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Abstract

This paper addresses the problem of modeling and identification of the Depth of Anaesthesia (DoA).
It presents a new MISO Wiener model for the pharmacokinetics and pharmacodynamics of propofol and
remifentanil, when jointly administered to patients undergoing surgery. The models most commonly used to
describe the effect of drugs in the human body are overparameterized Wiener models. In particular, in an
anaesthesia environment, the high number of patient-dependent parameters coupled with the insufficient excitatory
pattern of the input signals (drug dose profiles) and the presence of noise make robust identification strategies
difficult to find. In fact, in such clinical application the user cannot freely choose the input signals to enable
accurate parameter identification. A new MISO Wiener model with only four parameters is hence proposed to
model the effect of the joint administration of the hypnotic propofol and the analgesic remifentanil. An Extended
Kalman Filter (EKF) algorithm was used to perform the nonlinear online identification of the system parameters.
The results show that both the new model and the identification strategy outperform the currently used tools
to infer individual patient response. The proposed DoA identification scheme was evaluated in a real patient
database, where the DoA is quantified by the Bispectral Index Scale (BIS) measurements. The results obtained
so far indicate that the developed approach will be a powerful tool for modeling and identification of anaesthetic
drug dynamics during surgical procedures.

I. INTRODUCTION

The starting point for the mathematical modeling of physiological systems is usually the background
knowledge of the chemical or physical laws present in such systems. In this sense, the deduced model
variables are meaningful and can easily be interpreted as masses, volumes or even temperatures. The
human response to the administration of drugs in anaesthesia is a good example of this. In what
concerns depth of anaesthesia (DoA), the response for the administration of hypnotics and analgesics
is commonly modeled as an high order pharmacokinetic/pharmacodynamic (PK/PD) Wiener model [1].
Here the parameters to be identified are compartment volumes, micro-constant rates for mass transfers
between compartments and drug clearances in the human body.

System identification theory states that the identified model is a compromise between the richness of
the data and the identifiability of the parameters [2]. The application of system identification strategies
to identify each patient response to drug administration in anaesthesia is a particularly complex issue.
This is because a common feature of such systems is the poor excitation, meaning that the input signals
(administered drug doses) are not rich enough in frequency and amplitude to excite all modes of the
system [3], as it is usually modeled. This is so since the data is obtained from the surgery room, where
patient safety is the prime concern. The tradeoff between complexity and identifiability is therefore
addressed with minimal modeling in the present paper.

The effect of drugs in the human body can often be modeled by a linear mixing dynamics, in cascade
with a static nonlinear function that describes the effect of the drug. As a consequence of this Wiener
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structure (a linear block in series with a static nonlinearity [4]), the prediction of human response to
drugs cannot be accurately performed by linear models [5], [6]. Moreover, and in order to address the
problem of having to deal with a model with many parameters, [7] presents a simplification of the
model structure. In [7] it is also pointed out that to obtain a good modeling of the response, a good
estimation of the PK model is needed. This fact gives rise to the problem of selecting the best structure
to model the real cases. This idea was further developed in [8], where excellent results were obtained
by nonlinear recursive identification of the neuromuscular blockade level using a two parameter model.

The contribution of this paper is to present a new method for nonlinear identification of the effect of
drugs in anaesthesia, by the use of a new minimally parameterized Multiple-Input-Single-Output (MISO)
Wiener model. As expected, this approach leads to a model whose parameters have a reduced physio-
logical meaning. However, even for the clinical point of view, this is not a crucial issue since improved
results are achieved in what concerns parameter adaptation and output signal tracking. Furthermore,
continuous time parameters are estimated, a fact that facilitates physiological interpretation.

