
Optimized Decision Trees for Point Location in Polytopic Data Sets -

Application to Explicit MPC

A.N. Fuchs, C.N. Jones and M. Morari

Abstract— Explicit Model Predictive Control (EMPC) pro-
duces control laws defined over a set of polytopic regions in
the state space. In this paper we present a method to create a
binary search tree for point location in such polytopic sets, in
order to provide a fast lookup of the control law corresponding
to a given state. We use hyperplanes as decision criteria that are,
contrary to previous works, not constrained to the boundaries
of the polytopes. Each hyperplane is the solution of a mixed-
integer optimization problem with two objectives: having the
same number of polytopes on either side of the hyperplane and
minimizing the number of polytopes cut by the hyperplane.
Contrary to previous approaches, the method can be applied
to polytopic sets where the polytopes are either adjacent with
common facets (for classical EMPC) or separated in space
(for suboptimal EMPC). There are two benefits using this
approach: First, the method optimizes the balance of the tree. If
a tree of the theoretically lowest possible depth (i.e. log

2
depth)

exists, the algorithm will find it, although the time to solve
the optimization problem may become prohibitive for large
problems. Second, the method provides an efficient evaluation
of suboptimal EMPC policies since it allows to maximize the
distance of the hyperplane to the closest polytope that is not
intersected.

I. INTRODUCTION

A. Context

This paper deals with the construction of binary decision

trees for point location in polytopic data sets. A control

relevant application of the point location problem is the

evaluation of Explicit Model Predictive control (EMPC)

policies as introduced in [1] for the optimal control of

constrained linear systems with quadratic cost functions. The

control policy has the form of a piecewise affine (PWA)

function defined over a polytopic partition of the state space,

where each polytopic region is assigned to a linear control

law. Optimal control then reduces to determining which

region (polytope) contains the current state and to picking

the corresponding control law. This problem is known as the

point location problem.

Recent results on suboptimal robust EMPC study controllers

that only use a subset of the polytopic regions of the

original EMPC solution as an approximation of the optimal

solution [2], while still giving some stabilizing guarantees

[3]. Suboptimal control then reduces to determining a region

(polytope) that is close to the current state to picking the

corresponding control law.

Both optimal and suboptimal EMPC hence require to assign

a point of the state space to an element of a polytopic set.

B. The point location problem

We first consider ordinary EMPC policies. The simplest

approach to the point location problem - checking all poly-

topes whether they contain a given point - is very time-

consuming and can even take longer than a direct online-

optimization as is standard practice in ordinary MPC where

a quadratic program is solved at every time step.

A binary search tree based on hyperplanes reduces the online

computation of the controller to a sequence of inner product

evaluations as the decision criteria of the tree. The worst

evaluation time of the tree depends on the maximum number

of decisions to take, called depth. Geometrically, one can

interpret the decision criterion as a hyperplane separating

the polytopes into three groups - (a) polytopes entirely in

the positive halfspace, (b) polytopes entirely in the negative

halfspace and (c) polytopes with points in both halfspaces.

Clearly, if a given point (state) lies in the positive halfspace,

it can not be contained in a polytope which lies entirely in the

negative halfspace and vice versa. Let Pl denote the union

of all polytopes in group (a) and (c), and Pr the union of

those in (b) and (c). The hyperplane allows one to distinguish

whether a given point lies in Pl or Pr.

Tondel et al. [4] proposed a search tree whose decision hyper-

planes lie in the set of all irredundant bounding hyperplanes

of all polytopes (i.e. the affine hulls of the facets). The

algorithm evaluates how well each hyperplane serves as a

decision criterion for a binary search tree and picks the best

one. The process is repeated recursively in order to build the

tree, we refer to the result as facet tree. One drawback of this

approach is illustrated in Fig. 1, showing an example with

N = 9 polytopes. The facet tree does not balance the number

of elements in Pl and Pr very well and would result in a

tree of a depth linear in N . We will propose an alternative

algorithm that is not restricted to the use of facet hyperplanes

and for the example returns an optimal tree of depth log2 N .

