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Pattern Classification In Symbolic Streams
via Semantic Annihilation of Information

Ishanu Chattopadhyay, Yicheng Wen' and Asok Ray

Abstract—We propose a technique for pattern classification stochastic regular language. Conceptually, in such smexnar
in symbolic streams via selective erasure of observed symisp one is trying to learn thetructure inside of some black box,
in cases where the patterns of interest are represented as, nich is continuously emitting symbof&]. The system of

Probabilistic Finite State Automata (PFSA). We define an addive . t t it Hi lued si - which th
abelian group for a slightly restricted subset of probabilistic finite Interest may emit a continuous valued signal, which must be

state automata (PFSA), and the group sum is used to formulate then adequately partitioned to yield a symbolic stream.eNot
pattern-specific semantic annihilators. The annihilatorsattempt that such partitioning is merelguantizationand notdata-

to identify pre-specified patterns via removal of essenti# |abeling and several approaches for efficient symbolization
all inter-symbol correlations from observed sequences, #reby have been reported][3].

turning them into symbolic white noise. Thus a perfect annifi Probabilistic automata are more general compared to their
lation corresponds to a perfect pattern match. This approab > .

of classification via information annihilation is shown to ke Non-probabilistic counterparts [[4], and are more suited to
strictly advantageous, with theoretical guarantees, for alarge modeling stochastic dynamics. It is important to distirsgui
class of PFSA models. The results are supported by simulatio petween the PFSA models considered in this paper, and the
experiments. ones considered by PgZ [5], and in the detailed recent review

Index Terms—Probabilistic Finite State Machines, Machine by Vidal etal. [6]. In the latter framework, symbol generation
Learning, Pattern Classification probabilities are not specified, and we have a distribution
over the possible end states, for a given initial state and an
observed symbol. In the models considered in this paper,
symbol generation is probabilistic, but the end state fovarg

The principal focus of this work is the development ofyjtial state, and a generated symbol is unique. Unforeigat
an efficient algorithm for identifying pre-specified patteof 5ythors have referred to both these formalismgrababilistic
interest in observed symbolic data streams, where therpattespite state automatin the literature. The work presented here
are represented as Probabilistic Finite State Automat8ApF specifically considers the latter modeling paradigm ceersid
over pre-defined symbolic alphabets. and formalized in[[1], [7], 18], [[].

A finite state automaton (FSA) is essentially a finite graph The case for using PFSA as pattern classification tools is
where the nodes are known as states and the edges @®pelling. Finite automata are simple, and the sample and
knOWn as transitions, Wh|Ch are |abe|ed W|th |etterS from qnne Comp|exity required for |earning them can be eas”y
alphabet. A string or a symbol string generated by a FSéharacterized. This yields significant computational adva
is a sequence of symbols belonging to an alphabet, whiglye in time constrained applications, over more expressiv
are generated by stepping through a series of transitigigmeworks such as belief (Bayesian) networks [10]] [11] or
in the graph. Probabilistic finite state automata, considerprgpabilistic Context Free Grammars (PCFG) [12]] [13]dals
in thIS paper, are f|n|te state maChineS W|th probablhtl%%e [14] for a genera' approach to |dent|fy|ng PCFGs from
associated with the transitions. PFSA have eXtenSiVeme Observations) and hidden Markov models (HMN'S) [15] A|SO’
as an efficient framework for learning the causal structuggym a computational viewpoint, it is possible to come ughwit
of observed dynamical behavidr|[1]. This is an example @frovably efficient algorithms to optimally learn PESA, waas
inductive inference |2], defined as tpeocess of hypothesizing«gptimally learning HMMs is often hard”[[1]. Furthermore,

a general rule from examplet this paper, we are concernedygst reported work on HMMs_ [15][[16][[17] assumes the
with the special case, where tieferred general ruletakes model structure or topology is specified in advance, and the
the form of a PFSA, and the examples are drawn fromgarming procedure is merely traininge., finding the right
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email: yxw167@psu.edu ' have investigated the more general problem of learning the
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A.”thsotrst are with the SePa“”?e”'tDOkogcAhigggé Erbgs"}fem@ Pennsyl- implies that such analysis can then be applied to domains
Va?'ﬁis Vﬁ)fk hg;'egzg’ su’;;rv,ﬁfrfggmagi;rt by the U.S. Army Reseiaatiora- Where there is no prior knowledge as to what the correct
tory and the U.S. Army Research Office under Grant No. W910RA-0376 ~ Structure might look like[[18].
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publication are those of the authors and do not necessafilgct the views [71’ [1J (refermd to as the direCt. gompr_eSSion_ ?Igorithm_s in
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v Sensed " . - . L )
Physical ittt s Section[V] identifies the theoretical conditions under viahic

Process G 3 Simpler we can guarantee classification via semantic annihilaton t
U0 Compression be faster than direct compression. Section VIl estabishe
€D —> i et asymptotic bounds on the run-time complexity of annihilgto
(H) [ Symbolic Convergence Simulation results are presented in Secfioh IX, and pettine
W White Noise discussions, intuitive interpretations, and potentigil@ations
Stream Generated by annihilator are delineated in Sectidn] X. The paper is concluded in Sec-
H where G+H = 0 (additive zero) tion XTI with recommendations for future work.
Fig. 1: Concept of information annihilatiosddition of sym-
bolic streams to yielsymbolic white noise Il. PRELIMINARY CONCEPTS ANDRELATED WORK

A string = over an alphabeti. a non-empty finite seth
is a finite-length string of symbols i [19]. The length of
tions (e.g. pattern classification in sensing and surveillancg stringz is the number of symbols ir and is denoted by
networks) often demand faster identification to what théestg;|. The Kleene closure af, denoted by:*, is the set of all
of the art can provide. This motivates the key problem invefinite-length strings of symbols including the null stringThe
tigated in this paper: set of all strictly infinite-length strings of symbols is deed
Given a set of PFSA models representing patterns of inter@sty:. The stringzy is the concatenation of strings and
(i.e. a PFSA based pattern dictionary or library), the problem,. Therefore, the null string is the identity element of the
is to identify (in real or near-real time) if any of the speedi concatenative monoid.
patterns of interest exist in an observed symbol sequenceDefinition 1 (PFSA):A probabilistic finite state automaton
without resorting to direct compression and subsequent-cogPFSA) is a tupleG = (Q,%,d,q, 1), Where Q is a
parison [9] of the constructed PFSA model against the ligrar(nonempty) finite set, called the set of staféss a (nonempty)
elements finite set, called the input alphabét; Q@ x X — @ is the state
We propose a novel classification technique based on $@nsition function;gy € @ is the start statefl : @ x ¥ —
lective erasure of observed symbols leading to perfectrinfd0, 1] is an output mapping, known as the probability morph
mation annihilation as illustrated in Figuré 1. Specifigaile function that specifies the state-specific symbol generatio
construct an additive abelian group over a slightly resdc probabilities, and satisfiegy; € Q,o € X,11(¢;,0) = 0, and
subset of all PFSA (over a fixed alphabet), and show thai_ s, II(g;,7) = 1.
it is possible to define pattern-speciemantic annihilators ~ Notation 1: In the sequel, we would often use a matrix
as a function of the group inverses. These annihilators ceepresentatiodl (denoted as the morph matrix) of the morph
then operate on the sensed stream in a symbol-by-symhaiction, with thei;jt" element given byll(¢;, o;). Note, that
fashion attempting to eliminate all inter-symbol corrgas. II is, in general, a rectangular non-negative matrix with row
The annihilation is shown to be perfect if and only if thesums equal to unity. Also, from a knowledge of the morph
annihilator corresponds exactly to tiveverted PFSA model matrix II, and the transition map, one can compute the
of the underlying generating process. Thus we need to omlochastic state transition matik, as:
check if the annihilated stream (corresponding to a pdsticu ~
PFSA) is free from any emergent patteir,, if the symbols ;= Z 1(gi, ox) )
are equi-probable in an history-independent manner (éenot 7k:0(q1,08)=4;
as symbolic white noisén the sequel) to infer the existencenote thatll is a square non-negative stochastic matrix.
of that pattern in the original observed stream. Notation 2: The transition mag naturally induces an ex-
The proposed approach is computationally efficient for diended transition functiod* : Q x ¥* — @ such that
rect compression of the symbol stream, since it is signifigan §* (¢, ¢) = q andd*(q, z7) = 6(6*(q, ), 7) forq € Q, z € *
easier to check if a symbolic stream is in fact symbolic whitendr € .
because the underlying PFSA model has a single state withwe assume that the underlying graph for the PFSA models
equal symbol generation probabilities as seen in Figuren@b aconsidered in this paper is irreduciblee., is strongly con-
[2d. It is also shown that the proposed technique is provahbigcted. This implies that the transition probability matfl
faster if the cardinality of the alphabet is not greater thag an irreducible stochastic matrix, and in particular, has
the number of states in a particular pattern of interesiich  unique stationary distribution [20] irrespective of the thitial
represents almost all PFSA models encountered in practicelistribution. This assumption is motivated by the assamiat
The rest of the paper is organized in additional ten sectiored PFSA with emerging patterns in statistically stationsyyn-
Section[l is a brief overview of preliminary concepts, antholic streams, because it makes little sense to represeht su
related work. Sectiofi_Ill presents the construction of thdynamical systems with models whose stationary behavior
additive abelian group for probability measures on symbwlould depend on the initial state. Furthermore, the théaket
strings which is then shown to induce an abelian group aevelopment in the sequel, necessitates this assumption fo
a restricted set of PFSA. Sectidn]IV develops a practicechnical reasons.
implementation of the PFSA sum which is then used to Notation 3: In the sequel, we denote the PFSA constructed
formulate the notion of the semantic annihilators in Sediib by directly compressing a symbol string € * as C(w).