The input signals consist of the dosage of propofol and remifentanil. The human effect output signal
used in the paper is the clinically-validated electroencephalogram-derived Bispectral Index Scale (BIS)
[9]. It can be noted that the BIS is at the focal point of anaesthesia research today. Ranging from 100%
(completely “awake” clinical state) to 0% (isoelectric EEG) the BIS is widely used as an indicator of
the DoA. In a general surgery environment, the BIS should be kept between 40% and 60% to enable
a faster emergence from anaesthesia [10] and a lower administered drug dosage [11]. The combined
administration of hypnotics and analgesics for induction and maintenance of DoA is a common practice.
The hypnotic is targeted to the loss of consciousness and prevents awareness, while the analgesic is given
to supress pain. Indeed, the clinical advantage of this combined procedure is the synergistic increase
in the expected effects of both drugs based on the nonlinear concentration-effect relationships of the
individual agents [12]. This evidence is modeled by a nonlinear interaction function between the two
drugs.

The present paper is structured as follows. Section II describes the state of the art of DoA modeling,
while Section III presents both the linear and nonlinear parts of the new minimally parameterized model
for the BIS response. In Section IV a batch identification algorithm is derived as an intermediate step,
and the results of its application on the clinical database appears in Section V. In Section VI the
Extended Kalman Filter algorithm is derived, followed by the presentation of results when applied to
patient data in Section VII. Conclusions follow in Section VIII.

II. DOA: STATE OF THE ART MODELS

The most commonly used models in the literature to describe the PK and PD of the propofol (hypnotic)
and remifentanil (analgesic) effects in the human body are described in this section. It should be stressed
that these models will not be the ones used for the development of the identification methodologies of
this study. These models are discussed here to point out the need for the development of new minimally
parameterized models to match the parsimony principle of system identification [2].

A. Linear part

The PK models describe mixing dynamics of the drugs in the different theoretical compartments of the
human body [13]. Both for propofol and remifentanil, a 3-compartment mammilary model is normally
used [14], [15]. As illustrated in Fig. 1, the drug (considered as the system input) is intravenously
administrated, entering in the main compartment with infusion rate r(t) [mgml−1min−1]. The clearance
of the drug, modeled by an outer flow of the main compartment k10 [min−1], and the transfer coefficients
kij [min−1] from compartment i to j are patient dependent parameters.

By direct deduction from mass balances between compartments, and assuming that for each com-
partment i, a concentration xi(t) [mgml−1] of drug is present, the state space representation that is
commonly used becomes



Fig. 1. Mamillary model for both propofol and remifentanil PK
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where Vi [ml] represents the volume of compartment i.
The PD nonlinearity relates the drug concentration with the effect, DoA, and has a first linear dynamic

part approximated by a first order differential equation [16]

ẋe(t) = ke0(x1(t)− xe(t)) , (2)

where ke0 is the inverse of the equilibrium time between the central compartment (compartment 1 in
Fig. 1) and the effect compartment, and xe(t) [mgml−1] is the effect compartment concentration (which
cannot be measured).

In clinical practice, population models are applied to infer the response of each patient to a certain
drug administration profile. For propofol, the parameters from Marsh [17] or from Schnider [18] are
usually used, whereas for remifentanil, the parameters from Minto [15] are commonly applied.

B. Nonlinear interaction

This section describes the widely accepted nonlinear model for the interaction between propofol and
remifentanil [19]. It relates the effect concentration of both drugs with the electroencephalographic
parameter values e.g. BIS. Both effect concentrations xprope (t) and xremi

e (t) are first normalized with
respect to their concentration at half the maximal effect (ECprop

50 and ECremi
50 , respectively), i.e.

Uprop(t) =
x
prop
e (t)

EC
prop

50

, Uremi(t) =
xremi
e (t)

ECremi
50

. (3)

As mentioned before, since the interaction of propofol and remifentanil is not purely additive, the
potency of the drug mixture is modeled as follows

φ =
Uprop(t)

Uprop(t) + Uremi(t)
, (4)

where, by definition, φ ranges from 0 (remifentanil only) and 1 (propofol only). The nonlinear concentration-
response relationship for any ratio of the two drugs can then be described by a generalized Hill equation
as



y(t) = y0



1−

(

Uprop(t)+Uremi(t)

U50(φ)

)γ

1 +
(

Uprop(t)+Uremi(t)

U50(φ)

)γ



 , (5)

where y0 is the effect at zero concentration, γ controls the steepness of the nonlinear concentration-
response relation, and U50(φ) is the number of units associated with 50% of the maximum effect of
both drugs at ratio φ. In [19] a quadratic polynomial was proposed for the expression of U50(φ) :

U50(φ) = 1− βφ+ βφ2 . (6)

In common clinical practice, the parameters γ, β, ECprop
50 and ECremi

50 and the linear parameters kij
and ke0 of (1) and (2) are usually guessed based on population model distributions and on the clinicians’
expertise. The result is a model depending on many continuous time parameters.