Although the facet tree can in principle be applied to sets of

polytopes separated in space, it has not been designed for that

and potentially produces trees of larger depth. We show that

our method naturally extends to suboptimal EMPC policies,

maximizing at each decision level the distance between the

hyperplane and the closest polytope on either side. For point

location in classical EMPC solutions several other methods

have been proposed, that we will not further discuss. They

include the evaluation of the value function of all regions

[5], nearest neighbour search [6] and subdivision walking

[7]. During on-line evaluation, [6] and [7] are logarithmic

time in the number of polytopes, but restricted to classical

MPC with the polytopes not separated in space. While [5]

could in principle also be applied to suboptimal EMPC, it

is time-linear in the number of polytopes. The decision tree

proposed in this paper is time-logarithmic and can be applied

2010 American Control Conference
Marriott Waterfront, Baltimore, MD, USA
June 30-July 02, 2010

FrB01.5

978-1-4244-7427-1/10/$26.00 ©2010 AACC 5507

Optimal tree Facet tree

Fig. 1. Comparison of the optimized and the facet tree after one decision:
Pl (black and gray), Pr (white and gray), hyperplane (dashed)

to suboptimal EMPC solutions.

Point location methods are also known in computer graphics

for the hidden-surface problem [8].To the knowledge of the

authors, none of the methods is directly applicable to higher

dimensional polytopic sets, see [9], [10] or [11].

C. Outline of the paper

Section II defines the tree building algorithm and shows it

terminates. The main contribution of the paper in Section III

is the formulation of the optimal cutting problem, a Mixed

Integer Linear Programs (MILP) which determines the best

hyperplane at every node of the tree construction. In Section

IV we show how to extend the method to suboptimal EMPC

policies and how to impose explicit bounds on the depth

of the tree. Section V demonstrates the performance of the

algorithm with some test systems.

II. THE SEARCH TREE ALGORITHM

This section gives some necessary definitions on poly-

topes, point location and search trees together with the basic

algorithm to build the search tree and some simple properties.

Definition 1: A polytopic set in R
n, is a finite collection

P = {P1, P2, ...,PN} of polytopes Pi (bounded intersec-

tions of a finite number of halfspaces) given in inequality

form

Pi = {x ∈ R
n : Aix ≤ bi} (1)

where Ai ∈ R
mi×n and bi ∈ R

n.

We will here only consider polytopic sets that are non-

overlapping, i.e. int(Pi) ∩ int(Pj) = ∅ ∀i 6= j. For

overlapping polytopes, the method can be extended using

slackvariables.

Definition 2: A point location function (PLF) for a poly-

topic set P is a function g : R
n → P that returns a polytope

P = g(x) ∈ P such that x ∈ P, or ∅ if no such polytope

exists.

We want to construct a PLF with a complexity logarithmic

in N . Next we recursively define the term tree.

Definition 3: A binary seach tree of hyperplanes, or sim-

ply a tree, T is either a polytope P or a triplet (Tl, Tr, H)
where Tl, Tr are also trees and H is a hyperplane.

A hyperplane is given by

H = H(α, β) =
{

x ∈ R
n : αT x = β

}

(2)

with the normal vector α ∈ R
n and the offset β ∈ R. We

say that a point x lies to the left of the hyperplane H, if

αT x ≥ β, otherwise it lies to the right.

Definition 4: The tree-PLF, is a function gT : R
n → P

that uses Algorithm 1 to compute its value.

Algorithm 1 Algorithm for tree based point location

Require: point x, search tree T
Ensure: polytope P such that x ∈ P

1: function EVALTREE(T , x)

2: if ISPOLYTOPE(T) then

3: return T
4: else

5: (Tl, Tr, H(α, β))← T
6: if αT x ≥ β then

7: return EVALTREE(Tl, x)

8: else

9: return EVALTREE(Tr, x)

10: end if

11: end if

12: end function

Each function call of the recursive function in Algorithm 1

is referred to as node. Starting with the tree T = (Tl, Tr, H)
as root node, the algorithm jumps to Tl if the given point x

lies to the left of H, otherwise it jumps to Tr. Reaching the

last level of the tree, called the leaf, the algorithm returns a

polytope P. The largest possible number of nodes that the

tree-PLF algorithm has to visit before returning a polytope

P is the depth of the tree.

For a given polytopic set P , we want to construct a tree T
of minimum depth that is correct, i.e.

∀x ∈ ∪N
i=1Pi : x ∈ gT (x) (3)

Algorithm 2 Recursive function to build the tree

Require: polytopic set P
Ensure: tree T

1: function BUILDTREE(P)

2: if card(P) = 1 then

3: return P
4: else

5: (Pl,Pr, H)← CUTPOLYTOPES(P)
6: return (BUILDTREE(Pl),BUILDTREE(Pr),H)

7: end if

8: end function

Algorithm 2 shows pseudocode of the recursive function

used to build such a tree. The function card(P) denotes the

number of elements of the polytopic set P . If the polytopic

set P contains only one polytope, a terminal node is reached,

and T = P = {P}. Otherwise, P is split into two polytopic

sets, Pl and Pr, the trees are calculated, and combined to a

5508

larger tree, including the decision criterion of this node, the

hyperplane H.

