
ar
X

iv
:1

00
8.

36
67

v1
 [

cs
.S

C
]

21
 A

ug
 2

01
0

1

Submitted For Review For Possible Publication Elsewhere: Journal Reference To Be Added When Available

Pattern Classification In Symbolic Streams
via Semantic Annihilation of Information

Ishanu Chattopadhyay∗, Yicheng Wen† and Asok Ray‡

Abstract—We propose a technique for pattern classification
in symbolic streams via selective erasure of observed symbols,
in cases where the patterns of interest are represented as
Probabilistic Finite State Automata (PFSA). We define an additive
abelian group for a slightly restricted subset of probabilistic finite
state automata (PFSA), and the group sum is used to formulate
pattern-specific semantic annihilators. The annihilatorsattempt
to identify pre-specified patterns via removal of essentially
all inter-symbol correlations from observed sequences, thereby
turning them into symbolic white noise. Thus a perfect annihi-
lation corresponds to a perfect pattern match. This approach
of classification via information annihilation is shown to be
strictly advantageous, with theoretical guarantees, for alarge
class of PFSA models. The results are supported by simulation
experiments.

Index Terms—Probabilistic Finite State Machines, Machine
Learning, Pattern Classification

I. I NTRODUCTION AND MOTIVATION

The principal focus of this work is the development of
an efficient algorithm for identifying pre-specified patterns of
interest in observed symbolic data streams, where the patterns
are represented as Probabilistic Finite State Automata (PFSA)
over pre-defined symbolic alphabets.

A finite state automaton (FSA) is essentially a finite graph
where the nodes are known as states and the edges are
known as transitions, which are labeled with letters from an
alphabet. A string or a symbol string generated by a FSA
is a sequence of symbols belonging to an alphabet, which
are generated by stepping through a series of transitions
in the graph. Probabilistic finite state automata, considered
in this paper, are finite state machines with probabilities
associated with the transitions. PFSA have extensively studied
as an efficient framework for learning the causal structure
of observed dynamical behavior [1]. This is an example of
inductive inference [2], defined as theprocess of hypothesizing
a general rule from examples. In this paper, we are concerned
with the special case, where theinferred general ruletakes
the form of a PFSA, and the examples are drawn from a

∗ Corresponding Author, email: ixc128@psu.edu
† email: yxw167@psu.edu
‡ email: axr2@psu.edu
Authors are with the department of Mechanical Engineering,The Pennsyl-

vania State University, University Park, PA 16802 , USA
This work has been supported in part by the U.S. Army ResearchLabora-

tory and the U.S. Army Research Office under Grant No. W911NF-07-1-0376
and by the Office of Naval Research under Grant No. N00014-09-1-0688.
Any opinions, findings and conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily reflect the views
of the sponsoring agencies.

stochastic regular language. Conceptually, in such scenarios,
one is trying to learn thestructure inside of some black box,
which is continuously emitting symbols[1]. The system of
interest may emit a continuous valued signal; which must be
then adequately partitioned to yield a symbolic stream. Note
that such partitioning is merelyquantizationand not data-
labeling, and several approaches for efficient symbolization
have been reported [3].

Probabilistic automata are more general compared to their
non-probabilistic counterparts [4], and are more suited to
modeling stochastic dynamics. It is important to distinguish
between the PFSA models considered in this paper, and the
ones considered by Paz [5], and in the detailed recent review
by Vidal et al. [6]. In the latter framework, symbol generation
probabilities are not specified, and we have a distribution
over the possible end states, for a given initial state and an
observed symbol. In the models considered in this paper,
symbol generation is probabilistic, but the end state for a given
initial state, and a generated symbol is unique. Unfortunately,
authors have referred to both these formalisms asprobabilistic
finite state automatain the literature. The work presented here
specifically considers the latter modeling paradigm considered
and formalized in [1], [7], [8], [9].

The case for using PFSA as pattern classification tools is
compelling. Finite automata are simple, and the sample and
time complexity required for learning them can be easily
characterized. This yields significant computational advan-
tage in time constrained applications, over more expressive
frameworks such as belief (Bayesian) networks [10], [11] or
Probabilistic Context Free Grammars (PCFG) [12], [13] (also
see [14] for a general approach to identifying PCFGs from
observations) and hidden Markov models (HMMs) [15]. Also,
from a computational viewpoint, it is possible to come up with
provably efficient algorithms to optimally learn PFSA, whereas
“optimally learning HMMs is often hard” [1]. Furthermore,
most reported work on HMMs [15], [16], [17] assumes the
model structure or topology is specified in advance, and the
learning procedure is merely training,i.e., finding the right
transition probabilities. For PFSA based analysis, researchers
have investigated the more general problem of learning the
model topology, as well as the transition probabilities, which
implies that such analysis can then be applied to domains
where there is no prior knowledge as to what the correct
structure might look like [18].

Although the reported PFSA construction algorithms [8],
[7], [1] (referred to as the direct compression algorithms in
the sequel) are asymptotically efficient, time critical applica-

http://arxiv.org/abs/1008.3667v1

2

PSfrag replacements
Physical

ProcessG

Simpler
Compression

Faster
Convergence

H
Sensed

Symbolic Stream

Symbolic
White Noise

Stream Generated by annihilator
H where G+H = 0 (additive zero)

Fig. 1: Concept of information annihilation:Additionof sym-
bolic streams to yieldsymbolic white noise

tions (e.g. pattern classification in sensing and surveillance
networks) often demand faster identification to what the state
of the art can provide. This motivates the key problem inves-
tigated in this paper:

Given a set of PFSA models representing patterns of interest
(i.e. a PFSA based pattern dictionary or library), the problem
is to identify (in real or near-real time) if any of the specified
patterns of interest exist in an observed symbol sequence,
without resorting to direct compression and subsequent com-
parison [9] of the constructed PFSA model against the library
elements.

We propose a novel classification technique based on se-
lective erasure of observed symbols leading to perfect infor-
mation annihilation as illustrated in Figure 1. Specifically, we
construct an additive abelian group over a slightly restricted
subset of all PFSA (over a fixed alphabet), and show that
it is possible to define pattern-specificsemantic annihilators
as a function of the group inverses. These annihilators can
then operate on the sensed stream in a symbol-by-symbol
fashion attempting to eliminate all inter-symbol correlations.
The annihilation is shown to be perfect if and only if the
annihilator corresponds exactly to theinverted PFSA model
of the underlying generating process. Thus we need to only
check if the annihilated stream (corresponding to a particular
PFSA) is free from any emergent pattern,i.e., if the symbols
are equi-probable in an history-independent manner (denoted
as symbolic white noisein the sequel) to infer the existence
of that pattern in the original observed stream.

The proposed approach is computationally efficient for di-
rect compression of the symbol stream, since it is significantly
easier to check if a symbolic stream is in fact symbolic white
because the underlying PFSA model has a single state with
equal symbol generation probabilities as seen in Figure 2b and
2c. It is also shown that the proposed technique is provably
faster if the cardinality of the alphabet is not greater than
the number of states in a particular pattern of interest,which
represents almost all PFSA models encountered in practice.

The rest of the paper is organized in additional ten sections.
Section II is a brief overview of preliminary concepts, and
related work. Section III presents the construction of the
additive abelian group for probability measures on symbol
strings which is then shown to induce an abelian group on
a restricted set of PFSA. Section IV develops a practical
implementation of the PFSA sum which is then used to
formulate the notion of the semantic annihilators in Section V.

Section VI identifies the theoretical conditions under which
we can guarantee classification via semantic annihilation to
be faster than direct compression. Section VIII establishes
asymptotic bounds on the run-time complexity of annihilators.
Simulation results are presented in Section IX, and pertinent
discussions, intuitive interpretations, and potential applications
are delineated in Section X. The paper is concluded in Sec-
tion XI with recommendations for future work.

II. PRELIMINARY CONCEPTS ANDRELATED WORK

A string x over an alphabet (i.e. a non-empty finite set)Σ
is a finite-length string of symbols inΣ [19]. The length of
a stringx is the number of symbols inx and is denoted by
|x|. The Kleene closure ofΣ, denoted byΣ⋆, is the set of all
finite-length strings of symbols including the null stringǫ. The
set of all strictly infinite-length strings of symbols is denoted
as Σω. The stringxy is the concatenation of stringsx and
y. Therefore, the null stringǫ is the identity element of the
concatenative monoid.