Nerode equivalent strings

The specific algorithm used is not important for the analysis /

presented in this paper. a FUTURE
Definition 2 @-Algebra): A collection 9t of subsets of a /| LT

non-empty sefX is said to be ar-algebral[21] inX if 9t has ~/ ; w2 - A

the following properties: ‘\‘ ¢ LR
1) X em h{/\j Y
2) If A e, thenA° € M where A¢ is the complement - SIITA

of A relative to X, i.e., A= X\ A /\/\A/ \A
3) If A =2, A, and if A, € 9 for n € N, then T L LB
Aem. PAST N A

Definition 3 (Measure):A (non-negative) measure is a States

countably additive functionu, defined on ac-algebra, @)

whose range if0, co]. Countable additivity means that{if4, }

is a pairwise disjoint countable collection of member<Bf 1 1

then s (US%, Ai) = 5%, iu(A:) o2 | 3 o1 3
Definition 4 (Probability Measure)A probability measure @

on a non-empty set with a specifiedalgebraft is a finite

(non-negative) measure ant. Although not required by the ‘

theory, a probability measure is defined to have the unit 0o ’ 1

interval [0, 1] as its range. 3
Definition 5 (Measure Space)A  probability measure (b)

space is a tripld X, 91, p) where X is a non-empty set))t

is a o-algebra inX, andp is a finite non-negative measure '

on M. o1 ‘ 5
Definition 6 @-Algebra for Symbolic Strings)Given an @

alphabety, the setBy, £ 22"y s defined to be ther-

algebra generated by the st : L = X% where x € X*}, 1 '

i.e., the smallest-algebra on the se&t“, which contains the 00 ‘ 5

set{L: L =zX" s.t. z € ¥*}.
For brevity, the probability(xX*) is denoted ap(x), Vz € ©

¥ in the sequel. In other wordg(x) is the probability of the Fig. 2: Linguistic Concepts: (a) Concept of PFSA states

occurrence of all the strings with as a prefix. from Probabilistic Nerode Equivalence: Nerode equivalent

Definition 7 (Probabilistic Nerode Relation)Given an al-  stringsw;,w» have probabilistically indistinguishable future
phabetX, any two stringsz,y € ¥* are said to satisfy evolution, thus leading to the same state (b) Symbolic
the probabilistic Nerode relation/, on a probability space White Noise (See Eq[12) for formal definition) for alphabet
(X¢,%Bsx,p), denoted byzN,y, if either of the following ¥ = {5y,01,0,}; (c) for alphabet = {09, 01}
conditions is true:

1) p(x) =p(y) =0; : : N

2) Vo € ¥, p((m)) _ p(éja) provided thaty(z) # 0, p(y) # A_ symbolic dynamlca_l process h_as a probab|I|st|c_f|-

0. plx ply nite state description if and only if the corresponding
Nerode equivalence has a finite index.
It has been proved in [9] that the probabilistic Nerode fefat  Definition 8 (Space of PFSAJThe space of all PFSA over
defined above is a right-invariant equivalence relation] [19 given symbol alphabet is denoted b¥ and the space of all
which means that if two strings,y are equivalent, so are probability measureg that induce a finite-index probabilis-

any right extensions of the stringse., tic Nerode equivalence on the corresponding measure space
(2¢,Bx,p) is denoted byZ.
* . . .
Vz,y,u € X%, aNpy = zulNyyu As expected, there is a close relationship betweéand &7,

o o which is made explicit in the sequel.
In the sequel, this is referred to as probabilistic Nerode pefinition 9 (PFSA Mag): Let p € £ and G =
equivalence and we denote the Nerode equivalence class gfas; 5 4o 11) € /. The mapH : & — 2 is defined as

stringz onX* by [2],, i.e., [z], = {z € X* : aNpz}. Theright  p1(Gy = ) such that the following condition is satisfied:
invariance property induces the notion of states and hexnce i

crucial to the definition of probabilistic state machinegthis Vo =o01---0p €Y7,

property two equivalent strings have probabilisticallglistin- - r—1

guishable future evolution and therefore can be visualeed p(z) = (g0, 01) H (6 (qo, 01+ - k), Tk +1)
terminating on the same state as seen in Figufe 2a. In this k=1

context, we make the following observation: wherer € N, the set of positive integers.



Definition 10 (Right Inversél_;): The right inverse of the then induce the group structure on this subspace of PFSA via

map H is denoted byH_; : & — & such that the isomorphism between the two spaces.
Definition 15 (Restricted PFSA Spacd)et &+ = {G =
vpe 2, HH-1(p)) =p (Q,%,0,q0,11) : TI(g,0) > 0 Vg € Q Vo € X} that is a

An explicit construction of the mapl_, is reported in[[9] proper subset of7. It follows that the transition map of any

and is not presented in this paper, because we only reqtﬁr%SA in the subset/™ is a total func.tlorl. We re.strlcth the
that such a map exists. mapH : & — & on a smaller domainy*, that is, H :

+ + +
Definition 11 (Perfect Encoding)Given an alphabek, a At T, e, 0T =Hy..

