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Abstract— Urban water supply networks are large-scale sys-
tems that transport potable water over vast geographical areas
to millions of consumers. A safe and efficient operation of
these networks is crucial, as without it living in today’s cities
would be impossible. To achieve an adequate operation, these
networks are equipped with actuators like pumps and valves,
which are used to maintain water pressures and flows within
safe margins. Currently, these actuators are controlled in a
decentralized way using local controllers that only use local
information and that do not take into account the presence of
other controllers. As a result, water supply networks regularly
experience pressure drops and interruptions of water supply
when there is an unexpected increase in water demand. To
improve performance the actions of the local controllers should
be coordinated. Implementing a centralized control scheme is
not tractable due to the large-scale nature of these networks.
Therefore, this paper proposes the application of a distributed
control scheme for control of urban water supply networks.
The scheme is based on local model predictive control (MPC)
strategies and a parallel coordination scheme that implements
cooperation among the local MPC controllers. A simulation
study based on a part of the urban water supply network of
Bogotá, the capital of Colombia, illustrates the potential of the
approach.

I. INTRODUCTION

A. Urban water supply networks

Urban water supply networks form the link between

drinking water supply and drinking water consumers. These

large-scale networks are vital for the survival of urban life,

for maintaining a healthy level of economic development,

and for the continuous operation of factories and hospitals

[1]. Water supply networks consist of so-called transmission

mains, distribution mains, and service lines. Transmission

mains convey large amounts of water over large distances;

distribution mains provide intermediate steps toward deliver-

ing water to the end customers; and service lines transmit the

water from the distribution mains to the end customers. The

transmission and distribution network can have a topology

that is looped, branched, or a combination of these two [2].

In water supply networks pumps and valves are the control

elements that enable the delivery of water to the consumers

taking into account water flow and pressure constraints. The

most frequently used type of pump in water supply networks

is the centrifugal pump, which consists of a motor and an

impeller. In this device, the mechanical energy of the rotating
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impeller is injected into the water, resulting in an increase

in pressure [3]. Valves are actuators that vary resistance to

change the water flow and that can be operated manually or

automatically. Valves can be classified as pressure reducing

valves, pressure sustaining valves, and flow control valves.

Pressure reducing valves throttle automatically to prevent

the downstream hydraulic grade from exceeding a set-point.

Pressure sustaining valves throttle the flow automatically to

prevent the upstream hydraulic grade from dropping below a

set-point. Flow control valves throttle automatically to limit

the flow rate passing through the valve to a maximum value

[2]. In the system under study in this paper each of these

types of valves is present.

B. Control of water supply networks

In water supply networks the primary control objective is

to guarantee the delivery of the right amount of water at the

right place at the right time. Hereby, pressure at particular

locations in the network and flows through particular pipes of

the network have to stay within acceptable limits. A low flow

rate can lead to water quality problems due to the growth of

undesirable microorganisms and the accumulation of metals

and salts on the wall of the transmission and distribution

pipes. Too large pressure values increase water losses (due

to pipe waste) and incur a larger blow-out probability [2].

The control system of a water supply network has to

determine the settings for the actuators in the network in

such a way that the control objectives are achieved. Hereby,

constraints on the range of possible control signals have to

be respected, even when there are unexpected changes in

water demand. Model-based predictive control seems ideally

suited for this as detailed below.

C. Model predictive control

Model predictive control (MPC) is a control approach

in which at discrete time steps actions are determined by

solving an optimization problem, taking into account the

control objectives, predicted dynamics of the network over

a certain prediction horizon, and operational constraints [4].

MPC has been widely used in the process industry and is now

gaining increasing attention in other fields, including control

of water networks [5]–[8]. The main advantages of using

MPC are that multiple-input multiple-output systems can

be handled in an integrated way, and that constraints, long

time delays, and known information (e.g., regarding future

disturbances) can be taken into account in a straightforward

fashion. Each of these advantages can also be taken benefit

from in the domain of water supply networks.
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Due to the complexity and the large size of water net-

works, control of such systems in general, however, cannot

be done in a centralized way in which a single controller

operates the full network from a single location. Instead of

collecting measurements from the whole system and deter-

mining actions from a single location, control is typically

spread over several local control agencies, each controlling

a particular part of the network. Since the 90s various

distributed MPC applications have been investigated for

water networks. E.g., in [9], [10] a decentralized adaptive

control approach for a 40-kilometer long canal in France is

considered; in [11] a decentralized unconstrained predictive

controller for water delivery canals is presented; and in [12]

distributed MPC for irrigation canals is considered.