III. MINIMALLY PARAMETERIZED MODEL

A new MISO Wiener model with a minimal number of parameters describing the joint effect of
propofol and remifentanil in the human body is presented in this section. Models are first built using
a continuous-time description and then sampled with a zero-order hold strategy. This makes it possible
to derive algorithms that estimate the underlying continuous time parameters, exploiting the intrinsic
feature of having a minimal number of parameters.

A. Linear block

By inspection of the model structure, the plasmatic concentration (in compartment 1 of Fig. 1) and
the effect concentration coming from population studies for both propofol [18] and remifentanil [15],
a third-order continuous time model is proposed for the linear dynamics of each drug. It can be noted
that this approach was also very successful in [8].

Propofol linear dynamics is hence modeled by

X̂prop
e (s, α) =

k1 k2 k3 α
3

(s+ k1 α) (s+ k2 α) (s+ k3 α)
Rprop(s), (7)

where X̂prop
e (s, α) is the Laplace transform of the output from the model linear dynamic part for propofol

x̂prope (t, α) and Rprop(s) is the Laplace transform of the input signal rprop(t). The pole location α is
selected as the parameter to be identified.

Remifentanil linear dynamics is similarly modeled by

X̂remi
e (s, η) =

l1 l2 l3 η
3

(s+ l1 η) (s+ l2 η) (s+ l3 η)
Rremi(s), (8)

where X̂remi
e (s, η) is the Laplace transform of the output from the model for remifentanil x̂remi

e (t, η)
and Rremi(s) is the Laplace transform of the input signal rremi(t). The pole location η is selected as
the parameter to be identified.



B. Nonlinear block

Using the model in (5) as starting point, a new formulation for the nonlinearity is now proposed.
According to (6),

Ûprop(t, α) + Ûremi(t, η)

U50(φ)
=
Ûprop(t, α) + Ûremi(t, η)

1− βφ+ βφ2
. (9)

Hence, to motivate the new model, consider |r| = |βφ−βφ2| to be less than 1 and exploit the Taylor
series expansion

1

1− r
= 1 + r + r2 + r3 + . . . (10)

Then, neglecting the high-order terms, and substituting φ according to (4), it follows that

Ûprop(t, α) + Ûremi(t, η)

U50(φ)
(11)

≈
(

Ûprop(t, α) + Ûremi(t, η)
)(

1 + β
Ûprop(t,α)

Ûprop(t,α)+Ûremi(t,η)

)

= Ûremi(t, η) + (1 + β) Ûprop(t, α)

= Ûremi(t, η) +mÛprop(t, α).

Here m = 1 + β is selected as one of the parameters to be identified. Furthermore, following (3),

Ûprop(t, α) =
x̂
prop
e (t,α)
EC

prop

50

, Ûremi(t, η) =
x̂remi
e (t,η)

ECremi
50

. (12)

Hence, (5) is substituted by the new formulation:

ŷ(t) =
y0

1 +
(

Ûremi(t, η) +mÛprop(t, α)
)γ . (13)

C. Sampling

In order to implement the proposed model structure in discrete-time identification algorithms, the
continuous-time representations of (7) and (8) have to be sampled. For that purpose the representations
(7) and (8) are transformed into a joint continuous time state-space form (15) describing the linear
dynamics of each drug.