Lemma 1: Algorithm 2 will terminate in a finite amount

of iterations if

card(Pi) < card(P) i ∈ {l, r} (4)

Proof: Since Pl and Pr are strictly smaller than P ,

the number of elements of the argument to the recursively

called function BUILDTREE is strictly decreasing and will

eventually consist of one element, terminating the recursion

and thereby the Algorithm.

Lemma 2: Algorithm 2 is correct in the sense of (3) if the

function CUTPOLYTOPES satisfies:

∀P ∈ P : {∃x ∈ P : αT x > β} → {P ∈ Pl}

∀P ∈ P : {∃x ∈ P : αT x < β} → {P ∈ Pr} (5)

where H = H(α, β).
Proof: Consider a single function call in Algorithm 1

with a point x ∈ P ∈ P . If αT x ≥ β then we need P ∈ Tl

for the decision to be correct. Since the decision has to be

correct for any x ∈ P, the first line of (5) follows. The

argument for Tr is identical.

Note that with (5) a polytope Pk may belong to both Pl and

Pr. In that case, the polytope is intersected by the hyperplane

and must be kept in both branches of the decision tree. The

optimizaion problem will include the objective to minimize

the number of such regions.

Lemma 3: If the function CUTPOLYTOPES guarantees

card(Pl) ≤ (1 − tmin)card(P)

card(Pr) ≤ (1− tmin)card(P)

for tmin ∈ (0, 0.5]

then Algorithm 2 is guaranteed to return a tree of depth

d ≤ dmax where

dmax = log 1

1−tmin

N = −
lnN

ln(1− tmin)
(6)

Proof: On the last level after d recursions the algorithm

terminates and card(P)= 1 = (1 − t)dN with t ≥ tmin.

Solving this equation for d yields the result.

Note that 0.5 is a hard upper bound on t, otherwise the

natural requirement P = Pl ∪ Pr which follows from (5)

could not be satisfied. In general, it is not possible to generate

a PLF meeting this hard bound due to the geometry of the

polytopic set.

III. THE OPTIMAL CUTTING PROBLEM

The Lemmas of the previous section used some properties

of the function CUTPOLYTOPES. This section presents a

candidate for this function and shows that the properties hold.

One looks for a hyperplane that will balance between the

polytopes on the left and on the right. The search for the

best hyperplane is captured in an optimization problem with

the hyperplane parameters α and β as variables.

A. Problem Statement

We begin with a mathematical formulation of the problem

of finding a good hyperplane balancing the polytopes on each

side. First observe that a polytope Pi can not be entirely on

both sides of a hyperplane H(α, β), i.e. at most one of the

following holds:

∀x ∈ Pi : αT x ≥ β (7)

∀x ∈ Pi : αT x < β (8)

To characterize these cases, we introduce binary variables

Li, Ri ∈ {0, 1} i = 1, 2, ..., N and their composition to

binary vectors L, R ∈ {0, 1}N . We assign Li = 1 if (7)

holds and Li = 0 otherwise. Similarly, let Ri = 1 when

(8) holds and Ri = 0 otherwise. Then the optimal cutting

problem for polytopic sets (OC) is:

J∗ = min
α,β,L,R

J

s.t. ∀i = 1, 2, ..., N

Li = 1↔
{

∀x ∈ Pi : αT x ≥ β
}

(9a)

Ri = 1↔
{

∀x ∈ Pi : αT x ≤ β
}

(9b)

Pi = {x ∈ R
n : Aix ≤ bi} (9c)

‖α‖∞ = 1 (9d)

with

J =

∣

∣

∣

∣

∣

(

N
∑

i=1

Li

)

−

(

N
∑

i=1

Ri

)∣

∣

∣

∣

∣

+ω1 ·
N
∑

i=1

|Li +Ri−1| (10)

The first term of the cost function J describes the balance

of the decision by penalizing the difference of the number

of polytopes entirely on the left and on the right side of

the hyperplane. The second term, weighted with a positive

scalar ω1, penalizes the polytopes with Li = Ri = 0 which

are not completely on either side of the hyperplane and are

undecided after the hyperplane decision of the search tree.