Definition 1 (PFSA):A probabilistic finite state automaton
(PFSA) is a tupleG = (Q,Σ, δ, q0, Π̃), where Q is a
(nonempty) finite set, called the set of states;Σ is a (nonempty)
finite set, called the input alphabet;δ : Q×Σ→ Q is the state
transition function;q0 ∈ Q is the start state;̃Π : Q × Σ →
[0, 1] is an output mapping, known as the probability morph
function that specifies the state-specific symbol generation
probabilities, and satisfies∀qi ∈ Q, σ ∈ Σ, Π̃(qi, σ) ≧ 0, and∑

τ∈Σ Π̃(qi, τ) = 1.
Notation 1: In the sequel, we would often use a matrix

representatioñΠ (denoted as the morph matrix) of the morph
function, with theijth element given bỹΠ(qi, σj). Note, that
Π̃ is, in general, a rectangular non-negative matrix with row
sums equal to unity. Also, from a knowledge of the morph
matrix Π̃, and the transition mapδ, one can compute the
stochastic state transition matrixΠ, as:

Πij =
∑

σk:δ(qi,σk)=qj

Π̃(qi, σk) (1)

Note thatΠ is a square non-negative stochastic matrix.
Notation 2: The transition mapδ naturally induces an ex-

tended transition functionδ⋆ : Q × Σ⋆ → Q such that
δ⋆(q, ǫ) = q andδ⋆(q, xτ) = δ(δ⋆(q, x), τ) for q ∈ Q, x ∈ Σ⋆

andτ ∈ Σ.
We assume that the underlying graph for the PFSA models

considered in this paper is irreducible,i.e., is strongly con-
nected. This implies that the transition probability matrix Π
is an irreducible stochastic matrix, and in particular, hasan
unique stationary distribution [20] irrespective of the the initial
distribution. This assumption is motivated by the association
of PFSA with emerging patterns in statistically stationarysym-
bolic streams, because it makes little sense to represent such
dynamical systems with models whose stationary behavior
would depend on the initial state. Furthermore, the theoretical
development in the sequel, necessitates this assumption for
technical reasons.

Notation 3: In the sequel, we denote the PFSA constructed
by directly compressing a symbol stringω ∈ Σ⋆ as C(ω).

3

The specific algorithm used is not important for the analysis
presented in this paper.

Definition 2 (σ-Algebra): A collection M of subsets of a
non-empty setX is said to be aσ-algebra [21] inX if M has
the following properties:

1) X ∈M

2) If A ∈ M, thenAc ∈ M whereAc is the complement
of A relative toX , i.e.,Ac = X \A

3) If A =
⋃∞

n=1 An and if An ∈ M for n ∈ N, then
A ∈M.

Definition 3 (Measure):A (non-negative) measure is a
countably additive functionµ, defined on aσ-algebraM,
whose range is[0,∞]. Countable additivity means that if{Ai}
is a pairwise disjoint countable collection of members ofM,
thenµ (

⋃∞
i=1 Ai) =

∑∞
i=1 µ(Ai)

Definition 4 (Probability Measure):A probability measure
on a non-empty set with a specifiedσ-algebraM is a finite
(non-negative) measure onM. Although not required by the
theory, a probability measure is defined to have the unit
interval [0, 1] as its range.

Definition 5 (Measure Space):A probability measure
space is a triple(X,M, p) whereX is a non-empty set,M
is a σ-algebra inX , and p is a finite non-negative measure
on M.

Definition 6 (σ-Algebra for Symbolic Strings):Given an
alphabetΣ, the setBΣ , 2Σ

⋆

Σω is defined to be theσ-
algebra generated by the set{L : L = xΣω where x ∈ Σ⋆},
i.e., the smallestσ-algebra on the setΣω, which contains the
set{L : L = xΣω s.t. x ∈ Σ⋆}.

For brevity, the probabilityp(xΣω) is denoted asp(x), ∀x ∈
Σ⋆ in the sequel. In other words,p(x) is the probability of the
occurrence of all the strings withx as a prefix.

Definition 7 (Probabilistic Nerode Relation):Given an al-
phabetΣ, any two stringsx, y ∈ Σ⋆ are said to satisfy
the probabilistic Nerode relationNp on a probability space
(Σω,BΣ, p), denoted byxNpy, if either of the following
conditions is true:

1) p(x) = p(y) = 0;
2) ∀σ ∈ Σ⋆,

p(xσ)
p(x) = p(yσ)

p(y) provided thatp(x) 6= 0, p(y) 6=
0.

It has been proved in [9] that the probabilistic Nerode relation
defined above is a right-invariant equivalence relation [19]
which means that if two stringsx, y are equivalent, so are
any right extensions of the strings,i.e.,

∀x, y, u ∈ Σ⋆, xNpy ⇒ xuNpyu

In the sequel, this is referred to as probabilistic Nerode
equivalence and we denote the Nerode equivalence class of a
stringx onΣ⋆ by [x]p, i.e.,[x]p = {z ∈ Σ⋆ : xNpz}. The right
invariance property induces the notion of states and hence is
crucial to the definition of probabilistic state machines; by this
property two equivalent strings have probabilistically indistin-
guishable future evolution and therefore can be visualizedas
terminating on the same state as seen in Figure 2a. In this
context, we make the following observation:

PSfrag replacements

Nerode equivalent strings

States

ω1

ω2

ω3

FUTURE

PAST

q1

q2

(a)

(b)

(c)

Fig. 2: Linguistic Concepts: (a) Concept of PFSA states
from Probabilistic Nerode Equivalence: Nerode equivalent
strings ω1, ω2 have probabilistically indistinguishable future
evolution, thus leading to the same stateq1. (b) Symbolic
White Noise (See Eq. (2) for formal definition) for alphabet
Σ = {σ0, σ1, σ2}; (c) for alphabetΣ = {σ0, σ1}

A symbolic dynamical process has a probabilistic fi-
nite state description if and only if the corresponding
Nerode equivalence has a finite index.

Definition 8 (Space of PFSA):The space of all PFSA over
a given symbol alphabet is denoted byA and the space of all
probability measuresp that induce a finite-index probabilis-
tic Nerode equivalence on the corresponding measure space
(Σω,BΣ, p) is denoted byP.
As expected, there is a close relationship betweenA andP,
which is made explicit in the sequel.

Definition 9 (PFSA MapH): Let p ∈ P and G =
(Q,Σ, δ, q0, Π̃) ∈ A . The mapH : A → P is defined as
H(G) = p such that the following condition is satisfied:

∀x = σ1 · · ·σr ∈ Σ⋆,

p(x) = Π̃(q0, σ1)
r−1∏

k=1

Π̃(δ⋆(q0, σ1 · · ·σk), σk+1)

wherer ∈ N, the set of positive integers.

4

Definition 10 (Right InverseH−1): The right inverse of the
mapH is denoted byH−1 : P → A such that

∀p ∈P, H(H−1(p)) = p

An explicit construction of the mapH−1 is reported in [9]
and is not presented in this paper, because we only require
that such a map exists.

Definition 11 (Perfect Encoding):Given an alphabetΣ, a
PFSAG = (Q,Σ, δ, q0, Π̃) is said to be a perfect encoding of
the measure space(Σω,BΣ, p) if p = H(G).

There are possibly many PFSA realizations that encode
the same probability measure onBΣ due to existence of
non-minimal realizations and state relabeling; neither ofthem
affect the underlying encoded measure. From this perspective,
a notion of PFSA equivalence is introduced as follows:

Definition 12 (PFSA Equivalence):Two PFSAG1 andG2

are defined to be equivalent ifH(G1) = H(G2). In this case,
we sayG1 = G2.

Remark 1: In the sequel, a PFSAG implies the equivalence
class ofG, i.e., {P ∈ A : H(P) = H(G)}. This concept is
similar to the equivalence class of almost everywhere equal
functions being a unique vector in theLr-space [21].

Definition 13 (Structural Equivalence):Two PFSA Gi =
(Qi,Σ, δi, q

i
0, Π̃i) ∈ A , i = 1, 2, are defined to have the

equivalent (or identical) structure ifQ1 = Q2, q
1
0 = q20 and

δ1(q, σ) = δ2(q, σ), ∀q ∈ Q1 ∀σ ∈ Σ.
Definition 14 (Synchronous Composition of PFSA):The

binary operation of synchronous composition of two PFSA
Gi = (Qi,Σ, δ, q

(i)
0 , Π̃i) ∈ A where i = 1, 2, denoted by

� : A ×A → A is defined as

G1 � G2 =
(
Q1 ×Q2,Σ, δ

′, (q
(1)
0 , q

(2)
0), Π̃′

)

whereδ′ and Π̃′ is computed as follows:

∀qi ∈ Q1, qj ∈ Q2, σ ∈ Σ,
{

δ′((qi, qj), σ) = (δ1(qi, σ), δ2(qj , σ))

Π̃′((qi, qj), σ) = Π̃1(qi, σ)

Remark 2: In general, the operation� of synchronous
composition is non-commutative.

Proposition 1 (Synchronous Composition of PFSA):Let
G1, G2 ∈ A . Then,H(G1) = H(G1 � G2) and therefore
G1 = G1 � G2 in the sense of Definition 12.

Proof: See Theorem 4.5 in [9].
Synchronous composition of PFSA allows transformation

of PFSA with disparate structures to non-minimal descriptions
that have the same underlying graphs. This assertion is crucial
for the development in the sequel, since any binary operation
defined for two PFSA with an identical structure can be
extended to the general case on account of Definition 14 and
Proposition 1.