PFSAG = (Q, %, , qO,ﬁ) is said to be a perfect encoding of Definition 16 (Restricted Probability Measurelet

+ 4 . * ;
the measure spad&”, Zs, p) if p — H(G). Pt 2 {p e P : plx) # 0,z € ¥*} that is a proper

4 -
There are possibly many PFSA realizations that encof#bset of2. Each element of”" is a probability measure

the same probability measure oy, due to existence of tS_at_lass;gnsD "’}. n?n'zgg probabllltty ttlg each 3;'29 i%ﬁ'
non-minimal realizations and state relabeling; neithethein 'T' ar lo vetiniionLLy, we restriciii— on » 18
affect the underlying encoded measure. From this persqmectilﬂfl. =H_1|z+. o . .
; . o . Since we do not distinguish PFSA in the same equivalence
a notion of PFSA equivalence is introduced as follows: class (See Definitiof12), we have the following result
Definition 12 (PFSA Equivalence)iwo PFSAG; and G, f g )

) . a ; Proposition 2 (Isomorphism dii*): The mapH™ is an
ar: gae;ged t%be equivalentlif(G) = H(G»). In this case, isomorphism between the spaces™ and£?™, and its inverse
1= G2

_ N . is HY,.

| Rem?g 1 In thPe seyélgng_éIﬁmghes_mg eqU|vaIetr1§:e Definition 17 (Abelian Operation o?™): The addition
class ofG, i.e., {P € « : H(P) = H(G)}. This concept is operation © : % x T — % is defined by
similar to the equivalence class of almost everywhere equal a +

' i - i D3 = p1 © p2,Vp1,p2 € &7 such that
functions being a unique vector in the.-spacel[21]. 1) pa(e) = 1
Definition 13 (Structural Equivalence)‘l‘wo PFSAG; = 2) ];i c 5* E'de e plr) _ _ pi@np(ar)
(Qis 2, 0i,q5,1L;) € o, i = 1,2, are defined to have the '

p3(z) — Y,expi(za)pa(za)
equivalent (or identical) structure 1 = Q2,¢} = ¢ and ps is a well-defined probability measure g+, since
51((]10) = 62(Q70)1vq € Ql Vo € X.

Definition 14 (Synchronous Composition of PFSAhe vz €2,
binary operation of synchronous composition of two PFESAY cyps(z7) = Srex p1(27)p2(27) p3(z) = ps(z)
G = (Qi,%,9, qé”,l‘[i) € «/ wherei = 1,2, denoted by > aes P1(za)pa(za)
®: 4 x o — 4 is defined as Proposition 3 (abelian Group of PFSA)he algebra
G ®Gy = (Q1 x Qa,%,6, (q(()l),q(?)),ﬁ’) (21, @) forms an abelian group.
- Proof: Closure property and commutativity ¢f2*, @)
whered’ andII’ is computed as follows: are obvious. The associativity, existence of identity axig-e

tence of inverse element are established next.

Vgi € Q1,95 € Q2,0 € X, (1) Associativityi.e. (p1 ®p2) ©ps = p1® (p2 D ps). We note,

{ '((gi,45),0) = (01(4s,0),62(q5, 7)) thatVz € ©*, 7 € %,
/ — .
(@ 4),0) = g, 0) (P @ p2) ®ps)@7) _ (1 @ pa)(@r)ps(ar)
Remark 2:In general, the operatio® of synchronous ((p1 @ p2) ®p3)(2)  Lpes(p1 ® p2)(2B)ps(26)
composition is non-commutative. s s (w7)
Proposition 1 (Synchronous Composition of PFSAgt = 2= o1 (2B)pa(B)
G1,Gy € /. Then, H(G,) = H(G; ® G5) and therefore 2pex T om pitwaips ey P3(25)
G1 = G1 ® G in the sense of Definition 12.  pi(xT)pa(aT)ps(aT)
Proof: See Theorem 4.5 in[9]. [ | _Zﬂ@pl(;@ﬂ)prz(mﬂ)pg(mﬂ)
Synchronous composition of PFSA allows transformation (z7) p2(z7)ps(zT)
of PFSA with disparate structures to non-minimal desaipgi _ PIET) S  cx pa(wa)ps(@a)
i i ion is (zB)ps (zB)
that have the same underlying graphs. This assertion isatruc Zﬂezpl(fcﬂ) E(f; p2(i’;)p3(m)

for the development in the sequel, since any binary operatio

defined for two PFSA with an identical structure can be P1(27)(p2 & ps)(27)

extended to the general case on account of Defintidn 14 and Z,@ez p1(zB)(p2 @ ps3)(zB)
Propositior{ 1. _ (p1 @ (p2 © p3))(x7)
(P1 @ (p2 ® p3)) ()
I1l. ABELIAN GROUP OFPFSA (2) Existence of identityLet us introduce a probability

This section shows that a subspace of PFSA can be assigrrpee(?surao of symbol strings such that:

the algebraic structure of an abelian group. We first constru Ve e s (1 =] @
the abelian group on a subspace of probability measures, and v € X, Ho(2) = ﬁ



where |z| denotes the length of the string Then,Vr € X

that ifo((””;)) = ‘—§| For a measure € 22+ andvr € &,
(p@io)(ar)  pler)io(zr)  pla7)
poi)(z) Paespl@a)io(za)  p(z)

This implies thatp ® i, = i, ® p = p by Definition[1T and
by commutativity. Thereforei, is the identity of the monoid
(7, ).

(3) Existence of invers&/p € 2+, Vo € ¥* andVvr € %, let
—p be defined by the following relations:

(=p)(e) =1 (©)
(=p)(@7) _ p (a7
P Taesr 1aa) @
Then, we have:
o (=p)er)  plr)(=p)er) 1 (5)
P& (p))  Yaiespl@a)(—p)(za) 3|
This givesp @ (—p) = i, which completes the proof. =

In the sequel, we denote the zero-elemigndf the abelian
group (2T, ®) as thesymbolic white noiseThe concept of

symbolic white noise has been illustrated in Figure 2b[and zﬁm

A. Explicit Computation of the abelian Operatian

The isomorphism betwee®? ™ and.«” ™ (See Proposition] 2)
induces the following abelian operation eA™.

Definition 18 (Addition Operation on PFSAJGiven any
G1,Gs € 27T, the addition operatior : &/ x &/ — &+
is defined as:

Gy + Gy = HE (H(Gy) @ HY(Gy))

If the summand PFSA have identical structure (i.e., their

underlying graphs are identical), then the explicit coration
of this sum is stated as follows.

Proposition 4 (PFSA Addition)if two PFSA G1,G> €
/T are of the same structure, i.€; = (Q, X, 0, qo,1L;),i =
{1, 2}, then we have71+G2 = (Q, %, 6, qo, IT) where

ﬁl(g, O')ﬁg(g, o)
Zan Hl(Qa a)HQ (Qa Oé)

(q,0) =

(6)

Proof: Let p; = H(G;), i = {1,2} and sinceGy, G2
have the same structure, we have from Ed. (9):
VYo € 3,Vz s.t. 6" (qo0,x) = q € Q,
pi(zo)
pi(z)
Now, by Definition[I¥ and Definitioq]9,
= _ (m®p2)(xo)  pi(zo)pa(z0o)
H(Qa 0) - -
(1@ p2)(x)  Dsexpi(za)pz(za)
1(zo)pa(zo) ~ ~
“hi o) M (g, 0)T2(g, )
ZQGZ Hl (q7 Q)HQ (Qa Oé)

=11;(6* (90, %), 0) = IL(q, 0) @)

- pi(za)pa(za)

2 aes pr@pa(@)

The extension to the general case is achieved by using syn-
chronous composition of probabilistic machines.

Proposition 5 (PFSA Addition (General case)piven two
PFSA G,,G, € &/, the sumG+G, is computed via
Propositio % and Definition 14 as follows:

G1+Gy = (Gl ® G2)+(G2 ® Gl) (8)
Proof: Noting thatG; ® G, and G, ® GG; have the same
structure up to state relabeling, it follows from Propasifil:
HY(G1+G2) = HT(G1) @ HT(G2)  (See Definition [18)
=H"(G1 ® Go) @ H (G2 ® Gy)

=H* <(G1 ® G2)+(G2 ® Gl))

which completes the proof. ]
Example 1:Let G; and G, be two PFSA with identical
structures, such that the probability morph matrices are:

0.2 0.8 ~ 0.1 0.9
(0.4 0.6) andl; = (0.6 o.4> ©
Then thell-matrix for the sumG,+Go, denoted byﬁu, is

0.1x0.2 0.9x0.8 0.027 0.973
0.6 x04 04x0.6 0.5 0.5

II, =

Normalize

Tows

IV. A MACHINE REPRESENTATION OFPFSA UM

In this section, we investigate the implementation of the
sum of two PFSA by a sequentially controlled interaction
of individually generated symbol strings, which form the
conceptual basis of designing a semantic annihilator.iiete
to Figure[3, we will call this thePlus-machine.