In this paper we propose to employ distributed MPC

for control of large-scale urban water supply networks, in

particular for the water supply network of Bogotá, Colombia.

D. Outline

This paper is organized as follows. In Section II models for

the components of water supply networks are given and the

water supply network of Bogotá, which we use as a system

for case studies, is presented. In Section III the details of

the distributed MPC scheme proposed for control of water

supply networks are given. Section IV discusses a simulation

experiment in which the distributed MPC scheme is applied

for control of a part of the water supply network of Bogotá.

Section V concludes this paper.

II. WATER SUPPLY NETWORK MODELING

A water supply system consists of a large number of

interconnected hydraulic elements, which can be classified as

either being active or passive elements [13]. Active elements

(e.g., pumps and valves) can alter the flow rate of water in

specific parts of the system. Passive elements (e.g., pipes,

tanks, and reservoirs) do not directly alter the flow rates.

The behavior of these elements is formalized below.

A. Pumps

Pumps add mechanical energy transformed into additional

head to the hydraulic system [2], [13]. The head hp [m] varies

nonlinearly with the speed N [rpm] and the flow Qp [m3/s].

The head hp of n variable-speed pumps running in parallel

is at time t given by:

hp(t) = A0N(t)2
+

B0

n
N(t)Qp(t) −

C0

n2
Q2

p(t), (1)

where A0, B0, C0 are suitable constants for a particular pump,

as provided by the manufacturer.

B. Pipes

Pipes convey flow as water moves from one junction to

another. Let a pipe section have length lp [m], cross sectional

area Ap [m2], and head difference between the two ends of the

pipe ∆hp [m]. The evolution of the flow Qp(t) [m3/s] through

the pipe is given by:

dQp(t)

dt
=

gAp

lp

(

∆hp(t) − hloss(t)
)

, (2)

where hloss denotes the total head loss along the piping

section and g is the gravitational acceleration. The total head

loss is given by [13]:

hloss(t) = hloss, fp
(t) + hloss,m(t), (3)

where hloss, fp
represents friction losses and hloss,m represents

minor local losses. The friction losses are computed using

Darcy-Weisbach’s friction model [3]:

hloss, fp
(t) =

(

c fp
lp

DpA2
p2g

)

Q2
p(t), (4)

where Dp is the inner diameter of the pipe [m], and c fp

is a roughness coefficient. This friction coefficient varies

depending on the surface roughness of the pipe. Colebrook

and White [3] suggest to use the following empirical equation

to determine this friction coefficient:

1
√

c fp

= −4log10

(

ǫ/Dp

3.71
+

2.51

2
√

2c fp
NR

)

, (5)

where ǫ [m] is the roughness of the pipe and NR is its

Reynolds number. This equation can be solved using standard

numerical methods to find roots of nonlinear algebraic equa-

tions, such as bisection or Newton-Raphson methods [13].

The minor local losses hloss,m [m] are caused by contrac-

tions, fittings, expansions, bends, valves, and changes in flow

in the pipeline. Minor head losses are expressed as a function

of the water velocity in the pipe and depend on Km, the head

loss coefficient, as follows:

hloss,m(t) =

(

Km

A2
p2g

)

Q2
p(t). (6)

C. Nodes

The following conservation of mass principle is considered

at nodes:

Qi(t) −Ci(t) −

dSi(t)

dt
= 0, (7)

where Qi is the total inflow into node i [m3/s], Ci is the water

used at node i [m3/s], and dSi

dt
represents change in storage

[m3/s]. The conservation of mass equation is applied at all

junction nodes and tanks in a network [14].

D. Water supply network of Bogotá

Bogotá, the capital of Colombia, is located on a high

plateau mountain in the Andes Region, elevated 2630 m

above sea level. Bogotá has a population of over 7 mil-

lion inhabitants, who have to be supplied with water via

Bogota’s water supply network, see Figure 1. This water

supply network receives water from four treatment plants:

Wiesner, El Dorado, Tibitoc, and Tibitoc Alto. In each of

these plants the water undergoes several processing steps in

order to ensure water that is safe for human consumption.