III. A BELIAN GROUP OFPFSA

This section shows that a subspace of PFSA can be assigned
the algebraic structure of an abelian group. We first construct
the abelian group on a subspace of probability measures, and

then induce the group structure on this subspace of PFSA via
the isomorphism between the two spaces.

Definition 15 (Restricted PFSA Space):Let A + = {G =
(Q,Σ, δ, q0, Π̃) : Π̃(q, σ) > 0 ∀q ∈ Q ∀σ ∈ Σ} that is a
proper subset ofA . It follows that the transition map of any
PFSA in the subsetA + is a total function. We restrict the
mapH : A → P on a smaller domainA +, that is,H+ :
A + →P+, i.e.,H+ = H|A + .

Definition 16 (Restricted Probability Measure):Let
P+ , {p ∈ P : p(x) 6= 0, ∀x ∈ Σ⋆} that is a proper
subset ofP. Each element ofP+ is a probability measure
that assigns a non-zero probability to each string onBΣ.
Similar to Definition 15, we restrictH−1 on P+, i.e.,
H

+
−1 = H−1|P+ .
Since we do not distinguish PFSA in the same equivalence

class (See Definition 12), we have the following result.
Proposition 2 (Isomorphism ofH+): The mapH+ is an

isomorphism between the spacesA + andP+, and its inverse
is H

+
−1.

Definition 17 (Abelian Operation onP+): The addition
operation ⊕ : P+ × P+ → P+ is defined by
p3 , p1 ⊕ p2, ∀p1, p2 ∈P+ such that

1) p3(ǫ) = 1.
2) ∀x ∈ Σ⋆ andτ ∈ Σ, p3(xτ)

p3(x)
= p1(xτ)p2(xτ)∑

α∈Σ
p1(xα)p2(xα)

p3 is a well-defined probability measure onP+, since

∀x ∈ Σ⋆,

Στ∈Σp3(xτ) = Στ∈Σ
p1(xτ)p2(xτ)∑

α∈Σ p1(xα)p2(xα)
p3(x) = p3(x)

Proposition 3 (abelian Group of PFSA):The algebra
(P+,⊕) forms an abelian group.

Proof: Closure property and commutativity of(P+,⊕)
are obvious. The associativity, existence of identity and exis-
tence of inverse element are established next.
(1) Associativityi.e. (p1⊕p2)⊕p3 = p1⊕(p2⊕p3). We note,
that ∀x ∈ Σ⋆, τ ∈ Σ,

((p1 ⊕ p2)⊕ p3)(xτ)

((p1 ⊕ p2)⊕ p3)(x)
=

(p1 ⊕ p2)(xτ)p3(xτ)∑
β∈Σ(p1 ⊕ p2)(xβ)p3(xβ)

=

p1(xτ)p2(xτ)∑
α∈Σ

p1(xα)p2(xα)
p3(xτ)

∑
β∈Σ

p1(xβ)p2(xβ)∑
α∈Σ

p1(xα)p2(xα)
p3(xβ)

=
p1(xτ)p2(xτ)p3(xτ)∑

β∈Σ p1(xβ)p2(xβ)p3(xβ)

=
p1(xτ)

p2(xτ)p3(xτ)∑
α∈Σ

p2(xα)p3(xα)
∑

β∈Σ p1(xβ)
p2(xβ)p3(xβ)∑

α∈Σ
p2(xα)p3(xα)

=
p1(xτ)(p2 ⊕ p3)(xτ)∑

β∈Σ p1(xβ)(p2 ⊕ p3)(xβ)

=
(p1 ⊕ (p2 ⊕ p3))(xτ)

(p1 ⊕ (p2 ⊕ p3))(x)

(2) Existence of identity: Let us introduce a probability
measurei◦ of symbol strings such that:

∀x ∈ Σ⋆, i◦(x) =

(
1

|Σ|

)|x|

(2)

5

where |x| denotes the length of the stringx. Then,∀τ ∈ Σ

that i◦(xτ)
i◦(x)

= 1
|Σ| . For a measurep ∈P+ and∀τ ∈ Σ,

(p⊕ i◦)(xτ)

(p⊕ i◦)(x)
=

p(xτ)i◦(xτ)∑
α∈Σ p(xα)i◦(xα)

=
p(xτ)

p(x)

This implies thatp ⊕ i◦ = i◦ ⊕ p = p by Definition 17 and
by commutativity. Therefore,i◦ is the identity of the monoid
(P+,⊕).
(3) Existence of inverse: ∀p ∈P+, ∀x ∈ Σ⋆ and∀τ ∈ Σ, let
−p be defined by the following relations:

(−p)(ǫ) = 1 (3)

(−p)(xτ)

(−p)(x)
=

p−1(xτ)∑
α∈Σ p−1(xα)

(4)

Then, we have:

(p⊕ (−p))(xτ)

(p⊕ (−p))(x)
=

p(xτ)(−p)(xτ)∑
α∈Σ p(xα)(−p)(xα)

=
1

|Σ|
(5)

This givesp⊕ (−p) = i◦ which completes the proof.
In the sequel, we denote the zero-elementi◦ of the abelian

group (P+,⊕) as thesymbolic white noise. The concept of
symbolic white noise has been illustrated in Figure 2b and 2c.

A. Explicit Computation of the abelian Operation⊕

The isomorphism betweenP+ andA + (See Proposition 2)
induces the following abelian operation onA +.

Definition 18 (Addition Operation on PFSA):Given any
G1, G2 ∈P+, the addition operation+ : A + ×A + → A +

is defined as:

G1 + G2 = H
+
−1(H

+(G1)⊕H
+(G2))

If the summand PFSA have identical structure (i.e., their
underlying graphs are identical), then the explicit computation
of this sum is stated as follows.

Proposition 4 (PFSA Addition):If two PFSA G1, G2 ∈
A + are of the same structure, i.e.,Gi = (Q,Σ, δ, q0, Π̃i), i =
{1, 2}, then we haveG1+G2 = (Q,Σ, δ, q0, Π̃) where

Π̃(q, σ) =
Π̃1(q, σ)Π̃2(q, σ)∑

α∈Σ Π̃1(q, α)Π̃2(q, α)
(6)

Proof: Let pi = H+(Gi), i = {1, 2} and sinceG1, G2

have the same structure, we have from Eq. (9):

∀σ ∈ Σ, ∀x s.t. δ⋆(q0, x) = q ∈ Q,

pi(xσ)

pi(x)
= Π̃i(δ

⋆(q0, x), σ) = Π̃i(q, σ) (7)

Now, by Definition 17 and Definition 9,

Π̃(q, σ) =
(p1 ⊕ p2)(xσ)

(p1 ⊕ p2)(x)
=

p1(xσ)p2(xσ)∑
α∈Σ p1(xα)p2(xα)

=

p1(xσ)p2(xσ)
p1(x)p2(x)∑

α∈Σ
p1(xα)p2(xα)
p1(x)p2(x)

=
Π̃1(q, σ)Π̃2(q, σ)∑

α∈Σ Π̃1(q, α)Π̃2(q, α)

The extension to the general case is achieved by using syn-
chronous composition of probabilistic machines.

Proposition 5 (PFSA Addition (General case)):Given two
PFSA G1, G2 ∈ A +, the sumG1+G2 is computed via
Proposition 4 and Definition 14 as follows:

G1+G2 = (G1 � G2)+(G2 � G1) (8)

Proof: Noting thatG1 �G2 andG2 �G1 have the same
structure up to state relabeling, it follows from Proposition 1:

H
+(G1+G2) = H

+(G1)⊕H
+(G2) (See Definition 18)

= H
+(G1 � G2)⊕H

+(G2 � G1)

= H
+

(
(G1 � G2)+(G2 � G1)

)

which completes the proof.
Example 1:Let G1 and G2 be two PFSA with identical

structures, such that the probability morph matrices are:

Π̃1 =

(
0.2 0.8
0.4 0.6

)
and Π̃2 =

(
0.1 0.9
0.6 0.4

)
(9)

Then theΠ̃-matrix for the sumG1+G2, denoted bỹΠ12, is

Π̃12 =

(
0.1× 0.2 0.9× 0.8
0.6× 0.4 0.4× 0.6

)
Normalize
−−−−−−−→

rows

(
0.027 0.973
0.5 0.5

)

IV. A M ACHINE REPRESENTATION OFPFSA SUM

In this section, we investigate the implementation of the
sum of two PFSA by a sequentially controlled interaction
of individually generated symbol strings, which form the
conceptual basis of designing a semantic annihilator. Referring
to Figure 3, we will call this thePlus-machine.

PSfrag replacements
G1

G2

AND

Switch

Switch Output
Sequence

G1+G2

Fig. 3: Sum of two PFSA: ThePlus-machineM (G1+G2).
The machines generate symbols independently, but is allowed
to change states only if the generated symbols match.

A. Functional Description of thePlus-Machine

For a given pair of PFSAG1 and G2, the Plus-machine
denoted as asM (G1+G2) has the following components:

• Copies of the component machinesG1 and G2. We
assume, without loss of generality, thatG1 andG2 have
the same structure (See Definition 14), since this can be
always arranged (See Proposition 1).