-
>
|
Switch (“7 Output
N Sequence
@ G1+Gy
Switch /¢

Fig. 3: Sum of two PFSA: Thé&lus-machine.Z (G,+G5).
The machines generate symbols independently, but is allowe
to change states only if the generated symbols match.

A. Functional Description of th@lus-Machine

For a given pair of PFSAZ; and G», the Plus-machine
denoted as a7 (G1+G2) has the following components:
o Copies of the component machin€s and G,. We
assume, without loss of generality, th@t and G, have
the same structure (See Definitionl 14), since this can be
always arranged (See Propositldn 1).



« Alogical AND gateaND : X x 3 — {0, 1} which operates ]

as follows: It follows from Propositior{ B, that th€lus-Machine can be
0 (false) if o; # o; used to annihilate information in the symbol string geredtat
Voi,05 € X, 0; AND 0 = { 1 (true)  otherwise by a PFSA in the following manner:
G+H =H_1(i,) = #(G+H) =H_1(io) (10)
B. Operational Description of th€lus-Machine which implies that ifG is the underlying PFSA for the sensed
The + machine.#Z (G,+G2) operates as follows: process, and we can computesuch thatG+ H = H_; (i,),
« Each of the component machings; and G-, is initial- and subsequently modify the incoming sensed data stream via

« Each of the component machings; andG,, operates Polic white noise in the output, which then can be identified
in a statistically independent manner to generate symb&@sily- This, however, is not directly achievable in pretior

from the alphabek. the following reasons:

« However, to activate a state transition, the generatedl) Impossibility of state synchronization with sensed
symbols must be passed through theD gate, upon stream.
which they must yield a true output. Formally, 2) Impossibility of disabling state transitions in the semhs

physical process.

The next section presents modifications to this basic con-
(i, 95), ) struction to admit a physically realizable implementatiin
if o; AND 0; =0 5 semantic annihilator.

5<(qz‘7%)(0iaaﬂ')) = (6(qi,0i)a5(%0j))v

otherwise

VO'Z',O'J‘ S anzaq] S Q7

V. SEMANTIC ANNIHILATION

L . “ » In this section, we assume that we are given a pre-
« The machine is assumed to function inside a “black boxidentified (during the training phase) pattern libragy 2
with an external observer. The observable output stri 9 9p b -

generated as followsA generated symbol is observablg% + G' € o/7} containing a finite number of patterng of
if and only if it causes a sMargtate transition interest, represented as PFSA. We would constrisetraantic

. . o . annihilator for each pattern in, which would be used in
The sequential functioning of# (G,1+G-) is illustrated in

! - _ online classification.
Figure[3. We have the following result: _ _ We need the following function that operates symbol-wise
Proposition 6 (Semantic Compressiorfjor a given pair of

) ) on streams, typically implementing a selective erasurehef t
PFSA G4, G, if the output string from theZ(G1+Gs)

) , two input streamse(is the null symbol.e., the identity in
is denoted ast € ¥, then, the PFSAC(z) obtained by

g L the concatenative free monoid over the alphabyet
semantically compressingis given by the sunt;+G. Definition 19 (Erasing Function)The erasing functioq :

Proof: It follows from the functional description, and theX x > — 3| J{e¢} is defined as follows:
following considerations:

. if 01 AND 03 =1
1) The component machings; and G, are always state §(o1,02) = { 061 ;tgérwise 72 (11)
synchronized (follows from operational description).
2) The components generate symbols in a statistically in- _ _ o
dependent manner. A. Construction of the Semantic Annihilator
3) The probability for.#Z(G,+G3) to emit a particular
symbolo € 3, while being at statégq;, ¢;), (i.e. both
components are at statg), is given by the probability Check for |,
of generatingr simultaneously (and independently) bySensed White Noise

both components; and the probability of this compoungtréam
symbol (marginalized by the probability of generating
identical symbols on both machines) is :

ﬁlQ((Qi, ), (0,0))

_ _Mi(g,0)5(gi,0)  <— Compound Event
> o Hi(gi, 0)Ilx(g;,0) <—Marginalization ! | Semantic |
which matches exactly with Propositibh 4. @ | Annihilator
4) Since the internal states of/ (G1+G>) are always of
the form(g;, ¢;), it is straightforward to see that for any
correct semantic compression algorithm, the structure
of the identified PFSA matches with the component The component machines are set as follows:
machines(G; andG,. The proof is now complete. o LettheG € G be one element of the pattern library.

Fig. 4: The block design for a semantic annihilator



« Construct the additive inverse f6#, i.e. computeH s.t. they can be assumed to be synchronized (since gtate
. G andg; in H can be mapped to state;,qx) in G x H).
_ gt 3
G+H =HT, (i) (12) Denoting the machines modified by the synchronous product
Let the state set foff be Qy, and let|Qy| = m. asG* and H* respectively, we note:
« Createm copies forH, each initialized at a distinct state. x x . .
; ' G H* =H_4(i,) (By A t 16
Let H’ be the copy of the PFSA initialized at state + 1(fo) (By Assumption) (16)
q; € Qu. But sinceH(G*) = H(G) andH(H*) = H(H) (since the
underlying measures are not modified by going to a non-

B. Operational Description of the Annihilator minimal realization via synchronous product), it follows:

The semantic annihilator operates as follows: H(G)+ H(H) =i, = G+H = H_4 (i) 17)

1) Read symbOb e, from sensor which contradicts Eq[{35). This completes the proof. m

2) Independently generate symbeisfor each component  oyr key motivation for developing the annihilator was to
H. . . be able to classify PFSA-based patterns faster and in a more

3) Transition eactti’ using the same symbokensor. robust fashion in real-time or near-real-time field openati

4) Constructn symbol streams’ € X% : j € {1,---,m}  The argument for robustness is pretty obvious, since otte sta
recursively using the erasing functign models, especially with uniform generation probabilitéshe

(13) symbols {.e. white noise) are the easiest ones to identify
‘ reliably for any compression algorithm. The argument for
5) Check if anyw’ is in fact symbolic white noise. fast identification is more involved, primarily due to thetfa
Next we present the main result (Propositidn 7) whicthat the annihilators selectively erase symbols leading to
rigorously establishes the annihilation concept as a gi&dl decrease in the lengths of the observed symbol strings., Thus
for pattern classification. although we only need to check for white noise in the outputs

Proposition 7 (Main Result)At least one of the con- (which is significantly faster compared to directly idewiify
structed streams’ will semantically compress to symbolicthe original pattern), the fact that now we are dealing with
white noise if and only ifG+H = H*, (i,), i.e., a shorter string, implies that there is the possibility ttre

it g . i . increased speed of identification is offset by the slow down
G+H! =HZ,(io) & 3j (C(w’) = Hoa(io)) (14)  of the rate of symbol production at the outputs. In the next

(See Notatioi]3, and note that’ is a copy ofH initialized Section, we investigate this issue in more details, andveleri
at the j*" state. ) rigorous performance guarantees.