Due to the fact that the synergistic interaction between propofol and remifentanil of (12) is no more
nonlinear, the linear state-space output ẑ(t) will be the result from the linear weighted sum in (12)

ẑ(t) = Ûremi(t, η) +mÛprop(t, α). (14)

Hence, the continuous-time representation becomes

˙̂x(t) = A(α, η) x̂(t) + B r(t)
ẑ(t) = C(θ) x̂(t)

, (15)

with

A(α, η) =

(

Ap(α) 0 (3×3)

0 (3×3) Ar(η)

)

, (16)

where Ap(α) ∈ R
3×3 is the system matrix for propofol (deduced from (7)) and Ar(η) ∈ R

3×3 is the
system matrix for remifentanil (deduced from (8)). In (15), B, r(t) and C(θ) are as following

B =

(

1 0 0 0 0 0
0 0 0 1 0 0

)T

, (17)



r(t) =
(

rprop(t) rremi(t)
)T
, (18)

C(θ) =
(

0 0 m k1k2k3α
3

EC
prop

50

0 0 l1l2l3η
3

ECremi
50

)

. (19)

Finally, the nonlinear output is obtained from (13) as

ŷ(t) =
y0

1 + (ẑ(t))γ
. (20)

The zero-order hold method [20] was used with sampling instant tk = kh. For BIS, h is usually equal
to 5 seconds. This value is dependent on the sampling rate of the measurement devices. The discrete
time model becomes

x̂(kh+ h) = Φ(α, η) x̂(kh) + Γ(α, η) r(kh)

ẑ(kh) = C(θ) x̂(kh)

ŷ(kh) =
y0

1 + (ẑ(kh))γ
(21)

Φ(α, η) = eA(α,η)h

Γ(α, η) =
∫ h

0
eA(α,η)s dsB

. (22)

Here, r(kh) ∈ R
2×1 is the input (piecewise constant drug dose infusion for both propofol and

remifentanil, according to (18)), x̂(kh) ∈ R
6×1 the discrete model state-vector, ẑ(kh) ∈ R is the

linear output (joint effect resulting from the interaction between the two drugs), Φ(α, η) ∈ R
6×6 and

Γ ∈ R
6×1, being the sampled system matrices. The model output is given by ŷ(kh).

For the purpose of implementing the prediction error method, the polynomial counterpart to (21) is
more suitable to use. According to [20], the pulse transfer operator corresponding to (21) is given by

H(q−1, θ) = C(θ)(qI − Φ(α, η))−1Γ(α, η) =
B(q−1, θ)

A(q−1θ)
. (23)

where q is the shift operator (qu(kh) = u(kh+ h)).
The model output from the linear part can then be represented as

ẑ(t) =
B(q−1, θ)

A(q−1, θ)
u(t) . (24)

The sampling does not affect the nonlinear block, hence (20) can be used as it is.

D. Total model

For the new proposed model several quantities are fixed or determined offline. Similarly as in [8], the
parameters ki and li, i = 1, . . . , 3 are determined by the use of batch identification over a large database
of patient data (see Section IV). Note that k1 = l1 = 1 needs to hold to get a unique parameterization.
The normalizing constants ECprop

50 and ECremi
50 are also fixed (similarly to the work in [21]). When

using BIS as the parameter to infer the DoA, y0 in the nonlinear block is equal to 97.7 due to monitor
restrictions.

The linear part of the system is then parameterized in the frequency domain as (7) and (8) with
the systems inputs being the propofol rate rprop(t) and remifentanil rate rremi(t), respectively. After
normalizing the outputs of the linear part x̂prope (t, α) and x̂remi

e (t, η) with respect to ECprop
50 and ECremi

50

(according to (12)), the model output ŷ(t) is obtained through the nonlinear function (13). The total
parameter vector to be identified is then

θ = (α η m γ) T . (25)



IV. BATCH IDENTIFICATION ALGORITHM: PREDICTION ERROR METHOD

The prediction error method determines θ so that the prediction error

ε(t, θ) = y(t)− ŷ(t|θ). (26)

becomes as small as possible. Note that y(t) is the measured output value and ŷ(t|θ) is the predicted
output, based on parameter vector θ.