6

• A logical AND gateAND : Σ×Σ→ {0, 1} which operates
as follows:

∀σi, σj ∈ Σ, σi AND σj =

{
0 (false), if σi 6= σj

1 (true), otherwise

B. Operational Description of thePlus-Machine

The + machineM (G1+G2) operates as follows:

• Each of the component machines,G1 andG2, is initial-
ized to the same stateq0 in the underlying graph.

• Each of the component machines,G1 andG2, operates
in a statistically independent manner to generate symbols
from the alphabetΣ.

• However, to activate a state transition, the generated
symbols must be passed through theAND gate, upon
which they must yield a true output. Formally,

∀σi, σj ∈ Σ, qi, qj ∈ Q,

δ

(
(qi, qj)(σi, σj)

)
=

(qi, qj),
if σi AND σj = 0(

δ(qi, σi), δ(qj , σj)

)
,

otherwise

• The machine is assumed to function inside a “black box”,
with an external observer. The observable output string
generated as follows:A generated symbol is observable
if and only if it causes a sMargtate transition.

The sequential functioning ofM (G1+G2) is illustrated in
Figure 3. We have the following result:

Proposition 6 (Semantic Compression):For a given pair of
PFSA G1, G2, if the output string from theM (G1+G2)
is denoted asx ∈ Σω, then, the PFSAC(x) obtained by
semantically compressingx is given by the sumG1+G2.

Proof: It follows from the functional description, and the
following considerations:

1) The component machinesG1 andG2 are always state
synchronized (follows from operational description).

2) The components generate symbols in a statistically in-
dependent manner.

3) The probability forM (G1+G2) to emit a particular
symbol σ ∈ Σ, while being at state(qi, qi), (i.e. both
components are at stateqi), is given by the probability
of generatingσ simultaneously (and independently) by
both components; and the probability of this compound
symbol (marginalized by the probability of generating
identical symbols on both machines) is :

Π̃12((qi, qi), (σ, σ))

=
Π̃1(qi, σ)Π̃2(qi, σ)∑
σ Π̃1(qi, σ)Π̃2(qi, σ)

←− Compound Event
←−Marginalization

which matches exactly with Proposition 4.
4) Since the internal states ofM (G1+G2) are always of

the form(qi, qi), it is straightforward to see that for any
correct semantic compression algorithm, the structure
of the identified PFSA matches with the component
machines,G1 andG2. The proof is now complete.

It follows from Proposition 6, that thePlus-Machine can be
used to annihilate information in the symbol string generated
by a PFSA in the following manner:

G+H = H−1(i◦)⇒M (G+H) = H−1(i◦) (10)

which implies that ifG is the underlying PFSA for the sensed
process, and we can computeH such thatG+H = H−1(i◦),
and subsequently modify the incoming sensed data stream via
the Plus-machine construction, we would end up with sym-
bolic white noise in the output, which then can be identified
easily. This, however, is not directly achievable in practice for
the following reasons:

1) Impossibility of state synchronization with sensed
stream.

2) Impossibility of disabling state transitions in the sensed
physical process.

The next section presents modifications to this basic con-
struction to admit a physically realizable implementationof
a semantic annihilator.

V. SEMANTIC ANNIHILATION

In this section, we assume that we are given a pre-
identified (during the training phase) pattern libraryG ,
{Gi : Gi ∈ A +} containing a finite number of patterns of
interest, represented as PFSA. We would construct asemantic
annihilator for each pattern inG, which would be used in
online classification.

We need the following function that operates symbol-wise
on streams, typically implementing a selective erasure of the
two input streams (ǫ is the null symbol,i.e., the identity in
the concatenative free monoid over the alphabetΣ):

Definition 19 (Erasing Function):The erasing functionξ :
Σ× Σ→ Σ

⋃
{ǫ} is defined as follows:

ξ(σ1, σ2) =

{
σ1 if σ1 AND σ2 = 1
ǫ otherwise

(11)

A. Construction of the Semantic Annihilator

A0

PSfrag replacements
Sensed
Stream ξ

Semantic
Annihilator

H1

H2

Hm

Check for
White Noise

Fig. 4: The block design for a semantic annihilator

The component machines are set as follows:

• Let theG ∈ G be one element of the pattern library.

7

• Construct the additive inverse forG, i.e. computeH s.t.

G+H = H
+
−1(i◦) (12)

Let the state set forH beQH , and let|QH | = m.
• Createm copies forH , each initialized at a distinct state.

Let Hj be the copy of the PFSAH initialized at state
qj ∈ QH .

B. Operational Description of the Annihilator

The semantic annihilator operates as follows:

1) Read symbolσsensor from sensor
2) Independently generate symbolsσj for each component

Hj .
3) Transition eachHj using the same symbolσsensor .
4) Constructm symbol streamsωj ∈ Σ⋆ : j ∈ {1, · · · ,m}

recursively using the erasing functionξ:

ω
j
UPDATE = ωjξ(σsensor , σ

j) (13)

5) Check if anyωj is in fact symbolic white noise.

Next we present the main result (Proposition 7) which
rigorously establishes the annihilation concept as a viable tool
for pattern classification.

Proposition 7 (Main Result):At least one of the con-
structed streamsωj will semantically compress to symbolic
white noise if and only ifG+H = H

+
−1(i◦), i.e.,

G+Hj = H
+
−1(i◦)⇔ ∃j

(
C(ωj) = H−1(i◦)

)
(14)

(See Notation 3, and note thatHj is a copy ofH initialized
at thejth state.)

Proof: (Left to Right:) Let the sensed process be gener-
ated by the underlying PFSAG, such thatG+H = H−1(i◦).
We note that, by construction, there existsj⋆ such thatHj⋆

is always state synchronized withG. However, we only see
symbols in the output streamωj⋆ , if the generated symbols
are identical. It follows that, on compressionωj⋆ would yield
a modified PFSA (denote byGmod) with structure identical
to G, but each row of thẽΠmod matrix would be modified as
follows:

Π̃mod(qi, σ) =
Π̃G(qi, σ)Π̃

H(qi, σ)∑
σ Π̃

G(qi, σ)Π̃H(qi, σ)

=
Π̃G(qi, σ)(Π̃

G(qi, σ))
−1K(qi)∑

σ Π̃
G(qi, σ)(Π̃G(qi, σ))−1K(qi)

=
1

|Σ|

whereK(qi) =
∑

σ(Π̃
G(qi, σ))

−1 is the normalizing constant,
implying each row is identical and uniform which in turn
implies that the identified model is symbolic white noise.
(Right to Left:) We show this by contradiction as follows:
Let the sensed process is generated byG such that

G+H 6= H−1(i◦) (15)

and assume if possible, that there exists a constructed stream
ωj⋆ which compresses to white noise. Although, we cannot
assume that anyHj is state synchronized withG directly, we
can consider the structure of bothG andH to be represented
(without loss of generality) by the one forG ×H , in which

they can be assumed to be synchronized (since stateqi in
G and qk in H can be mapped to state(qi, qk) in G × H).
Denoting the machines modified by the synchronous product
asG× andH× respectively, we note:

G× +H× = H−1(i◦) (By Assumption) (16)

But sinceH(G×) = H(G) andH(H×) = H(H) (since the
underlying measures are not modified by going to a non-
minimal realization via synchronous product), it follows:

H(G) +H(H) = i◦ ⇒ G+H = H−1(i◦) (17)

which contradicts Eq. (15). This completes the proof.
Our key motivation for developing the annihilator was to

be able to classify PFSA-based patterns faster and in a more
robust fashion in real-time or near-real-time field operation.
The argument for robustness is pretty obvious, since one state
models, especially with uniform generation probabilitiesof the
symbols (i.e. white noise) are the easiest ones to identify
reliably for any compression algorithm. The argument for
fast identification is more involved, primarily due to the fact
that the annihilators selectively erase symbols leading toa
decrease in the lengths of the observed symbol strings. Thus,
although we only need to check for white noise in the outputs
(which is significantly faster compared to directly identifying
the original pattern), the fact that now we are dealing with
a shorter string, implies that there is the possibility thatthe
increased speed of identification is offset by the slow down
of the rate of symbol production at the outputs. In the next
section, we investigate this issue in more details, and derive
rigorous performance guarantees.

VI. PERFORMANCEOF SEMANTIC ANNIHILATORS

We need the notion of a stationary distribution on the states
of a given PFSA. This is in fact the stationary distribution
for the stochastic transition probability matrix that can be
computed from the connectivity graph and the symbol gen-
eration probabilities̃Π. Also, as stated before, we assume that
all PFSA considered in this paper are irreducible,i.e., have
a strongly connected graph and hence yields an irreducible
transition probability matrix.