W-I]JPDATE = wjg(o—sensora Uj)

Proof: (Left to Right:) Let the sensed process be gener-
ated by the underlying PFS&, such thatG+H = H_, (i,). VI PERFORMA_NCEOF SEMANTIC ANNIHI_LATORS
We note that, by construction, there exigissuch thatH?« We need the notlon.of.a stationary d|str|put|on on thg states
is always state synchronized witil. However, we only see of a given PFSA. This is in fact thg_stauongry distribution
symbols in the output streamy’*, if the generated symbolsfor the stochastic transition probabmty matrix that caa b
are identical. It follows that, on compressiati would yield C€Oomputed from the connectivity graph and the symbol gen-
a modified PFSA (denote bg™°?) with structure identical €ration probabilitied]. Also, as stated before, we assume that

to &, but each row of tha&l™°¢ matrix would be modified as all PFSA considered in this paper are irre_zducible,,_have _
a strongly connected graph and hence yields an irreducible

follows: - -~ '
~ ~ transition probability matrix.
(g, o) = HN(% o)l N(in o) Definition 20 (Stationary Distribution)for a given PFSA
S, 0% (g, 0)[1H (g3, 0) G = (Q,%,46,1I), the stationary distributiop® € [0,1]/<!,
B ﬁG(C]i, U)(ﬁG(qi7 o))" K (¢;) 1 > 95 =1 is defined as:
S ﬁG(qi, U)(ﬁG(qi, o)) 1K () Bl 1) Construct the transition probability TatrH( as:
whereK (¢;) = 3" (11 (g;, o))" is the normalizing constant, Vaisg; € Q, 1[5 = Z I(gi,o)  (18)
implying each row is identical and uniform which in turn 7:0(4i,0) =4
implies that the identified model is symbolic white noise. 2) Noting thatll is an irreducible stochastic matrix, com-
(Right to Left:) We show this by contradiction as follows: pute the stationary distributiop® as the stationary
Let the sensed process is generatedzbguch that probability distribution for the state transition matiik
) G : : .
. i.e., P is the unique sum-normalized left eigenvector
G+H # H_1 (1) (15) for II satisfyingpCII = ©C.

and assume if possible, that there exists a constructeahnstrdt follows from the irreducibility assumption, that the sta
w’+ which compresses to white noise. Although, we canntibnary distribution is unique for a given PFSA, and has no
assume that any’ is state synchronized wit&y directly, we dependence on the initial stafe [20].

can consider the structure of bathand H to be represented Notation 4: In the sequel, we use the notatiopS =
(without loss of generality) by the one fa&¥ x H, in which ming,cq p°.



Also, our assumption of irreducible models leads to the Proof: We first note that the stationary frequency distribu-
following property for the stationary distribution: tion ¥y, of the symbols (over alphabg)) in a string generated
Proposition 8: For any PFSAG = (Q, X%, 6,1I) with an by an arbitrary irreducible PFS& . is given by:

irreducible underlying graph,¢ > 0. ~
Proof: Sincell is irreducible for suclz, no non-negative

left eigenvector ofll has a zero coordinatg [20]. B where the independence from the initial state follows frown t
We want to estimate the shortening experienced by the sengegducibility of G,,.,. It then follows from Propositiohl9, that
symbol strings due to the annihilation operation. We regjuithe frequency distribution for the auxiliary automatarfG)
the notion of the auxiliary PFSA\(G) for a given PFSA is given by:

G, which captures the simultaneous operation of the two

machines, without erasure of the non-matching symbols. Usys =9

Definition 21 (Auxiliary PFSA):For a given PFSAG = which in turn imoli . .
= - . ) _ B plies (See Eq[(IPb)) that the probability
(Q,%3,9,IT), the auxiliary PFSAL(G) s defined asA () = ¢ any symbol generated ldy is observable is given by:

(Q,xJY/, 64, 11*), whereX is a distinctisomorphic copy

A(G)ﬁA(G) — pGﬁA(G) (24)

of X, with .# : ¥ — ¥’ being the (bijective) isomorphism, . |l
and: A=) CIM| = ol (25)
5(qi, o) ifoeXx hoi€X g
M qi,0) = o : 19 :
(¢, 0) { §(qi, # " 'o)  otherwise (192) This completes the proof. [ |
_ 17 foeX Next, we define the coefficient of annihilation advantage:
A % € - - I
% (gi, 0) = (g L . (19b)  Definition 22 (Coefficient of Annihilation AdvantageJor
¢i,0) — 74 otherwise i = .
=] a given PFSAG = (Q, %, 4,11), let Ly be the string length

where./Z is the harmonic mean of thé" row of thell matrix required for direct identification via semantic compressio
for G. and let L,, be the string length required for identifying
Proposition 9 (Properties of the Auxiliary Automaton): ~ symbolic white noise. Then the Coefficient of Annihilation
The auxiliary automaton\(G) = (Q,XJY’,64,1I4) has Advantage §) is defined as the ratio:
the following properties: 5 Lo
1) pMD = ¢ =T <9 o
2) If H is the annihilator component that is correctly state- La ZL@ o7 A
synchronized withG (where G is the correct PFSA  Remark 3:It follows that when we have enough datato do a
corresponding to the annihilator), thel(G) correctly direct compression (of say lengihy), then the expected length
tracks H (state-wise and symbol-wise), if we consideof the correctly annihilated string is given kiyiz‘i@‘ oS A
that allo € X' are unobservable. Since we are required to identify symbolic white noise at the

Proof: (1) follows immediately from Definitiori 21, by annihilator output, and if the string length for identifiicat
noting that the probability transition matrix is left ureded in  Of Symbolic white noise is denoted Hy,, then identification
the construction of\.(G). For (2), we note that the transition V'2 S(IeerRanth(/: an’nlhll-atlon is advantageous if we hdve <
structure forH (and hence?) is recovered if we mapo € Ld >0 o7 A, e, if we have§ < 1.

S, o — Z~1g. Next, we compute the probabilipy,s. (:, o) In the sequel, we compute upper bounds on the Coefficient
of an observable: when H is at statey; as: of Annihilation Advantages. In order to do so, it is obvious

that we need to relate the lengthhg and L,,. However, we

(26)

Vo € X, wish to achieve this without reference to any specific atbari
Povs (¢ 7) =11 (q;, )T (s, 0) for semantic compressione., we want the computed bounds
~G ~c . 1 to hold true irrespective of the manner we construct PFSA
=I1"(gs, o) (11 (gi, 9)) > (ﬁG( o)) models out of symbol strings. We note that if we are to
1 7 @ compress a string from a symbolic white noise, then we
=—J (20) would expect to obtain a single state PFSA with equi-prababl

= symbols. However, since we are talking about probabilistic
It follows from above, that the probability of an unobserneab generators, observingsymbol each from the alphabet would
o when H is at statey; is given by: not be sufficient; or rather would be a very bad way of infagrin
a( i%ﬂ 21) that the symbol string is generated from the symbolic white
> noise. Since we assume thaj, is the string length required
which completes the proof. m for the identification (for the particular algorithm, whigver
Corollary 1: (To PropositioiP) If the length of the symbolthat may be), the number of symbols of each label that we need

string generated bg is denoted byL¢;, then the lengtiL,,, O observe would be at Iea%Lw. In the sequel, we assume
of the correctly annihilated string satisfies: that for an arbitrary PFSA, the number of symbols of each

Ql label that we need to observe at each state must also be of at
lim  Zann _ Z oC A 22) least this vaIu%Lw, since the chosen algorithm apparently
K2
7

Vo € Elapunobs(qia 0) =1I qi, 0) -

Le—oo Lg requires this many observations for statistical inference



Proposition 10 (Upper Bound fof): For a given PFSA Statement(2) strict. The reason is that it is possible for a
G = (Q, %, 4,1I) with an irreducible underlying graph, whichPFSA to have non-uniform symbol generation probabilities
is not a realization of symbolic white noise, we have th&#om some states, and yet end up having an uniform stationary
following upper bounds: distribution over its states. Note here that the propertyaiifg

I I2/1Q|C white (in the way we dpfined) has to do V\_/ith the uniformﬁty of
= ; Z‘Ql‘u v < o ‘Q‘* £ 3, the rows of thel maf[r_|x, and_not the stationary pr_oba_blhtu_es.
A2 i Z@?%Z%,l Remark 5:Propositio 1D is a strong result which implies

=1 j=1

1) B

that pattern classification via semantic annihilators idaict
(27a) advantageous for most PFSA encountered in practice, where
typically one has a relatively small number of alphabet sym-
2) B < B (27b) bols and a possibly large number of machine states.