A. Gradient

The gradient of the prediction error (26) is of central importance to the prediction error identification
method. It is given by:

ψ(t, θ) = −

(

∂ε(t, θ)

∂θ

)T

=

(

∂ŷ(t|θ)

∂θ

)T

=

(

∂ŷ(t|θ)

∂α

∂ŷ(t|θ)

∂η

∂ŷ(t|θ)

∂m

∂ŷ(t|θ)

∂γ

)T

=

(

∂ŷ(t|θ)

∂Ûprop(t, α)

∂Ûprop(t, α)

∂α

∂ŷ(t|θ)

∂Ûremi(t, η)

∂Ûremi(t, η)

∂η

∂ŷ(t|θ)

∂m

∂ŷ(t|θ)

∂γ

)T

.(27)

B. Criterion and search direction

In order to derive the prediction error method, the following criterion is introduced [2]:

V (θ) =
1

N

N
∑

t=1

ε2(t, θ), (28)

where N is the total number of data points and ε(t, θ) is the prediction error.
The minimization of (28) is then performed using the numerical Gauss-Newton method [2]:

θ̂(k+1) = θ̂(k) − βk[V
′′(θ̂(k))]−1 V ′(θ̂(k))T , (29)

where θ̂(k) denotes the kth iteration in the search. The sequence of scalars βk is used to control the step
lenght. The derivatives of V (θ) can be found as:

V ′(θ) = −
2

N

N
∑

t=1

εT (t, θ)ψT (t, θ) , (30)

V ′′(θ) =
2

N

N
∑

t=1

ψ(t, θ) ψT (t, θ)

+
2

N

N
∑

t=1

ε(t, θ)
∂

∂θ
ψT (t, θ)

≈
2

N

N
∑

t=1

ψ(t, θ) ψT (t, θ) (31)



The approximation in (31) is justified in [2] and is supported by the fact that, at the global minimum
point ε(t, θ) becomes assymptotically white noise which is independent of ψ(t, θ). As a consequence,
the Gauss-Newton method has a linear convergence instead of quadratic, which would be the case if
the approximation had not been performed (i.e. using the Newton-Raphson method).

C. Projection algorithm

Regarding the linear block of the Wiener model in study, the application of a projection algorithm
is needed to keep the model assymptotically stable. For that purpose, the poles of the transfer function
(24) are monitored by the use of the following projection algorithm for the parameter α and η:

α(k+1) =

{

α(k+1) if α(k+1) > δ > 0
α(k) if α(k+1) ≤ δ

(32)

η(k+1) =

{

η(k+1) if η(k+1) > δ > 0
η(k) if η(k+1) ≤ δ

(33)

According to [19], the interaction between propofol and remifentanil is supraadditive. It is then natural
to assume that m in (12) is lower bounded by zero. As consequence, the following projection algorithm
was used for the parameter m:

m(k+1) =

{

m(k+1) if m(k+1) > δ > 0
m(k) if m(k+1) ≤ δ

(34)

For the nonlinear block (13), it is necessary to assure that γ does not reach negative values. The
following projection algorithm was used for the parameter γ:

γ(k+1) =

{

γ(k+1) if γ(k+1) > δ > 0
γ(k) if γ(k+1) ≤ δ

(35)

Both updatings are hence stopped if the new parameter updates are outside the allowable range.

D. Prediction error algorithm

The Prediction error algorithm can now be summarized using the formulas defined above. Note that
a numerical differentiation is used. The reason is that the mathematical expressions for the derivatives
of (24) with respect to α and η become very complicated.

for k = 0 to K

θ̂ = θ̂(k)

ẑ(t) =
B(q−1, θ̂)

A(q−1, θ̂)
u(t)

ŷ(t|θ̂) =
y0

1 +
(

Ûremi(t, η̂) + m̂ Ûprop(t, α̂)
)γ̂

ε(t, θ̂) = y(t)− ŷ(t|θ̂)



∂ŷ(t|θ̂)