After these processing steps, the water is distributed via the

transmission and distribution mains of the supply network

to the metropolitan area. The water supply network of
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Bogotá includes 33 pumping stations, 55 storage tanks, and

approximatively 500 km of 12 inch or larger pipes1.

In this paper we consider control of a particular region

of the complete network (as indicated in Figure 1) as a first

step towards control of the complete water supply network.

To obtain a dynamic model for this system, parameters of

pipes (diameters, nodes, lengths, and roughness), junctions

(elevation, demands, and consumption patterns), as well as

topographic altitudes of reservoirs, valves, and pumps have

been collected. This information has then been used to

develop an overall state space representation of the following

form:

ẋ(t) = f (x(t),u(t),d(t)), (8)

where x is the state (the flow through pipes and the head in

nodes), u is the control input (loss coefficient of valves and

pressure injection of pumps), d is the exogenous disturbance

input (the consumption pattern), and f is the nonlinear state

transition function.

The actuators in the network should be set in such a way

that the control objectives are achieved. Due to the large scale

of the network, centralized control is not tractable. Below we

present how distributed MPC can be used to coordinate the

actions taken locally throughout the network instead.

III. DISTRIBUTED MODEL PREDICTIVE CONTROL

Using distributed MPC, the control of the system (8) is

divided over multiple controllers. An individual controller

on the one hand obtains measurements from and determines

actions for its part of the network, and on the other hand

communicates with other controllers in order to obtain co-

ordination and to improve the overall network performance.

To determine which actions to take, each controller uses an

MPC strategy.

A. Model predictive control

In this paper, it is assumed that the dynamics of the

prediction model of subnetwork i are represented by a time-

invariant linear (or linearized) model described in a discrete-

time state-space framework:

xi(k + 1) = Aixi(k) + B1,iui(k) + B2,idi(k) + B3,ivi(k)

yi(k) = Cixi(k) + D1,iui(k) + D2,idi(k) + D3,ivi(k),
(9)

where xi ∈ R
nxi is the state, ui ∈ R

nui is the control input,

yi ∈R
nyi is the output, di ∈R

ndi is the exogenous disturbance

input (assumed to measured or estimated), and vi ∈ R
nvi

represents the influence of the neighboring subnetworks on

subnetwork i. In the above equations k ∈ N is the (discrete)

time instant, where discrete time k corresponds to continuous

time kT , where T is the sample time of the discrete-time

model (9). From a control point of view, note that input

vi has to be obtained via communication between local

controllers, leading to a distributed control scheme, or can be

simply ignored or assumed constant, leading to decentralized

control. Obviously, if the network is strongly interconnected,

1http://web.acueducto.com.co/.

Fig. 1. Water supply network of Bogotá and the selected part for
application of distributed control (inside the rectangle). Blue circles are
consumption nodes, red and yellow symbols are storage tanks, cyan symbols
are reservoirs, black lines are pipes.

the influence of input vi cannot be neglected without a

significant decrease in performance and robustness of the

control system.

Consider that subnetwork i has to be operated under

(linear) constraints on input, state and output:

Eixi(k) + Fiui(k) + Giyi(k) + hi ≤ 0, ∀k (10)

where Ei, Fi, Gi, and hi are assumed to be constant.

For the completeness of the paper, the principles of MPC

are now briefly reviewed [4]. MPC is a model-based control

method in which a model of the system to control is used to

predict its behavior over a finite time horizon in the future. In

a state-space framework, the following steps are considered:

(1) at current control sample instant, the state of the system is

measured (or estimated); (2) an optimization routine is used

to find an optimal sequence of control inputs in the future

that minimize an objective function subject to constraints; (3)

the first control input from the optimal sequence is applied to

the system, and steps (1)–(3) are repeated at the next control

sample instant, and so on. The fact that a new measurement
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of the state is used at each time instant gives a feedback

policy.