Q Remark 6: The bounds computed in Propositiod 10 are not
tight. Specifically, note that we neglected the fact that for
a general PFSA, the string length for identification could
oS Ly minﬁ(qi o) = LLM (28) be §ig|_’1ificantl_y greater _due _to issues relating to adequatel

¥ een T Y achieving statistical stationarity of the observed stre@hus
even for models for whichX| > |Q], it is not automatic
that identification via annihilation is slower compared bedt
gmpression.

Proof: We note for each statg € @, we have:

which follows from noting that$ L, is at least the number
of times statey; is visited, and hence® L, min,cx [1(g;, o)

is at least the expected number of the least likely symboﬁ
generated af;. It follows:

I Luw 1 o Lo . - VIl. SUMMARIZED ALGORITHMS FORCLASSIFICATION
"2 5168 minnen Tilano) = [Elp8 (29) VIA SEMANTIC ANNIHILATION
1Ql For each pattern in the specified pattern library, we first
= |Q|Lq > Z—wG Zj?fl (30) compute the inverse PFSA using Algoritfiin 1. Note, that step
|Xlpt i=1 4 in Algorithm [1 is well-defined (and does not encounter
Ly, 12]|1Q|p¢ a divide-by-zero overflow) on account of our assumption of
=B = LdZI-QI oG A, <70 1Ql (31)  the restricted setz+ (See Definition_15). Once the inverse

Z S A, ijj—l patterns are computed, we need to set up the pattern-specific
im1 =1 annihilators. Namely, for each pattern wijtl| states, we need

. . . N | copies of the inverse, each initialized to a distinct stage,
;\cl)(ljlz)e ;hfioit]”fﬁeb% Lé??h:Gthse ;;anria'pe;%arl]'tgf '2 E}%Si%ted before. The annihilation process requires seggein-
ows T : ) ! 1zal Y '® eration of symbols from these initialized PFSA, in accoaan
white noise, implying3g; € Q, J4 > mingex H(g;,0),

which completes the proof of Statemefti). For Statement to the|r.computed morph matnces_. This is done as foIIows:.

(2), we first note that for any sequence of real numbers,1) Given the current state, we first select the corresponding

the harmonic mean of the sequence is bounded above by its ow of the morph matrix, which specifies the probabil-

arithmetic mean. Hence, it follows that: ity distribution of the to-be-generated symbol over the
Ql alphabet.

Z w 2) We generate a symbol in accordance to this distribution.
J

Q| = 1 1 There are standard reported ways of selecting an outcome
= Q] = Te] Te] = I in accordance to a specified distribution. We explicitlytesta
one method involving a uniform random number generator
— with rangel0, 1], which guarantees that the asymptotic time-
1 1 1 complexity of this choice i€ (log,(|X])) (See AlgorithnR).
= o] < T_he §tated approach invollves cqnsidering the cumulatisg di
Z WO Z ! Z oA Z ! tribution for the symbol. Since this has to be done each time a
_ 77 J _ * J symbol is generated, we compute the cumulative morph matrix
=t Fé . ..., for the inverted models offline as follows:
ZllQlps < ZllQley _ =] Definition 23 (Cumulative Morph Matrix)The cumulative

Q| Q| = QRS T Q| mor - : .
B * ph matrixII.,., is computed as follows:
LI
=1 j=1
where the last step follows from the fact that irreduciipitiff

j ~
= Z I
G guarantee$¢ > 0. This completes the proof. (] Yoot
Remark 4:Note that although we assume th@tis not The sequential symbol generation then uses rows of the cu-
a realization of symbolic white noise, we could not assunreulative morph matrix instead, as the inputo Algorithm[2.
Jg: € Q o > ¢, which would have made the bound in

Meum (32)

i
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Algorithm 1: Computation of Inverse Pattern

Algorithm 2 : Probabilistic Symbol Generation

input : PFSAG =

(Q,%,6,10)

output: PFSA-G

input : Non-negative vector of length || such that
vli £ vlit1, vy = 1, Alphabet

1 begin E={o1, o5}
2 for i =1:]Q| do output: Generated Symbat
for j=1:|%| do 1 begin
. = L. 2 Generate random kel € [0,1] ;
RS T 3 | lowerB =1;
endfor ' 4 | upperB = [X]|;
for j=1:|%| do 5 | while upperB > (lowerB + 1) do
B e 6 M= (W]; /* Rounding to Next
;j = L Integer */
I .
Za ij 7 if K, < vy then
endfor 8 | upperB = M:
endfor o else
0 | -G=(Q,%,41II); 10 | lowerB = M;
11 end 1 endif
12 endw
13 if & < v|iowers then
Lemma 1:Assuming that uniform random numbers in the: 0 = OlowerB;
range[0, 1] can be generated in constant time, the asymptatic | else
time-complexity of Algorithn{® isO(log,(|X])). 16 | o= ouppers;
Proof: We note that the possible number of choices for endif

the to-be-generated symbol reduces by half its previousevals end
in each iteration, implying that the number of iteratiohs
satisfies:

2! ST = I < log,(I%))

Algorithm 3: Componentwise Annihilation Operation

which completes the proof. ]
Each copy of the inverted model in the annihilator accesses
the sensed symbol, generates its own symbol in accordance
to its current state, reports the symbol if there is a match

Pegm
and finally updates the current state using the sensed symbo

Set current stat@cur = Ginit;
The sequence of moves for each component (or copy) 3s /v Tnfinite 1 /
* *

enumerated in Algorithni]3. ThéQ| reported streams are nfinite loop

while true do
individually compressed to check if any is in fact white mms Observe sensed symbalonced:

5 Generate random symbo}en using row ofﬁcum
corresponding t@curr; /* Algorithm 21 =/

input : Cumulative Morph Matrixﬁcum, Initial state
ginit» Transition functiony
output: Reported symbol stream

VIII. A SYMPTOTIC COMPLEXITY ANALYSIS

We ascertain thc asymptotic time complcxit_y per sensed if Ogensed== 0gen then
symbol of the online portion of the annihilation process, Reportogen, /* Annihilated Stream
assuming the pattern corresponding to the annihilatoidsed v/
present in the sensed stream. This analysis is importace sirs endif
the annihilator is processing a multi-stream input, and e&d o Update current stat@ur = d(qeurr , Tsensed:
to convince ourselves that the work required per observed | endw
symbol is not too great, particularly since an overtly coempl11 end
algorithm will be unable to handle high data rates.
We assume, as before, that random keys can be generated
in constant time. Then, we have the following result:
Proposition 11: For a given PFSAG = (Q, %, 4,1I), the
asymptotic time-complexity7; of classification via annihila- whereT, is the complexity of generating random keys in the
tion, per sensed symbol, is bounded as: range[0,1], L,, is the string length required for identifying
e = Ology(15))) (33) the symbolic white noise, andy is the time complexity of

identifying symbolic white noise (using some given direct
Proof: Time-complexity of identificatiorC';, considering compression algorithm, and assuming we check for white

noise on each stream after each sensed symbol observation).
Hence, assuming that we have the total sensed string length
as Ly, it follows that the time complexity per sensed symbol

all |@| components of the annihilator, satisfies:
C1 = Tr|Q|O(logy(|X])) L Co (34)
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IX. VERIFICATION & VALIDATION

