and Computing, Monticello,

IL, 2006, pp. 952–959.

[17] J.-Y. Chen, G. Pandurangan, and D. Xu, “Robust computation of aggregates in wireless sensor

networks: Distributed randomized algorithms and analysis,” IEEE Transactions on Parallel

and Distributed Systems, vol. 17, no. 9, pp. 987–1000, 2006.

[18] C. C. Moallemi and B. Van Roy, “Consensus propagation,” IEEE Transactions on Information

Theory, vol. 52, no. 11, pp. 4753–4766, 2006.

[19] M. Mehyar, D. Spanos, J. Pongsajapan, S. H. Low, and R. M. Murray, “Asynchronous dis-

tributed averaging on communication networks,” IEEE/ACM Transactions on Networking,

vol. 15, no. 3, pp. 512–520, 2007.

31

[20] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods.

Englewood Cliffs, NJ: Prentice-Hall, 1989.

[21] N. A. Lynch, Distributed Algorithms. San Francisco, CA: Morgan Kaufmann Publishers,

1996.

[22] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile autonomous agents

using nearest neighbor rules,” IEEE Transactions on Automatic Control, vol. 48, no. 6, pp.

988–1001, 2003.

[23] Y. Hatano and M. Mesbahi, “Agreement over random networks,” IEEE Transactions on Au-

tomatic Control, vol. 50, no. 11, pp. 1867–1872, 2005.

[24] L. Moreau, “Stability of multiagent systems with time-dependent communication links,” IEEE

Transactions on Automatic Control, vol. 50, no. 2, pp. 169–182, 2005.

[25] W. Ren and R. W. Beard, “Consensus seeking in multiagent systems under dynamically chang-

ing interaction topologies,” IEEE Transactions on Automatic Control, vol. 50, no. 5, pp. 655–

661, 2005.

[26] L. Fang and P. J. Antsaklis, “On communication requirements for multi-agent consensus seek-

ing,” in Networked Embedded Sensing and Control, ser. Lecture Notes in Control and Informa-

tion Sciences, P. J. Antsaklis and P. Tabuada, Eds. Berlin, Germany: Springer-Verlag, 2006,

vol. 331, pp. 53–67.

[27] S. Sundaram and C. N. Hadjicostis, “Finite-time distributed consensus in graphs with time-

invariant topologies,” in Proc. American Control Conference, New York, NY, 2007, pp. 711–

716.

[28] A. Olshevsky and J. N. Tsitsiklis, “On the nonexistence of quadratic Lyapunov functions for

consensus algorithms,” IEEE Transactions on Automatic Control, vol. 53, no. 11, pp. 2642–

2645, 2008.

[29] A. Tahbaz-Salehi and A. Jadbabaie, “Consensus over ergodic stationary graph processes,”

IEEE Transactions on Automatic Control, vol. 55, no. 1, pp. 225–230, 2010.

[30] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in networked

multi-agent systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 215–233, 2007.

32

100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5

x 10
5

Number of nodes N

N
u
m

b
er

o
f
R

tr
a
n
sm

is
si

o
n
s

n
ee

d
ed

to
co

n
v
er

g
e

Average number of neighbors
2L

N
= 10

Flooding
PA
CP
A2
DRG
RHA
CHA

100 200 300 400 500
0

2

4

6

8

10

12

x 10
4

Number of nodes N

N
u
m

b
er

o
f
R

tr
a
n
sm

is
si

o
n
s

n
ee

d
ed

to
co

n
v
er

g
e

Average number of neighbors
2L

N
= 20

100 200 300 400 500
0

1

2

3

4

5

6

7

8
x 10

4

Number of nodes N

N
u
m

b
er

o
f
R

tr
a
n
sm

is
si

o
n
s

n
ee

d
ed

to
co

n
v
er

g
e

Average number of neighbors
2L

N
= 30

100 200 300 400 500
0

1

2

3

4

5

6
x 10

4

Number of nodes N

N
u
m

b
er

o
f
R

tr
a
n
sm

is
si

o
n
s

n
ee

d
ed

to
co

n
v
er

g
e

Average number of neighbors
2L

N
= 40

100 200 300 400 500
0

1

2

3

4

5
x 10

4

Number of nodes N

N
u
m

b
er

o
f
R

tr
a
n
sm

is
si

o
n
s

n
ee

d
ed

to
co

n
v
er

g
e

Average number of neighbors
2L

N
= 50

100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Number of nodes N

N
u
m

b
er

o
f
R

tr
a
n
sm

is
si

o
n
s

n
ee

d
ed

to
co

n
v
er

g
e

Average number of neighbors
2L

N
= 60

Figure 4: Bandwidth/energy efficiency of flooding, PA, CP, A2, DRG, RHA, and CHA on random

geometric networks with varying number of nodes N and average number of neighbors 2L
N .

33

	1 Introduction
	2 Problem Formulation
	3 Deficiencies of Existing Schemes
	4 Random Hopwise Averaging
	5 Controlled Hopwise Averaging
	5.1 Motivation for Feedback Iteration Control
	5.2 Approach to Feedback Iteration Control
	5.3 Ideal Version
	5.4 Practical Version

	6 Performance Comparison
	7 Conclusion
	A Appendix
	A.1 Proof of Theorem 2
	A.2 Proof of Theorem 3
	A.3 Proof of Theorem 4