∂Ûprop(t, α̂)
=

−y0 m̂ γ̂
(

Ûremi(t, η̂) + m̂ Ûprop(t, α̂)
)γ̂−1

(

1 +
(

Ûremi(t, η̂) + m̂ Ûprop(t, α̂)
)γ̂

)2

∂ŷ(t|θ̂)

∂Ûremi(t, η̂)
=

−y0 γ̂
(

Ûremi(t, η̂) + m̂ Ûprop(t, α̂)
)γ̂−1

(

1 +
(

Ûremi(t, η̂) + m̂ Ûprop(t, α̂)
)γ̂

)2

∂ŷ(t|θ̂)

∂m̂
=

−y0 Ûprop(t, α̂) γ̂
(

Ûremi(t, η̂) + m̂ Ûprop(t, α̂)
)γ̂−1

(

1 +
(

Ûremi(t, η̂) + m̂ Ûprop(t, α̂)
)γ̂

)2

∂ŷ(t|θ̂)

∂γ̂
=

−y0 log
(

Ûremi(t, η̂) + m̂ Ûprop(t, α̂)
)(

Ûremi(t, η̂) + m̂ Ûprop(t, α̂)
)γ̂

(

1 +
(

Ûremi(t, η̂) + m̂ Ûprop(t, α̂)
)γ̂

)2

∂Ûprop(t, α̂)

∂α̂
=
Ûprop(t, α̂ +∆α̂)− Ûprop(t, α̂)

∆α̂

∂Ûremi(t, η̂)

∂η̂
=
Ûremi(t, η̂ +∆η̂)− Ûremi(t, η̂)

∆η̂

ψ(t, θ̂) = −

(

∂ε(t, θ̂)

∂θ̂

)T

=

(

∂ŷ(t|θ̂)

∂θ̂

)T

=

(

∂ŷ(t|θ̂)

∂α̂

∂ŷ(t|θ̂)

∂η̂

∂ŷ(t|θ̂)

∂m̂

∂ŷ(t|θ̂)

∂γ̂

)T

=

(

∂ŷ(t|θ̂)

∂Ûprop(t, α̂)

∂Ûprop(t, α̂)

∂α̂

∂ŷ(t|θ̂)

∂Ûremi(t, η̂)

∂Ûremi(t, η̂)

∂η̂

∂ŷ(t|θ̂)

∂m̂

∂ŷ(t|θ̂)

∂γ̂

)T

V ′(θ̂) = −
2

N

N
∑

t=1

εT (t, θ̂)ψT (t, θ̂)

V ′′(θ̂) ≈
2

N

N
∑

t=1

ψ(t, θ̂)ψT (t, θ̂)



θ̂(k+1) = θ̂(k) − βk[V
′′(θ̂(k))]−1 V ′(θ̂(k))T

end

The steps ∆α̂ and ∆η̂ used for the differentiation are selected to be small.

V. OPTIMIZATION OF THE POLE LOCATION OF THE NEW MODEL

In order to choose a combination of k′is and l′is (Section III-A) that leads to the best identification
results, the PEM described in Section IV-D was applied to the signals from the seven real collected
cases present in the available database. The signal time window for evaluation (of lenght M ) started
at the beginning of the induction phase and stopped at the end of the infusion (t = t∗). For the same
patient, a combination of (k2, k3, l2, l3) ranging from ki = 2 to ki = 10 and li = 2 to li = 10, {i = 2, 3}
was tested. The same procedure was applied to every patient. The number of total algorithm iterations
in each trial was 200, to ensure convergence of the identified parameters. The normalized sum of the
squared prediction error ε(t, θ̂) for each combination (k2, k3, l2, l3) and for each identified patient j was
calculated:

εj(k2, k3, l2, l3) =
1

M

t∗
∑

t=0min

(ε(t, θ̂))2 . (36)

To perform a statistical analysis of the results coming from simulations with different (k2, k3, l2, l3)
combinations, a normalized sum among the total number of patients was calculated to obtain a single
performance error value Ψ(k2, k3, l2, l3) for each (k2, k3, l2, l3) combination:

Ψ(k2, k3, l2, l3) =
1

7

7
∑

j=1

εj(k2, k3, l2, l3) (37)

The minimum of the cost function Ψ(k2, k3, l2, l3) corresponds to the choice of k2 = 9, k3 = 10,
l2 = 2 and l3 = 3.