In this section, we validate the preceding theoretical Heve
opments in simulation. The PFSA models selected for gen-
erating the simulated symbol string is illustrated in Fiji
The model (M2) shown in Figurgl 5(a) has the structure of a
suffix automaton[[1]. PFSA which have such structures are
easier to identify from symbolic strings; primarily due toet
existence of synchronizing strinds [@trings which lead to a
particular state irrespective of the starting statEpr example,
in the model M2, the stateg, ¢2, g3, g4 can be easily seen
to represent sets of symbol strings ending0in 01, 10, 11
respectively [[2P], [[1]. Although, the state structure ist no
available a priori to the compression algorithm, neveebs|
such so-called-Markov machines [22] are significantly easier
to identify. For examples of physical situations in anomaly
Fig. 5: PFSA models used for simulation, real numbers agetection which give rise to, or are effectively modeled byts
symbol probabilities, integers are symbol labels: (a) M2 i&Markov machines, the reader is referred [tol [23], [3]. The
a subshift of finite type having the structure of a suffisecond model (S1) (Figuré 5(b)) has only two states. However
automaton, (b)S1 is a generalized even shift process, isSh represents a generalization of the even-shift process, a
strictly Sofic system and has no synchronizing string its underlying graph is an example of a strictly Sofic shift

procesgand not a sub-shift of finite typé [24]B5pecifically,
S1 does not have any synchronizing strings,, without the
is bounded by: knowledge of the initial state one cannot infer the curréaties
in a deterministic sense even from arbitrary long obsewwati
strings. Such models are significantly more difficult to itifgn
(Seel[8] for discussion) for any of the compression algarih
reported in the literature [1], [22].
Using Definition[22, we have: The algorithm used for direct compression is a modified
version of CSSR[[8],[]7]. We compare PFSA models using
Q| the metricd proposed in[[9], which is capable of computing
g < TR%IQWGO&(@I))BZ@?% (35b) distances between PFSA models with different underlying
i graphs (with identical alphabetd)lote that while the output
of the direct compression algorithm is compared against the
Using Propositiofi 20, and noting; < 5y, we have: original model, the annihilator output is compared against
symbolic white noise.
) Q| . f In tr;]e twodslimula(tjion runs re;.:]orted,_ weI genherate d_atz:tj
120 a_t rom the models and compare the string lengths require
I = TRCO|Q|O(1Og2(|Z|))|Q| ;@1 | (350) by direct compression versus classification via anniluifati
= e < TrCoO(log,(|Z))) (35d) The_annihilators were _construg:ted fr_om th_e knowledge of _the
particular model used in the simulation using the formolati
presented in Sectidn VAA. Note, that the annihilation tégha
is not meant for identification of an unknown patterie(
pattern identification), but detecting if the sensed synshrihg
e = O(log,y(|X])) (35€) is actually being generated by a known library pattera. (
pattern classification). Figurlg 6(a) illustrates the risstibr
Note that Eqn[(35a) is exact and not an averaging, since wep@, and we note that the annihilator is significantly faster.
the same work every time a symbol is sensed. This complefse principal advantage of using annihilators is bettarsill
the proof. B trated for S1, where, for reasons explained above, thetdirec
This is a strong result showing that the asymptotic time&ompression algorithm has a hard time, and has failed to cor-
complexity of classification via annihilation, per symbd, rectly identify S1 even after000 symbols (convergence was
independent of complexity of the pattern and the number observed at arounth000 symbols). The annihilator identifies
PFSA states, and is only mildly dependent on the cardinali81 at just ovei 000 symbols as shown in Figuké 6(b). Finally,
of the alphabet. Again, since the alphabet sizes are relativFigure[6(c) compares the response of a annihilator whicls doe
small, and recalling that the proposed technique is prgvabiot correspond to the process generating the observed ¢gmbo
faster compared to direct compression for most models,with one that does. Note, that in both cases, the responses ar
follows that classification via annihilation is indeed High very stable; with the incorrect annihilator converging(t
advantageous for online operation. and the correct one to (very nearly)which reflects a match.

(b) S1

Ao < TRco|Q|O<1og2<|z|>>f.J—j (35a)

Neglecting constant time factors, we have:
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Fig. 6: (a) Simulation result for model M2: Note that directngpression converges 8600 symbols, while the annihilator
converges at just oveln00 symbols. A few intermediate models identified by the diremhpression algorithm is also shown.
(b) Simulation result for model S1: Note that direct compies has failed to converge @00 symbols; (c) Comparison of

distance of annihilated strings from symbolic white noise dorrect and incorrect annihilatorise., where we have a pattern
match and where we do not.

In general, evaluation of such a pattern match involvesgusin X. INTUITIVE INTERPRETATION& POTENTIAL
a specified detection threshold, the implications of which a APPLICATIONS
discussed in the next section.

An important intuitive insight on why the annihilators are

Implication of Propositior_10 is illustrated explicitly inaple to classify the streams faster can be given as follows: b
Figure[7a (a snapshot of the annihilation process in the@byoiding direct compression of the observed symbol segqjenc
described simulation runs), where we note that the antiila we are essentia”y So|ving a classification pr0b|em, whschni
process essentially erases symbols selectively in thevimzp general, easier compared to a full blown identication peoh!
data stream, and hence yields a significantly shorter oederyhyolving discovery of new patterns. Direct compression is
sequence. Although, we now have the relatively easier task@@pable of telling us not only if there is a match, but alsddge
identifying if this annihilated sequence is indeed whitet bthe new PFSA model of the observed sequence when there
even such an identification cannot be effectively done wif§ no match with the existing templates. Annihilation only
too few symbols. Proposition 10 guarantees that the lengfiiicates the matching template if there is one, and indicat
shortening cannot offset this advantage in practical se@ha a "no match” otherwise. Thus, the increased efficiency is not
where we are most likely to have more states than the to&jrprising. This is particularly useful for templates tihatve
number of symbols in the alphabet. no synchronizing strings (such as the modal), where for
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ORIGINAL :11000000001111000000110000011001100000000110110000011000011110000110011001100110000001100011000000001110001111
ANNHLTD: 1 0 10111EDE000108000G000 00C1 10 011001 11 0101001 1 100C0! 00 00010
OBSERVD: 101110010110001100110011101010011100011: <— Length Shortening Of Observed Annihilated Stream
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Fig. 7: (a) Snapshot of the annihilation process (b) Patttassification scheme in symbolized sensory data streams

direct compression, one needs to distinguish betweendkesst (AWGN) in the communication channels, an optimum filter
using long observation sequences, that disambiguately@ssior receiver-end demodulation exists, and is a functioty ol
future evolutions based on the small deviations in the ofesker the transmitted pulse shape. Because of this direct rakttip
probability distributions on the future strings. If the sfral to the transmitted pulse, it is called rmatched filter The
gap of the corresponding Markov chain is small, the sequenakerivation of a classical matched filter is essentially Hase
required can turn out to be unacceptably long (since smalkedirect application of Schwartz inequalify [21], and leaols
the spectral gap, longer is the mixing time). This is what wa very simple and remarkable conclusion:

see manifested in Figq@Zp, where direct compression has a For AWGN channels, the signal to noise ratio is
hard time. For the annihilation, sn_Jch complexities are ab;e maximized when the impulse response of that filter
the spe<_:tral gap does play a role in the degree of shortefiing o g exactly a reversed and time delayed copy of the
the annihilated sequence (See Proposltidn 10), but ong/alwa  {ansmitted signal.