Definition 20 (Stationary Distribution):For a given PFSA
G = (Q,Σ, δ, Π̃), the stationary distribution℘G ∈ [0, 1]|Q|,∑

i ℘
G
i = 1 is defined as:

1) Construct the transition probability matrixΠ as:

∀qi, qj ∈ Q, Π
∣∣
ij
=

∑

σk:δ(qi,σ)=qj

Π̃(qi, σ) (18)

2) Noting thatΠ is an irreducible stochastic matrix, com-
pute the stationary distribution℘G as the stationary
probability distribution for the state transition matrixΠ,
i.e., ℘G is the unique sum-normalized left eigenvector
for Π̃ satisfying℘GΠ = ℘G.

It follows from the irreducibility assumption, that the sta-
tionary distribution is unique for a given PFSA, and has no
dependence on the initial state [20].

Notation 4: In the sequel, we use the notation:℘G
⋆ =

minqi∈Q ℘G.

8

Also, our assumption of irreducible models leads to the
following property for the stationary distribution:

Proposition 8: For any PFSAG = (Q,Σ, δ, Π̃) with an
irreducible underlying graph,℘G

⋆ > 0.

Proof: SinceΠ is irreducible for suchG, no non-negative
left eigenvector ofΠ has a zero coordinate [20].
We want to estimate the shortening experienced by the sensed
symbol strings due to the annihilation operation. We require
the notion of the auxiliary PFSAA(G) for a given PFSA
G, which captures the simultaneous operation of the two
machines, without erasure of the non-matching symbols.

Definition 21 (Auxiliary PFSA):For a given PFSAG =
(Q,Σ, δ, Π̃), the auxiliary PFSAA(G) is defined as:A(G) =
(Q,Σ

⋃
Σ′, δA, Π̃A), whereΣ′ is a distinct isomorphic copy

of Σ, with I : Σ → Σ′ being the (bijective) isomorphism,
and:

δA(qi, σ) =

{
δ(qi, σ) if σ ∈ Σ
δ(qi,I

−1σ) otherwise
(19a)

Π̃A(qi, σ) =

{
1
|Σ|Hi if σ ∈ Σ

Π̃(qi, σ)−
1
|Σ|Hi otherwise

(19b)

whereHi is the harmonic mean of theith row of theΠ̃ matrix
for G.

Proposition 9 (Properties of the Auxiliary Automaton):
The auxiliary automatonA(G) = (Q,Σ

⋃
Σ′, δA, Π̃A) has

the following properties:
1) ℘A(G) = ℘G

2) If H is the annihilator component that is correctly state-
synchronized withG (where G is the correct PFSA
corresponding to the annihilator), thenA(G) correctly
tracksH (state-wise and symbol-wise), if we consider
that all σ ∈ Σ′ are unobservable.

Proof: (1) follows immediately from Definition 21, by
noting that the probability transition matrix is left unaltered in
the construction ofA(G). For (2), we note that the transition
structure forH (and henceG) is recovered if we map∀σ ∈
Σ′, σ 7→ I −1σ. Next, we compute the probabilitypobs(qi, σ)
of an observableσ whenH is at stateqi as:

∀σ ∈ Σ,

pobs(qi, σ) =Π̃G(qi, σ)Π̃
H(qi, σ)

=Π̃G(qi, σ)(Π̃
G(qi, σ))

−1 1
∑

σ(Π̃
G(qi, σ))−1

=
1

|Σ|
Hi (20)

It follows from above, that the probability of an unobservable
σ whenH is at stateqi is given by:

∀σ ∈ Σ′, punobs(qi, σ) = Π̃G(qi, σ)−
1

|Σ|
Hi (21)

which completes the proof.
Corollary 1: (To Proposition 9) If the length of the symbol

string generated byG is denoted byLG, then the lengthLann

of the correctly annihilated string satisfies:

lim
LG→∞

Lann

LG

=

|Q|∑

i

℘G
i Hi (22)

Proof: We first note that the stationary frequency distribu-
tion ϑΣ of the symbols (over alphabetΣ) in a string generated
by an arbitrary irreducible PFSAGarb is given by:

ϑΣ = ℘GarbΠ̃Garb (23)

where the independence from the initial state follows from the
irreducibility of Garb. It then follows from Proposition 9, that
the frequency distribution for the auxiliary automatonA(G)
is given by:

ϑΣ
⋃

Σ′ = ℘A(G)Π̃A(G) = ℘GΠ̃A(G) (24)

which in turn implies (See Eq. (19b)) that the probabilityλ
that any symbol generated byG is observable is given by:

λ =
∑

i:σi∈Σ

℘GΠ̃A(G)
∣∣
i
=

|Q|∑

i

℘G
i Hi (25)

This completes the proof.
Next, we define the coefficient of annihilation advantage:

Definition 22 (Coefficient of Annihilation Advantage):For
a given PFSAG = (Q,Σ, δ, Π̃), let Ld be the string length
required for direct identification via semantic compression,
and let Lw be the string length required for identifying
symbolic white noise. Then the Coefficient of Annihilation
Advantage (β) is defined as the ratio:

β =
Lw

Ld

∑|Q|
i ℘G

i Hi

(26)

Remark 3: It follows that when we have enough data to do a
direct compression (of say lengthLd), then the expected length
of the correctly annihilated string is given byLd

∑|Q|
i ℘G

i Hi

Since we are required to identify symbolic white noise at the
annihilator output, and if the string length for identification
of symbolic white noise is denoted byLw, then identification
via semantic annihilation is advantageous if we haveLw <

Ld

∑|Q|
i ℘G

i Hi, i.e., if we haveβ < 1.
In the sequel, we compute upper bounds on the Coefficient

of Annihilation Advantageβ. In order to do so, it is obvious
that we need to relate the lengthsLd andLw. However, we
wish to achieve this without reference to any specific algorithm
for semantic compression,i.e., we want the computed bounds
to hold true irrespective of the manner we construct PFSA
models out of symbol strings. We note that if we are to
compress a string from a symbolic white noise, then we
would expect to obtain a single state PFSA with equi-probable
symbols. However, since we are talking about probabilistic
generators, observing1 symbol each from the alphabet would
not be sufficient; or rather would be a very bad way of inferring
that the symbol string is generated from the symbolic white
noise. Since we assume thatLw is the string length required
for the identification (for the particular algorithm, whichever
that may be), the number of symbols of each label that we need
to observe would be at least1|Σ|Lw. In the sequel, we assume
that for an arbitrary PFSA, the number of symbols of each
label that we need to observe at each state must also be of at
least this value 1

|Σ|Lw, since the chosen algorithm apparently
requires this many observations for statistical inference.

9

Proposition 10 (Upper Bound forβ): For a given PFSA
G = (Q,Σ, δ, Π̃) with an irreducible underlying graph, which
is not a realization of symbolic white noise, we have the
following upper bounds:

1) β =
Lw

Ld

∑|Q|
i ℘G

i Hi

<
|Σ||Q|℘G

⋆

|Q|∑

i=1

℘G
i Hi

|Q|∑

j=1

H
−1
j

, β1

(27a)

2) β1 ≦
|Σ|

|Q|
(27b)

Proof: We note for each stateqi ∈ Q, we have:

℘G
⋆ Ldmin

σ∈Σ
Π̃(qi, σ) ≧

1

|Σ|
Lw (28)

which follows from noting that℘G
⋆ Ld is at least the number

of times stateqi is visited, and hence℘G
⋆ Ldminσ∈Σ Π̃(qi, σ)

is at least the expected number of the least likely symbols
generated atqi. It follows:

Ld ≧
Lw

|Σ|℘G
⋆

1

minσ∈Σ Π̃(qi, σ)
≧

Lw

|Σ|℘G
⋆

H
−1
i (29)

⇒ |Q|Ld >
Lw

|Σ|℘G
⋆

|Q|∑

i=1

H
−1
i (30)

⇒ β =
Lw

Ld

∑|Q|
i ℘G

i Hi

<
|Σ||Q|℘G

⋆

|Q|∑

i=1

℘G
i Hi

|Q|∑

j=1

H
−1
j

(31)

Note the strict bound in the second inequality in Eq. (30)
follows from the fact thatG is not a realization of symbolic
white noise, implying∃qi ∈ Q, Hi > minσ∈Σ Π̃(qi, σ),
which completes the proof of Statement(1). For Statement
(2), we first note that for any sequence of real numbers,
the harmonic mean of the sequence is bounded above by its
arithmetic mean. Hence, it follows that:

|Q|
|Q|∑

j=1

H
−1
j

≦

|Q|∑

j=1

Hj

|Q|
⇒

1
|Q|∑

j=1

Hj

|Q|∑

j=1

H
−1
j

≦
1

|Q|2

⇒
1

|Q|∑

j=1

℘G
j Hj

|Q|∑

j=1

H
−1
j

≦
1

|Q|∑

j=1

℘G
⋆ Hj

|Q|∑

j=1

H
−1
j

≦
1

℘G
⋆ |Q|

2

⇒
|Σ||Q|℘G

⋆

|Q|∑

i=1

℘G
i Hi

|Q|∑

j=1

H
−1
j

≦
|Σ||Q|℘G

⋆

|Q|2℘G
⋆

=
|Σ|

|Q|

where the last step follows from the fact that irreducibility of
G guarantees℘G

⋆ > 0. This completes the proof.
Remark 4:Note that although we assume thatG is not

a realization of symbolic white noise, we could not assume
∃qi ∈ Q ℘G

i > ℘G
⋆ , which would have made the bound in

Statement(2) strict. The reason is that it is possible for a
PFSA to have non-uniform symbol generation probabilities
from some states, and yet end up having an uniform stationary
distribution over its states. Note here that the property ofbeing
white (in the way we defined) has to do with the uniformity of
the rows of thẽΠ matrix, and not the stationary probabilities.