Let x̃i(k + 1) =
[

xT
i (k + 1) · · · xT

i (k + N)
]T

, ũi(k) =
[

uT
i (k)

· · · uT
i (k + N − 1)

]T
and ỹi(k) =

[

yT
i (k) · · · yT

i (k + N − 1)
]T

be

the predicted state, input, and output sequences respectively.

Here, the superscript T denotes transpose and N is the length

of the prediction horizon. In this paper, the prediction horizon

and the control horizon have the same length N.

The following notations are used in the following: ‖z‖2
Q ,

zTQz; ∆u(k) , u(k) − u(k − 1); and diag
(

P1, . . . , PN

)

is a

block diagonal matrix of which the diagonal blocks are Pi (i =

1, . . . ,N). For subsystem i, consider the following objective

function:

Jlocal,i

(

x̃i(k + 1), ũi(k), ỹi(k)
)

= ‖x̃i(k + 1) − x̃i,ref‖2
Qx̃i

+‖∆ũi(k)‖2
Q∆ũi

+‖ũi(k) − ũi,ref‖2
Qũi

+‖ỹi(k) − ỹi,ref‖2
Qỹi

, (11)

where Qx̃i
= diag

(

Qxi
, . . . , Qxi

)

is positive definite,

and the sequences of the sequence of set-points x̃i,ref =
[

xT
i,ref . . . xT

i,ref

]T
, are considered constant during the predic-

tion. The same holds for Qũi
and Qỹi

, and ũi,ref and ỹi,ref.

Now, consider the local optimization problem Plocal,i:

min
x̃i(k+1),ũi(k),ỹi(k)

Jlocal,i

(

x̃i(k + 1), ũi(k), ỹi(k)
)

(12)

subject to the dynamics (9) of subnetwork i, local constraints

(10) on xi(k), ui(k), and yi(k), and let us for now ignore

the input vi(k + j), for j = 0, . . . , N − 1. Define Ṽlocal,i(k) =
[

x̃i(k + 1)T ũi(k)T ỹi(k)T
]T

. Then,

Jlocal,i

(

Ṽlocal,i(k)
)

= ṼT
local,i(k)Qlocal,iṼlocal,i(k) + fT

local,iṼlocal,i(k) + clocal,i (13)

with Qlocal,i = diag
(

Qx̃i
,Q′

ũi
,Qỹi

)

, flocal,i =
[

fT
x̃i

f′Tũi
fT
ỹi

]T
, clocal,i

a constant, and where Q′
ũi

and f′ũi
account for both terms in

ũi and ∆ũi in cost function (11). Similarly, the constraints

in Plocal,i can be formulated as follows:

Ain,local,iṼlocal(k) ≤ bin,local,i (14)

Aeq,local,iṼlocal(k) = beq,local,i. (15)

Plocal,i has now been reformulated as a standard quadratic

programming (QP) problem.

Up to now, the influence of the neighbors of subnetwork i

(vi) has been ignored. As explained before, this influence has

to be taken into account, and so communication between con-

trollers is required at each time instant. For this purpose, the

distributed control scheme based on local MPC controllers

as introduced in [15] is described next.

B. Distributed control scheme

Let Ni = { ji,1, · · · , ji,mi
} be the set of indices of neighbors

of subnetwork i, i.e., the subnetworks by which the dynamics

of subnetwork i are influenced. Let win, ji and wout, ji be the

so-called interconnecting input and output variables that sub-

network i shares with a neighboring subnetwork j. Actually,

interconnecting constraints

win, ji(k) = wout,i j(k) (16)

wout, ji(k) = win,i j(k) (17)

should be added to the local control problem of controller

i, ∀ j ∈ Ni and for k = 0, . . . ,N − 1. However, adding such

constraints leads to a nonseparable local optimization prob-

lem, since it cannot be solved using only local variables. To

deal with constraints (16), a separable augmented Lagrange

formulation is used [15]. Constraints (16) are added to the

local objective function of controller i in the form of linear

terms in the Lagrange multipliers and quadratic terms in the

interconnecting variables [15].

Then each local MPC controller computes optimal se-

quences as before, but now taking also the interconnecting

variables in the sequences of variables to be optimized

and now using fixed values for the Lagrange multipliers.