In order to graphically illustrate this minimum, k2 and k3 were fixed in 9 and 10, respectively and
the values of Ψ(9, 10, l2, l3) were plotted for the different combinations of l2 and l3, as shown in Fig. 2.

By analyzing the surface in Fig. 2 it was found that the minimum normalized error for each (9, 10, l2, l3)
combination in the patient database appeared for l2 = 2 and l3 = 3 or vice-versa. From here on, all the
tests performed on the database will use the following values: k2 = 9, k3 = 10, l2 = 2, and l3 = 3.

VI. RECURSIVE IDENTIFICATION ALGORITHM: EXTENDED KALMAN FILTER

The main reason for the use of the EKF is the possibility to obtain the parameter estimates along with
system state estimates online. In comparison with other recursive identification techniques, it enables
the independent tuning using the covariance matrix of both the process and measurement noise, thereby
giving rise to an independent tuning of the convergence speed for each parameter. To describe the EKF
the general discrete time nonlinear model

x̂(k + 1) = f(k, x̂(k), r(k)) + g(k, x̂(k)) v(k)

ŷ(k) = h(k, x̂(k)) + e(k) , (38)

is used, where v(k) and e(k) are mutually independent Gaussian white noise sequences with zero mean
and covariances given by R1(k) and R2(k), respectively. The EKF algorithm can then be summarized
as follows [22]:
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Fig. 2. Normalized performance error values for all combinations of (9, 10, l2, l3) from 2 to 10. The values come from simulations
performed in the database of 7 real patients with the PEM described in Section IV.

H(k) =
∂h(k, x)

∂x

∣

∣

∣

∣

x=x̂(k|k−1)

K(k) = P (k|k − 1)HT (k)

×[H(k)P (k|k − 1)HT (k) +R2(k)]
−1

x̂(k|k) = x̂(k|k − 1) +K(k)[y(k)− h(k, x̂(k|k − 1))]

P (k|k) = P (k|k − 1)−K(k)H(k)P (k|k − 1)

x̂(k + 1|k) = f(k, x̂(k|k), r(k))

F (k) =
∂f(k, x)

∂x

∣

∣

∣

∣

x=x̂(k|k)

(39)

G(k) = g(k, x)
∣

∣

x=x̂(k|k)

P (k + 1|k) = F (k)P (k|k)F T (k) +G(k)R1(k)G
T (k)

A. Discrete time model structural aspects

A common strategy to enable the estimation of model parameters with the EKF is the introduction
of an augmented state [2]. Hence, the model for the EKF estimation brings together the sampled model
(21) and a random walk model for the parameter estimates [2]. Using (29), the augmented state vector



becomes

x̂(kh+ h) =



















x̂1(kh+ h)
...

x̂6(kh+ h)
x̂7(kh+ h)

...
x̂10(kh+ h)
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x̂1(kh+ h)
...

x̂6(kh+ h)
α̂(kh+ h)

...
γ̂(kh+ h)



















.

(40)

Hence, the augmented state-space model becomes

x̂(kh+ h) =

(

Φ(α, η) 0 (6×4)

0 (4×6) I

)(

x̂(kh)

θ̂(kh)

)

+

(

Γ(α, η)
0 (4×1)

)

r(kh) + w(kh)

≡











f1(kh, x̂(kh), r(kh))
f2(kh, x̂(kh), r(kh))

...
f10(kh, x̂(kh), r(kh))











+ w(kh)

≡ f(kh, x̂(kh), r(kh)) + w(kh) . (41)

ŷ(kh) =
y0

1 +
(

C(θ)x̂(kh)
)x̂10(kh)

≡ h(kh, x̂(kh)) + e(kh) , (42)

C(θ) = (C(θ) 0 0 0 0) . (43)

B. Linearization and Initialization

In the EKF algorithm structure (39), it is necessary to linearize both f(k, x) and h(k, x). Both
linearizations were performed analytically. The formulas for F (kh) and H(kh) are not shown here due
to their complexity.