Remark 5:Proposition 10 is a strong result which implies
that pattern classification via semantic annihilators is infact
advantageous for most PFSA encountered in practice, where
typically one has a relatively small number of alphabet sym-
bols and a possibly large number of machine states.

Remark 6:The bounds computed in Proposition 10 are not
tight. Specifically, note that we neglected the fact that for
a general PFSA, the string length for identification could
be significantly greater due to issues relating to adequately
achieving statistical stationarity of the observed stream. Thus
even for models for which|Σ| > |Q|, it is not automatic
that identification via annihilation is slower compared to direct
compression.

VII. SUMMARIZED ALGORITHMS FORCLASSIFICATION

V IA SEMANTIC ANNIHILATION

For each pattern in the specified pattern library, we first
compute the inverse PFSA using Algorithm 1. Note, that step
4 in Algorithm 1 is well-defined (and does not encounter
a divide-by-zero overflow) on account of our assumption of
the restricted setA + (See Definition 15). Once the inverse
patterns are computed, we need to set up the pattern-specific
annihilators. Namely, for each pattern with|Q| states, we need
|Q| copies of the inverse, each initialized to a distinct state,as
stated before. The annihilation process requires sequential gen-
eration of symbols from these initialized PFSA, in accordance
to their computed morph matrices. This is done as follows:

1) Given the current state, we first select the corresponding
row of the morph matrix, which specifies the probabil-
ity distribution of the to-be-generated symbol over the
alphabet.

2) We generate a symbol in accordance to this distribution.

There are standard reported ways of selecting an outcome
in accordance to a specified distribution. We explicitly state
one method involving a uniform random number generator
with range[0, 1], which guarantees that the asymptotic time-
complexity of this choice isO(log2(|Σ|)) (See Algorithm 2).
The stated approach involves considering the cumulative dis-
tribution for the symbol. Since this has to be done each time a
symbol is generated, we compute the cumulative morph matrix
Π̃cum for the inverted models offline as follows:

Definition 23 (Cumulative Morph Matrix):The cumulative
morph matrixΠ̃cum is computed as follows:

Π̃cum

∣∣∣∣
ij

=

j∑

r=1

Π̃

∣∣∣∣
ir

(32)

The sequential symbol generation then uses rows of the cu-
mulative morph matrix instead, as the inputν to Algorithm 2.

10

Algorithm 1 : Computation of Inverse Pattern

input : PFSAG = (Q,Σ, δ, Π̃)
output: PFSA−G
begin1

for i = 1 : |Q| do2

for j = 1 : |Σ| do3

Π̃′
ij =

1

Π̃ij

;
4

endfor5

for j = 1 : |Σ| do6

Π̃′
ij =

Π̃′
ij∑

j Π̃
′
ij

;
7

endfor8

endfor9

−G = (Q,Σ, δ, Π̃′);10

end11

Lemma 1:Assuming that uniform random numbers in the
range[0, 1] can be generated in constant time, the asymptotic
time-complexity of Algorithm 2 isO(log2(|Σ|)).

Proof: We note that the possible number of choices for
the to-be-generated symbol reduces by half its previous value
in each iteration, implying that the number of iterationsI
satisfies:

2I ≦ |Σ| ⇒ I ≦ log2(|Σ|)

which completes the proof.
Each copy of the inverted model in the annihilator accesses
the sensed symbol, generates its own symbol in accordance
to its current state, reports the symbol if there is a match,
and finally updates the current state using the sensed symbol.
The sequence of moves for each component (or copy) is
enumerated in Algorithm 3. The|Q| reported streams are
individually compressed to check if any is in fact white noise.

VIII. A SYMPTOTIC COMPLEXITY ANALYSIS

We ascertain the asymptotic time complexity per sensed
symbol of the online portion of the annihilation process,
assuming the pattern corresponding to the annihilator is indeed
present in the sensed stream. This analysis is important since
the annihilator is processing a multi-stream input, and we need
to convince ourselves that the work required per observed
symbol is not too great, particularly since an overtly complex
algorithm will be unable to handle high data rates.

We assume, as before, that random keys can be generated
in constant time. Then, we have the following result:

Proposition 11: For a given PFSAG = (Q,Σ, δ, Π̃), the
asymptotic time-complexityAG of classification via annihila-
tion, per sensed symbol, is bounded as:

AG = O(log2(|Σ|)) (33)

Proof: Time-complexity of identificationC1, considering
all |Q| components of the annihilator, satisfies:

C1 ≦ TR|Q|O(log2(|Σ|))LwC0 (34)

Algorithm 2 : Probabilistic Symbol Generation

input : Non-negative vectorν of length |Σ| such that
ν|i ≦ ν|i+1, ν||Σ| = 1, Alphabet
Σ = {σ1, · · · , σ|Σ|}

output: Generated Symbolσ
begin1

Generate random keyKr ∈ [0, 1] ;2

lowerB = 1;3

upperB = |Σ| ;4

while upperB > (lowerB + 1) do5

M = ⌈ upperB−lowerB
2 ⌉; /* Rounding to Next6

Integer */

if Kr ≦ ν|M then7

upperB = M;8

else9

lowerB = M;10

endif11

endw12

if kr ≦ ν|lowerB then13

σ = σlowerB;14

else15

σ = σupperB;16

endif17

end18

Algorithm 3 : Componentwise Annihilation Operation

input : Cumulative Morph MatrixΠ̃cum, Initial state
qinit , Transition functionδ

output: Reported symbol stream
begin1

Set current stateqcurr = qinit ;2

/* Infinite loop */

while true do3

Observe sensed symbolσsensed;4

Generate random symbolσgen using row ofΠ̃cum5

corresponding toqcurr ; /* Algorithm 2 */

if σsensed== σgen then6

Reportσgen; /* Annihilated Stream7

*/
endif8

Update current stateqcurr = δ(qcurr , σsensed);9

endw10

end11

whereTR is the complexity of generating random keys in the
range[0, 1], Lw is the string length required for identifying
the symbolic white noise, andC0 is the time complexity of
identifying symbolic white noise (using some given direct
compression algorithm, and assuming we check for white
noise on each stream after each sensed symbol observation).
Hence, assuming that we have the total sensed string length
asLd, it follows that the time complexity per sensed symbol

11

PSfrag replacements

1 | 0.3

0 | 0.7

0 | 0.2

0 | 0.9

1 | 0.8

1 | 0.9

1 | 0.1

0 | 0.7

1 | 0.3

0 | 0.1

q1

q2 q3

q4

(a) M2

PSfrag replacements

1 | 0.3

0 | 0.70 | 0.2

0 | 0.9

1 | 0.8

1 | 0.9

1 | 0.1

0 | 0.7

1 | 0.3

0 | 0.1

q1
q2
q3
q4

q1 q2

(b) S1

Fig. 5: PFSA models used for simulation, real numbers are
symbol probabilities, integers are symbol labels: (a) M2 is
a subshift of finite type having the structure of a suffix
automaton, (b)S1 is a generalized even shift process, is a
strictly Sofic system and has no synchronizing string

is bounded by:

AG ≦ TRC0|Q|O(log2(|Σ|))
Lw

Ld

(35a)

Using Definition 22, we have:

AG ≦ TRC0|Q|O(log2(|Σ|))β

|Q|∑

i

℘G
i Hi (35b)

Using Proposition 10, and notingHi ≦
1
|Σ| , we have:

AG ≦ TRC0|Q|O(log2(|Σ|))
|Σ|

|Q|

|Q|∑

i

℘G
i

1

|Σ|
(35c)

⇒AG ≦ TRC0O(log2(|Σ|)) (35d)

Neglecting constant time factors, we have:

AG = O(log2(|Σ|)) (35e)

Note that Eqn. (35a) is exact and not an averaging, since we do
the same work every time a symbol is sensed. This completes
the proof.
This is a strong result showing that the asymptotic time-
complexity of classification via annihilation, per symbol,is
independent of complexity of the pattern and the number of
PFSA states, and is only mildly dependent on the cardinality
of the alphabet. Again, since the alphabet sizes are relatively
small, and recalling that the proposed technique is provably
faster compared to direct compression for most models, it
follows that classification via annihilation is indeed highly
advantageous for online operation.