This way, each local controller is able to communicate

to its neighbors the optimal values, according to its local

viewpoint, of the interconnecting variables. Convergence is

obtained by updating the Lagrange multipliers using the

solution of the optimizations and then repeating the optimiza-

tions until the Lagrange multipliers do not change anymore

(with respect to small numerical tolerance) from one iteration

to the next. Under convexity assumptions on the objective

function and linearity of the subnetwork model constraints,

solving the distributed control problem in such a way leads

to the optimal solution of the centralized control problem

that considers the entire network.

The coordination process is realized using a parallel co-

ordination scheme [15] in which at time k the following

steps are performed: (1) all controllers compute their optimal

sequences in parallel, (2) controllers communicate their opti-

mal sequences of interconnecting input and output variables

to their neighbors, (3) controllers update their Lagrange mul-

tipliers and communicate them to their neighbors. Steps (1)–

(4) are repeated until convergence (agreement) is reached.

For controller i, let the Lagrange multipliers λin, ji(k) be

associated to win, ji(k). As before, a tilde over a variable

will denote a sequence over the prediction horizon N, so let

λ̃in,Ni
(k) =

[

λ̃
T

in,i ji,1
(k) · · · λ̃

T

in,i ji,mi
(k)
]T

be the Lagrange mul-

tipliers that will be received by controller i from its mi neigh-

boring controllers. Let w̃in,i(k) =
[

w̃T
in, ji,1i(k) · · · w̃T

in, ji,mi
i(k)
]T

be the interconnecting input variables of controller i and

let w̃out,Ni
(k) =

[

w̃T
out,i ji,1

(k) · · · w̃T
out,i ji,mi

(k)
]T

be the intercon-

necting output variables of the mi neighboring subsystems

that are interconnecting input variables of subsystem i. Let

w̃out,i(k) and w̃in,Ni
(k) be defined in the same way. Then we

have

ṽi(k) = Piw̃in,i(k) (18)

w̃out,i(k) = Ki

[

x̃i(k)T ũi(k)T ỹi(k)T
]T

, (19)
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where Pi and Ki are matrices that contain zeros everywhere,

except for a single 1 per row.

Consider the augmented local optimization problem for

controller i that has to be solved at each iteration of the

coordination process:

min
x̃i(k),ũi(k),ỹi(k),
w̃in,i(k),w̃out,i(k)

Jlocal,i

(

x̃i(k), ũi(k), ỹi(k)
)

+ Jinter,i

(

w̃in,i(k),w̃out,i(k)
)

(20)

subject to the dynamics (9) of subnetwork i and local

constraints (10) on xi(k), ui(k), and yi(k), and equalities

(18)–(19), for k = 0, . . . , N − 1. This augmented formulation

includes a new term Jinter,i that is defined as follows:

Jinter,i

(

w̃in,i(k),w̃out,i(k)
)

= λ̃
T

in,i(k)w̃in,i(k) − λ̃
T

in,Ni
(k)w̃out,i(k)

+

γc

2

(

‖w̃in,i(k) − w̃out,Ni
(k − 1)‖2

+‖w̃out,i(k) − w̃in,Ni
(k − 1)‖2

)

, (21)

where the linear terms involve the Lagrange multipliers

λ̃in,i(k) and λ̃in,Ni
(k), and the quadratic terms with tuning

parameter γc penalize the deviation of w̃in,i(k) and w̃out,i(k)

from the interconnecting variables iterates that were com-

puted at the last iteration: w̃out,Ni
(k − 1) and w̃in,Ni

(k − 1).

The Lagrange multipliers of controller i are updated, at

iteration s, as follows:

λ̃
(s+1)

in,i (k) = λ̃
(s)

in,i(k) + γd

(

w̃
(s)
in,i(k) − w̃

(s)
out,Ni

(k)
)

, (22)

where γd is a parameter that allows to tune the convergence

of the iterative coordination process. Iterations stop when

controllers fulfill the following local stopping condition at

time instant k, e.g., for controller i:

‖λ̃(s+1)

in,i (k) − λ̃
(s)

in,i(k)‖
∞

≤ γǫ, (23)

where γǫ serves as a numerical tolerance. Let Ṽinter,i(k) =
[

w̃T
in,i(k) w̃T

out,i(k)
]T

. For the local cost Jlocal,i, the so called

interconnecting cost (21) can be reformulated as:

Jinter,i

(

Ṽinter,i(k)
)

= ṼT
inter,i(k)Qinter,iṼinter,i(k) + fT

inter,iṼinter,i(k) + cinter,i (24)

such that the augmented local optimization problem of

controller i is now:

min
Ṽi(k)

Ji

(

Ṽi(k)
)

= ṼT
i (k)QiVi(k) + fT

i Ṽi(k) (25)

subject to

Ain,iṼi(k) ≤ bin,i (26)

Aeq,iṼi(k) = beq,i, (27)

where Ṽi(k) =
[

ṼT
local,i(k) ṼT

inter,i(k)
]T

, Qi =

diag
(

Qlocal,i,Qinter,i

)

and fi =
[

fT
local,i fT

inter,i

]T
. The matrices in

(26) are computed from Ain,local,i and bin,local,i and include

equalities (18)–(19). This is a standard QP problem that is

solved by controller i.
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Fig. 2. A typical water demand profile.

It is worth mentioning that hard constraints (26) can be

softened by introducing an additional positive slack variable

ǫ in Ṽi(k) so that (26) becomes AinṼi(k) ≤ bin + ǫ1 where 1

is a unit column vector, and by adding an extra term ρǫ in

the objective function Ji of (25). The parameter ρ allows to

penalize the maximum amount of constraint violation.

IV. SIMULATION EXPERIMENT

We next consider an experiment on the northern part water

supply network of Bogotá (as indicated in Figure 1). This

part of the network is modeled with 37 head and flow-

rate state variables, 7 control inputs (valves and pumping

stations), and 18 disturbance inputs (water demand). The

system is divided into three subnetworks indicated by letters

A, B and C, the state dimensions of which are 10, 10, and 17

respectively. The interconnecting variables that interconnect

the subnetworks consist of the head differences between the

ends of interconnecting pipes. Each subnetwork is controlled

by a local MPC controller that uses a discrete-time linearized

prediction model. The control sampling is 1 h, equaling

the average time-constant of the system. The controllers

use Matlab’s quadprog function to perform the optimization

required at each control time step.

The disturbance scenario considered in this experiment

reflects typical water demand profiles, such as the one

illustrated in Figure 2. The demand profile consists of flow

rates specified for particular locations in the network at which

consumers are connected over a time span of 24 h.
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Fig. 3. Evolution of most important heads for each subnetwork over a full
simulation without coordination. The horizontal lines indicate the allowed
limits.
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Fig. 4. Evolution of the most important heads for each subnetwork over a
full simulation with coordination. The horizontal lines indicate the allowed
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The distributed control scheme presented in Section III has

been applied to the three interconnected subnetworks. When

facing a change in water demand, completely decentralized

MPC controllers do not choose the best actions to apply to

the network, as they do not take into account the actions of

other controllers. This results in poor performance and eco-

nomic losses, as heads and flow rates cannot be guaranteed

to stay within acceptable limits as is seen in Figure 3.

However, when using the proposed distributed MPC ap-

proach to achieve coordination, the coordination between

controllers allows to maintain the heads between the limits,

while using the actuators optimally, as illustrated in Figure

4.

The results presented in Figure 4 have been obtained with

the following choice of coordination parameters: γc = 10−1 in

Eq. (21) and γd = 1 in (22). The parameter γǫ which appears

in the stopping condition (23) is used to set a minimum level

of coordination for the distributed scheme and is taken equal

to 10−3.

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper we have proposed the application of dis-

tributed model predictive control (MPC) for coordinating

the actuators in large-scale water supply networks. We have

introduced the characteristics of water supply networks,

described how to model these systems, and discussed their

control objectives. For control of such systems we have

proposed the use of a distributed MPC scheme based on

linearized models. A simulation study on a part of the water

supply network of Bogotá, the capital of Colombia, shows

the potential of the approach proposed.

Future research will further assess the performance of

the proposed approach and implement the distributed MPC

approach for the complete water network of Bogotá. Scala-

bility issues, convergence properties, and robustness against

uncertainty will then in particular be studied. Furthermore,

the distributed MPC approach will be extended to nonlinear

instead of linearized models.
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