After having formulated all the quantities needed to set up the EKF, the initial values for the variables
must be specified. The initial values for the states were

x̂(0| − 1) =
(

0.0 0.0 0.0 0.0 0.0

0.0 0.2 0.2 0.6 1.0
)T

(44)

Using simulations performed on the available database, it was found that the diagonal matrix P (t|t−1)
could be initialized as

P (0| − 1) = diag
(

1002 102 12 1002 102

1 10 10 10 10
)

(45)
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ŷ(t)

Fig. 3. The real measured BIS data (dashed line) plotted together with the simulated output model response (solid line), using the
parameter estimates of the EKF.

Performing a similar empirical analysis on the simulated signals, the values for the diagonal covariance
matrix R1 and the covariance matrix R2 were set to

R1 = diag
(

10002 1002 102 10002 1002

102 102 102 102 102
)

(46)

R2 = 1010 (47)

VII. RECURSIVE SIGNAL TRACKING RESULTS

This section presents examples of the EKF performance applied to the new minimally parameterized
model in Section III. Simulations were performed using the real BIS measurements from patients
undergoing surgery. In these real cases in the database, the BIS signal was maintained around the
level of 40. This was achieved by the action of the anesthetist who changed the infusion rates of both
drugs according to the clinical goal.

The real measured BIS signal y(t) and the EKF simulated BIS signal ŷ(t) are illustrated in Fig. 3.
The results show that the EKF simulated BIS signal tracks the real measured BIS signal excellently
during the total time-window of this case study. More importantly, when the real BIS signal changes
its behaviour, as at around minute 60, the estimated model signal also tracks that behaviour. Sudden
changes are also tracked by the simulated signal, e.g. the rapid drop in the signal the occurs right after
this increase around minute 60. Furthermore, the algorithm is able to discard the noise effects present
in the measured BIS, giving rise to a filtered signal able to catch the main trends of the real signal. This
capability is obtained via the parameter estimates provided by the EKF algorithm. The time evolution
of the parameter estimates (α̂, γ̂, m̂ and γ̂) for this example are shown in Fig. 4. The input signals,
propofol and remifentanil rates, that were present in this real case are the ones illustrated in Fig. 5.

It can be concluded from the plots that the new minimally parameterized Wiener model (41), (42)
accurately describes the nonlinear system dynamics. By the use of the EKF strategy, model parameters
can be extracted from the real BIS measurements. The tracking performance is excellent combining
accurate modeling with very good noise suppression.

VIII. CONCLUSIONS AND FUTURE WORK

In this work, a new minimally parameterized MISO model for the human response to anaesthesia is
designed. Furthermore, an online nonlinear identification strategy of that response using real measure-
ments is proposed. The system inputs are the propofol (hypnotic drug) and remifentanil (analgesic drug)
infusion rates, and the output is the Depth of Anaesthesia (DoA) quantitative measurement Bispectal
Index Scale (BIS). The new model satisfactory describes the input-output system behaviour, having its
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Fig. 5. The propofol rate (dashed line) and remifentanil rate (solid line) given to the patient with the measured BIS represented in Fig.
3.

parameters updated by the Extended Kalman Filter (EKF) identification algorithm that was derived from
the new model.

The new model and algorithm address the poor excitation, the few output datapoints, and the high level
of noise in the output signal. In addition to the very good BIS tracking and noise filtering achieved by the
proposed identification algorithm, it can be noted that the parameter estimates are quite stationary. This
is a very strong indication that the proposed minimal parameterization is in fact sufficient to describe the
dynamics of the system, using a system identification perspective. This also indicates that difficulties can
be expected when the standard models with many more parameters are used for identification purposes, a
fact that has been reported in the literature. One other consequence of this is that the obtained parameter
estimates can be expected to be very useful for controller design purposes, this being the ultimate goal
for this research.
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