IX. V ERIFICATION & VALIDATION

In this section, we validate the preceding theoretical devel-
opments in simulation. The PFSA models selected for gen-
erating the simulated symbol string is illustrated in Figure 5.
The model (M2) shown in Figure 5(a) has the structure of a
suffix automaton [1]. PFSA which have such structures are
easier to identify from symbolic strings; primarily due to the
existence of synchronizing strings [8](strings which lead to a
particular state irrespective of the starting state). For example,
in the model M2, the statesq1, q2, q3, q4 can be easily seen
to represent sets of symbol strings ending in00, 01, 10, 11
respectively [22], [1]. Although, the state structure is not
available a priori to the compression algorithm, nevertheless,
such so-calledd-Markov machines [22] are significantly easier
to identify. For examples of physical situations in anomaly
detection which give rise to, or are effectively modeled by such
d-Markov machines, the reader is referred to [23], [3]. The
second model (S1) (Figure 5(b)) has only two states. However,
S1 represents a generalization of the even-shift process, and
its underlying graph is an example of a strictly Sofic shift
process(and not a sub-shift of finite type [24]). Specifically,
S1 does not have any synchronizing strings,i.e., without the
knowledge of the initial state one cannot infer the current state
in a deterministic sense even from arbitrary long observation
strings. Such models are significantly more difficult to identify
(See [8] for discussion) for any of the compression algorithms
reported in the literature [1], [22].

The algorithm used for direct compression is a modified
version of CSSR [8], [7]. We compare PFSA models using
the metricθ proposed in [9], which is capable of computing
distances between PFSA models with different underlying
graphs (with identical alphabets).Note that while the output
of the direct compression algorithm is compared against the
original model, the annihilator output is compared against
symbolic white noise.

In the two simulation runs reported, we generate data
from the models and compare the string lengths required
by direct compression versus classification via annihilation.
The annihilators were constructed from the knowledge of the
particular model used in the simulation using the formulation
presented in Section V-A. Note, that the annihilation technique
is not meant for identification of an unknown pattern (i.e.

pattern identification), but detecting if the sensed symbolstring
is actually being generated by a known library pattern (i.e.

pattern classification). Figure 6(a) illustrates the results for
M2, and we note that the annihilator is significantly faster.
The principal advantage of using annihilators is better illus-
trated for S1, where, for reasons explained above, the direct
compression algorithm has a hard time, and has failed to cor-
rectly identify S1 even after7000 symbols (convergence was
observed at around10000 symbols). The annihilator identifies
S1 at just over1000 symbols as shown in Figure 6(b). Finally,
Figure 6(c) compares the response of a annihilator which does
not correspond to the process generating the observed symbols,
with one that does. Note, that in both cases, the responses are
very stable; with the incorrect annihilator converging to0.3
and the correct one to (very nearly)0, which reflects a match.

12

PSfrag replacements

1000 2000 3000 4000 5000 6000 7000
0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Annihilator
Direct Cmp.

M
et

ri
c
θ

Symbol Ticks

Classification
By Annihilator

(a)

PSfrag replacements

1000
2000
3000
4000
5000
6000
7000

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Annihilator

Direct Cmp.

Metric θ

Symbol Ticks
Classification

By Annihilator

1000500 20001500 2500

6000
7000

0.1
0.2

0.3

0.4
0.5

0.6

0.7

0.8

Annihilator Pattern Match
No Match

M
et

ri
c
θ

Symbol Ticks

Classification
By Annihilator

(b)

Fig. 6: (a) Simulation result for model M2: Note that direct compression converges at3500 symbols, while the annihilator
converges at just over1000 symbols. A few intermediate models identified by the direct compression algorithm is also shown.
(b) Simulation result for model S1: Note that direct compression has failed to converge at7000 symbols; (c) Comparison of
distance of annihilated strings from symbolic white noise for correct and incorrect annihilators,i.e., where we have a pattern
match and where we do not.

In general, evaluation of such a pattern match involves using
a specified detection threshold, the implications of which are
discussed in the next section.

Implication of Proposition 10 is illustrated explicitly in
Figure 7a (a snapshot of the annihilation process in the above
described simulation runs), where we note that the annihilation
process essentially erases symbols selectively in the incoming
data stream, and hence yields a significantly shorter observed
sequence. Although, we now have the relatively easier task of
identifying if this annihilated sequence is indeed white; but
even such an identification cannot be effectively done with
too few symbols. Proposition 10 guarantees that the length
shortening cannot offset this advantage in practical scenarios,
where we are most likely to have more states than the total
number of symbols in the alphabet.

X. I NTUITIVE INTERPRETATION& POTENTIAL

APPLICATIONS

An important intuitive insight on why the annihilators are
able to classify the streams faster can be given as follows: by
avoiding direct compression of the observed symbol sequence,
we are essentially solving a classification problem, which is, in
general, easier compared to a full blown identication problem,
involving discovery of new patterns. Direct compression is
capable of telling us not only if there is a match, but also yields
the new PFSA model of the observed sequence when there
is no match with the existing templates. Annihilation only
indicates the matching template if there is one, and indicates
a ”no match” otherwise. Thus, the increased efficiency is not
surprising. This is particularly useful for templates thathave
no synchronizing strings (such as the modelS1), where for

13

ORIGINAL : 110000000011110000001100000110011000000001101100001100001100001111000011001100110011000000110001100010000000001110001111

ANNHLTD : 100000000010110000001000000100010000000001001000001100001000000011000010001000100010000000100000000000000000000010001011

OBSERVD: 10111001011000110011001110101001110001111←− Length Shortening Of Observed Annihilated Stream

(a)

PSfrag replacements
Pattern
Library

Compute Match
(Via

Structural
Comparison)

Pattern Library
(Constructed Via Compression of Training Data)

Symbolization (Easy)
& Compression Algorithm (Expensive)

Computed
Model

Expensive

Sensor Signal
Comparison

(b)

Fig. 7: (a) Snapshot of the annihilation process (b) Patternclassification scheme in symbolized sensory data streams

direct compression, one needs to distinguish between the states
using long observation sequences, that disambiguate possible
future evolutions based on the small deviations in the observed
probability distributions on the future strings. If the spectral
gap of the corresponding Markov chain is small, the sequences
required can turn out to be unacceptably long (since smaller
the spectral gap, longer is the mixing time). This is what we
see manifested in Figure 2b, where direct compression has a
hard time. For the annihilation, such complexities are absent:
the spectral gap does play a role in the degree of shortening of
the annihilated sequence (See Proposition 10), but one always
looks for symbolic white noise at the annihilator output,
irrespective of the complexity of the template.

The idea of pattern classification via controlled information
erasure may seem somewhat counter-intuitive at the first
reading. However, the key notion exploited here has a clear
analogue in communication theory, particularly in the theory of
matched filters [25]. A matched filter is a theoretical construct
(and not the name of a specific filter family) which processes a
received signal to minimize the effect of noise,i.e. maximizes
the signal to noise ratio (SNR), and simultaneously minimizes
the probability of bit error rate (BER). It can be shown
that, under the assumption of additive white Gaussian noise

(AWGN) in the communication channels, an optimum filter
for receiver-end demodulation exists, and is a function only of
the transmitted pulse shape. Because of this direct relationship
to the transmitted pulse, it is called amatched filter. The
derivation of a classical matched filter is essentially based on
a direct application of Schwartz inequality [21], and leadsto
a very simple and remarkable conclusion:

For AWGN channels, the signal to noise ratio is
maximized when the impulse response of that filter
is exactly a reversed and time delayed copy of the
transmitted signal.

Since the bit error rate experienced by a signal during demodu-
lation is a function of the signal to noise ratio [26], a matched
filter which maximizes SNR will automatically provide the
lowest possible BER. The analogy of semantic annihilation
with matched filters is compelling: instead of using a time-
reversed copy of the signal template, we are using the symbol
stream generated by an inverse probabilistic automata. Just as
a matched filter functions by convolving the signal with its
reversed and delayed copy, the annihilator carries out symbol-
wise comparisons between the given symbol stream, and the
state-specific ones generated by the inverted template; erasing
symbols that do not match. The fact that we can carry out this

14

procedure in a deterministic fashion should not be surprising:
the convolution in the case of matched filters is generally car-
ried out using Fourier transforms (FFT), which is also a rather
straightforward deterministic operation. In the latter case, the
filtered signal must still be recognized, but this decision-
making task is now significantly easier due to the filtration-
enhanced SNR. In our case, the annihilator does not output an
enhanced signal, but reduces it to white noise if the correct
template is used. However, the task of recognizing symbolic
white noise is significantly easier compared to recognizingthe
template pattern directly; thus reinforcing the analogy. The
recognition of symbolic white noise does involve the use of
a detection threshold, since in practical scenarios, we do not
expect the signal and the template to match exactly, given
finite-length observation sequences. Thus, when the distance
between at least one of the PFSA models computed from the
annihilator output falls within a pre-specified distance tothe
white noise model (in the sense of the PFSA metricθ [9]), we
conclude a positive match. Using arbitrarily small thresholds
may require long data streams, and most likely will result
in negative matches due to small noise-mediated mismatch
between the streams.