looks for symbolic white noise at the annihilator outpu

tS' he bi [ db ignal during d d
irrespective of the complexity of the template. ince the bit error rate experienced by a signal during demo

lation is a function of the signal to noise ratio [26], a matdh
The idea of pattern classification via controlled inforroati filter which maximizes SNR will automatically provide the
erasure may seem somewhat counter-intuitive at the filstvest possible BER. The analogy of semantic annihilation
reading. However, the key notion exploited here has a cleaith matched filters is compelling: instead of using a time-
analogue in communication theory, particularly in the tiyeaf  reversed copy of the signal template, we are using the symbol
matched filters[[25]. A matched filter is a theoretical comstir stream generated by an inverse probabilistic automataadus
(and not the name of a specific filter family) which processesaamatched filter functions by convolving the signal with its
received signal to minimize the effect of noige;. maximizes reversed and delayed copy, the annihilator carries out efmb
the signal to noise ratio (SNR), and simultaneously min@niz wise comparisons between the given symbol stream, and the
the probability of bit error rate (BER). It can be showrstate-specific ones generated by the inverted templateingra
that, under the assumption of additive white Gaussian noisgmbols that do not match. The fact that we can carry out this
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procedure in a deterministic fashion should not be sumgisi over noisy channels. In this paper, we considered the dpecia
the convolution in the case of matched filters is generally cacase where the symbol stream generated by a PESK
ried out using Fourier transforms (FFT), which is also aeathannihilated by the inverse modelG. However, in general, one
straightforward deterministic operation. In the latteseathe can apply similar ideas to encode a stream from PES4sing
filtered signal must still be recognized, but this decisioran encoding PFSA&. asG+G., and demodulate by "adding”
making task is now significantly easier due to the filtratiorthe inverse strean’+G.+(—G.) = G. Such avenues will be
enhanced SNR. In our case, the annihilator does not outputexplored in future, where careful choice of the encoding#FS
enhanced signal, but reduces it to white noise if the correnfy lead to greater resilience to noise corruption, or egen t
template is used. However, the task of recognizing symbolinauthorized message access.
white noise is significantly easier compared to recognitiegy
template pattern directly; thus reinforcing the analogie T XI. SUMMARY, CONCLUSIONS& FUTURE WORK
recognition of symbolic white noise does involve the use of We defined an additive abelian group for probability mea-
a detection threshold, since in practical scenarios, weato sures on symbolic strings, which induces an abelian group on
expect the signal and the template to match exactly, givenslightly restricted set of PFSA. The defined PFSA sum is
finite-length observation sequences. Thus, when the distaithen used to formulate semantic annihilators, which identi
between at least one of the PFSA models computed from tie-specified patterns of interest via perfect removal of al
annihilator output falls within a pre-specified distancetite inter-symbol correlations from observed strings, turniingm
white noise model (in the sense of the PFSA metrjg]), we to symbolic white noise. This approach of classification via
conclude a positive match. Using arbitrarily small thrddeo annihilation is shown to be advantageous, with theoretical
may require long data streams, and most likely will resuffuarantees, for a large class PFSA models. The results are
in negative matches due to small noise-mediated mismagipported by simulation experiments.
between the streams. Future work will extend the formulation to models where
The key application that the authors have in mind igot all symbols satisfy the condition that the generatiarbpr
pattern classification in symbolized (or quantized) sensobilities are strictly non-zero from each model state. THeaf
data streams. This particular approach of pattern detectief noise corruption on observed strings need to be investiga
in sensory data has been shown to be significantly moaéth particular emphasis on the comparative effect of noisy
efficient to classical continuous domain techniques, étihip observations on direct compression and semantic anrdnilat
remarkable insensitivity to spurious noise and exogendsss dFurthermore, implementation in actual experimental siesa
turbances; primarily due to the quantization-mediatedsma Will further validate the proposed classification techmigu
graining, and as a consequence of repeated recurrences of
paths in the graph of the finite state machine with relatively
few states and a large number of sample points in the (faBf K. Murphy, “Passively leaming finite ~automata, Santa
. . L Fe Institute, Tech. Rep., 1996. [Online].  Available:
scale) time series data [22]. Recent applications of sSuGAPF citeseer.ist. psu.edu/murphy95passively. html
based pattern classification has been effectively applied {2] D. Angluin and C. H. Smith, “Inductive inference: Theamd methods,”
anomaly detection problems in complex electro-mechanical ACM Comput. Survvol. 15, no. 3, pp. 237-269, 1983.
. . . . [3] V. Rajagopalan and A.Ray, “Symbolic time series analyga wavelet-
machines [23]' and traCkmg targets via Iarge'scale nmicial based partitioning,’Signal Processingvol. 86, no. 11, pp. 3309-3320,
urban sensor networks [27]. The basic philosophy is illus- 2006.

trated in Figuréj]b. Continuous valued data from sensos(s) [4] S. Lucas and T. Reynolds, “Learning deterministic firitdomata with
a smart state labeling evolutionary algorithnPattern Analysis and

quar_wtized via an a_ppropriately chosen partitio”ir‘_g schighe Machine Intelligence, IEEE Transactions,ovol. 27, no. 7, pp. 1063—
to yield a symbolic sequence over a pre-specified alphabet 1074, July 2005.

(depending on the coarseness of the chosen partition).eln th] A Paz, Introductio_n to probabilistic automata (Co_mputer scieraed
applied mathematics) Orlando, FL, USA: Academic Press, Inc., 1971.

absence of anmh_'la_'tors’ one is then re_qu”‘ed to algorithfyi [6] E. Vidal, F. Thollard, C. de la Higuera, F. Casacubertaj R. Carrasco,
compress a sufficiently long symbolic sequence to extract “Probabilistic finite-state machines - part iPattern Analysis and

the underlying causal generative model in the form of a Machine Intelligence, IEEE Transactions,ovol. 27, no. 7, pp. 1013-
robabilistic finite automata. The classifier is providedhwi 1025, July 2005.
p : p [71 C. R. Shalizi K. L. Shalizi and J. P. Crutchfield, “An

a template library consisting of PFSA models that encode the algorithm for pattern discovery in time series, Technical

pertinent patterns of interest. Once the observed sequisnce Report, Santa Fe Institute October 2002. [Online]. ~Available:
dt PESA. thi th b d inst http://www.citebase.org/abstract?id=oai:arXiv.osg0210025
compressed 10 a , this can then be compare aga”’[b? C. R. Shalizi and K. L. Shalizi, “Blind construction of bmal nonlinear

the individual library elements to compute a possible match  recursive predictors for discrete sequencesAlifAl '04: Proceedings of

The compression algorithms however. are often expensive' the 20th conference on Uncertainty in artificial intelligen Arlington,
! ’ ' Virginia, United States: AUAI Press, 2004, pp. 504-511.

pamcrl'”arly if the Underly'ng PFSA 'S not a Snghlft Qf fenit [9] I. Chattopadhyay and A. Ray, “Structural transformasi@f probabilistic
type [24]. Annihilation offers a significantly simple saior, finite state machines/nternational Journal of Contrglvol. 81, no. 5,
which skips the compression step altogether. The observecj pp. 820-835, May 2008. _

b bol-wi ihilated . the i tg'g J. Pearl,Probabilistic Reasoning in Intelligent Systems: Netwodfs
stream Ca_n e S_ym 0 W'Se_ _anm llated using _e _'r_“/er Plausible Inference San Francisco, CA, USA: Morgan Kaufmann
templates in the library, requiring less data, and signitiga Publishers Inc., 1988.
simpler implementations. [11] D. He(,:,kerma_n and D. Geiger, “Learning Bayesian

A d .. lication is the desi f PESA-b d Networks, Microsoft ~ Research, Redmond, WA, Tech.
second promising application 1s the aesign o -DaS€d Rep.  MSR-TR-95-02, December 1994. [Online]. Available:

novel modulation-demodulation schemes for communication [citeseer.ist.psu.edu/article/heckerman95learningl ht
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