The key application that the authors have in mind is
pattern classification in symbolized (or quantized) sensory
data streams. This particular approach of pattern detection
in sensory data has been shown to be significantly more
efficient to classical continuous domain techniques, exhibiting
remarkable insensitivity to spurious noise and exogenous dis-
turbances; primarily due to the quantization-mediated coarse-
graining, and as a consequence of repeated recurrences of
paths in the graph of the finite state machine with relatively
few states and a large number of sample points in the (fast
scale) time series data [22]. Recent applications of such PFSA-
based pattern classification has been effectively applied to
anomaly detection problems in complex electro-mechanical
machines [23], and tracking targets via large-scale multi-modal
urban sensor networks [27]. The basic philosophy is illus-
trated in Figure 7b. Continuous valued data from sensor(s) is
quantized via an appropriately chosen partitioning scheme[3]
to yield a symbolic sequence over a pre-specified alphabet
(depending on the coarseness of the chosen partition). In the
absence of annihilators, one is then required to algorithmically
compress a sufficiently long symbolic sequence to extract
the underlying causal generative model in the form of a
probabilistic finite automata. The classifier is provided with
a template library consisting of PFSA models that encode the
pertinent patterns of interest. Once the observed sequenceis
compressed to a PFSA, this can then be compared against
the individual library elements to compute a possible match.
The compression algorithms, however, are often expensive;
particularly if the underlying PFSA is not a subshift of finite
type [24]. Annihilation offers a significantly simple solution,
which skips the compression step altogether. The observed
stream can be symbol-wise annihilated using the inverted
templates in the library, requiring less data, and significantly
simpler implementations.

A second promising application is the design of PFSA-based
novel modulation-demodulation schemes for communication

over noisy channels. In this paper, we considered the special
case where the symbol stream generated by a PFSAG is
annihilated by the inverse model−G. However, in general, one
can apply similar ideas to encode a stream from PFSAG using
an encoding PFSAGe asG+Ge, and demodulate by ”adding”
the inverse streamG+Ge+(−Ge) = G. Such avenues will be
explored in future, where careful choice of the encoding PFSA
may lead to greater resilience to noise corruption, or even to
unauthorized message access.

XI. SUMMARY, CONCLUSIONS& FUTURE WORK

We defined an additive abelian group for probability mea-
sures on symbolic strings, which induces an abelian group on
a slightly restricted set of PFSA. The defined PFSA sum is
then used to formulate semantic annihilators, which identify
pre-specified patterns of interest via perfect removal of all
inter-symbol correlations from observed strings, turningthem
to symbolic white noise. This approach of classification via
annihilation is shown to be advantageous, with theoretical
guarantees, for a large class PFSA models. The results are
supported by simulation experiments.

Future work will extend the formulation to models where
not all symbols satisfy the condition that the generation proba-
bilities are strictly non-zero from each model state. The effect
of noise corruption on observed strings need to be investigated,
with particular emphasis on the comparative effect of noisy
observations on direct compression and semantic annihilation.
Furthermore, implementation in actual experimental scenarios
will further validate the proposed classification technique.

REFERENCES

[1] K. Murphy, “Passively learning finite automata,” Santa
Fe Institute, Tech. Rep., 1996. [Online]. Available:
citeseer.ist.psu.edu/murphy95passively.html

[2] D. Angluin and C. H. Smith, “Inductive inference: Theoryand methods,”
ACM Comput. Surv., vol. 15, no. 3, pp. 237–269, 1983.

[3] V. Rajagopalan and A.Ray, “Symbolic time series analysis via wavelet-
based partitioning,”Signal Processing, vol. 86, no. 11, pp. 3309–3320,
2006.

[4] S. Lucas and T. Reynolds, “Learning deterministic finiteautomata with
a smart state labeling evolutionary algorithm,”Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 27, no. 7, pp. 1063–
1074, July 2005.

[5] A. Paz, Introduction to probabilistic automata (Computer scienceand
applied mathematics). Orlando, FL, USA: Academic Press, Inc., 1971.

[6] E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta, and R. Carrasco,
“Probabilistic finite-state machines - part i,”Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 27, no. 7, pp. 1013–
1025, July 2005.

[7] C. R. Shalizi, K. L. Shalizi, and J. P. Crutchfield, “An
algorithm for pattern discovery in time series,”Technical
Report, Santa Fe Institute, October 2002. [Online]. Available:
http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0210025

[8] C. R. Shalizi and K. L. Shalizi, “Blind construction of optimal nonlinear
recursive predictors for discrete sequences,” inAUAI ’04: Proceedings of
the 20th conference on Uncertainty in artificial intelligence. Arlington,
Virginia, United States: AUAI Press, 2004, pp. 504–511.

[9] I. Chattopadhyay and A. Ray, “Structural transformations of probabilistic
finite state machines,”International Journal of Control, vol. 81, no. 5,
pp. 820–835, May 2008.

[10] J. Pearl,Probabilistic Reasoning in Intelligent Systems: Networksof
Plausible Inference. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1988.

[11] D. Heckerman and D. Geiger, “Learning Bayesian
Networks,” Microsoft Research, Redmond, WA, Tech.
Rep. MSR-TR-95-02, December 1994. [Online]. Available:
citeseer.ist.psu.edu/article/heckerman95learning.html

citeseer.ist.psu.edu/murphy95passively.html
http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0210025
citeseer.ist.psu.edu/article/heckerman95learning.html

15

[12] F. Jelinek, J. D. Lafferty, and R. L. Mercer, “Basic methods of proba-
bilistic context free grammars,”Speech Recognition and Understanding.
Recent Advances, Trends, and Applications, vol. F75, pp. 35–360, 1992.

[13] E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta,and R. Carrasco,
“Probabilistic finite-state machines - part ii,”Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 27, no. 7, pp. 1026–
1039, July 2005.

[14] A. Corazza and G. Satta, “Probabilistic context-free grammars estimated
from infinite distributions,”Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 29, no. 8, pp. 1379–1393, Aug. 2007.

[15] L. Rabiner, “A tutorial on hidden markov models and selected applica-
tions in speech processing,”Proceedings of the IEEE, vol. 77, no. 2, pp.
257–286, 1989.

[16] D. Kulp, D. Haussler, M. G. Reese, and F. H. Eeckman, “A generalized
hidden markov model for the recognition of human genes in dna.”
AAAI Press, 1996, pp. 134–142.

[17] A. Brazma, I. Jonassen, I. Eidhammer, and D. Gilbert, “Approaches to
the automatic discovery of patterns in biosequences,”J Comput Biol.,
vol. 5, no. 2, pp. 279–305, 1998.

[18] J. P. Crutchfield and K. Young, “Inferring statistical complexity,” Phys-
ical Review Letters, vol. 63, pp. 105–108, 1989.

[19] J. E. Hopcroft, R. Motwani, and J. D. Ullman,Introduction to Automata
Theory, Languages, and Computation, 2nd ed.Addison-Wesley, 2001.

[20] A. Berman and R. Plemmons,Nonnegative Matrices in the Mathematical
Sciences. Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 1994, corrected republication, with supplement, of work
first published in 1979 by Academic Press.

[21] W. Rudin, Real and Complex Analysis, 3rd ed.McGraw Hill, New
York, 1988.

[22] A. Ray, “Symbolic dynamic analysis of complex systems for anomaly
detection,”Signal Processing, vol. 84, no. 7, pp. 1115–1130, 2004.

[23] S. Chin, A. Ray, and V. Rajagopalan, “Symbolic time series analysis for
anomaly detection: A comparative evaluation,”Signal Processing, vol.
85, 9, pp. 1859–1868, 2005.

[24] D. Lind and M. Marcus,An Introduction to Symbolic Dynamics and
Coding. Cambridge University Press, United Kingdom, 1995.

[25] D. North, “An analysis of the factors which determine signal/noise
discrimination in pulsed-carrier systems,”Proceedings of the IEEE,
vol. 51, no. 7, pp. 1016–1027, July 1963.

[26] J. Proakis,Digital Communications, 4th ed. Boston, MA: McGraw-Hill
Science/Engineering/Math, August 2000.

[27] I. Chattopadhyay, Y. Wen, S. Phoha, and A. Ray, “Mathematical foun-
dations of sensor network design based on linguistic informatics,” in
American Control Conference, Baltimore, MD, 2010.

0 1000 2000 3000 4000 5000 6000
−0.05

0

0.05

0.1

0.15

0.2

D

P

I

WWW

	I Introduction and Motivation
	II Preliminary Concepts and Related Work
	III Abelian Group of PFSA
	III-A Explicit Computation of the abelian Operation

	IV A Machine Representation of PFSA Sum
	IV-A Functional Description of the Plus-Machine
	IV-B Operational Description of the Plus-Machine

	V Semantic Annihilation
	V-A Construction of the Semantic Annihilator
	V-B Operational Description of the Annihilator

	VI Performance Of Semantic Annihilators
	VII Summarized Algorithms for Classification Via Semantic Annihilation
	VIII Asymptotic Complexity Analysis
	IX Verification & Validation
	X Intuitive Interpretation & Potential Applications
	XI Summary, Conclusions & Future Work
	References