Note that if the polytope Pi is full-dimensional at most one

of (9a) and (9b) can be true, so

∀i : Li + Ri ≤ 1 (11)

The unit norm requirement on α has been introduced to

ensure boundedness of the solution: Let {α∗, β∗, L∗, R∗}
be the optimal solution to (OC) without the unit norm

constraint on α. Then {kα∗, kβ∗, L∗, R∗}, k ∈ R, k > 0
would be another solution with the same cost. This confirms

the geometric interpretation that a scaling of both α and

β does not change the hyperplane. Also, the trivial solution

{0, 0, L∗, R∗} with all zero entries of appropriate dimensions

would be another feasible solution for any value L∗, R∗. To

avoid an unbounded or trivial solution, an explicit constraint

on either α or β needs to be introduced. Setting β = 1 would

cause α still to be unbounded when the origin is located close

to the optimal hyperplane. This leaves the non-convexity unit

norm constraint (9d), that can be easily incorporated in the

MILP formulation as shown in the next section.

5509

B. Formulation as an MILP

We will first state the result before deriving it from

(OC). Consider the MILP formulation of the optimal cutting

problem (OCM) :

J(j) = min
y,α,β,L,R

J

s.t. ∀i = 1, 2, ..., N

AT
i yi = α (12a)

−M(1− Li) ≤ bT
i yi − β ≤M(1−Ri)

(12b)

−M(1−Ri) ≤ yi ≤M(1− Li) (12c)

Li, Ri ∈ {0, 1} (12d)

αj = 1 ‖α‖∞ ≤ 1 (12e)

where y = {y1, y2, ..., yN} ∈ R
m1 × R

m2 × . . . × R
mN .

Note that the MILP is solved once for each dimension

with only the last constraint on α changing. This is one of

many possible implementations of the unit norm constraint

in (OC). Alternatively one could introduce d extra integer

variables indicating which element of α is constrained to

unity.

Proposition 1: If {α∗, β∗, L∗, R∗} is the optimal solution

to (OCM) over all j then they are also optimizers to (OC)

and J∗ = minj=1,2,...,d J(j) .

Proof: With an approach from robust optimization [12],

one can remove the quantifiers in (OC) by introducing a

second optimization level of linear programs. This gives the

equivalent formulation

min
α,β,L,R

J

s.t. ∀i = 1, 2, ..., N

Li = 1↔
{(

min
{

αT x : Aix ≤ bi

})

≥ β
}

Ri = 1↔
{(

max
{

αT x : Aix ≤ bi

})

≤ β
}

(13)

Assuming that all polytopes have non-empty interiors, strong

linear programming duality yields for the first constraint

min
{

αT x : Aix ≤ bi

}

=−max
{

−αT x : Aix ≤ bi

}

=−min
{

bT
i y : AT

i y = −α, y ≥ 0
}

=−min
{

−bT
i y : AT

i y = α, y ≤ 0
}

(14)

and the logical expression of the optimization problem

becomes a feasibility problem:
{(

min
{

αT x : Aix ≤ bi

})

≥ β
}

↔
{(

min
{

−bT
i y : AT

i y = α, y ≤ 0
})

≤ −β
}

↔
{

∃y : y ≤ 0, AT
i y = α,−bT

i y ≤ −β
}

↔
{

∃y : y ≤ 0, AT
i y = α, bT

i y − β ≥ 0
}

. (15)

This allows one to rewrite the expression as linear constraints

using the so-called big-M technique [13]:

bT
i y − β ≥ −M(1− Li)

y ≤M(1− Li) (16)

where M is a positive scalar constant larger than any value

the absolute value of the left side of the inequality can

attain. Relation (16) enforces only the implication→ in (9a).

The converse ← follows from the minimization of the cost

function, which penalizes unassigned polytopes with Li = 0.

Note that we use only one M variable for simplicity of

notation. In practice, one has to carefully select a different

bound for each inequality and region to have the best possible

numerical properties [14].

With a similar derivation for the second logical expression,

we obtain (OCM).

In contrast to the original formulation (OC) with uni-

versal quantifiers (∀), the optimal cutting problem is now

formulated as d one-level MILPs, linear in all optimization

variables. Choosing

Pl = {Pi : Li = 1 or Li = Ri = 0}

Pr = {Pi : Ri = 1 or Li = Ri = 0} (17)

one obtains the prerequisites for Lemmas 1 and 2:

Lemma 4: (a) If P has more than one element, Pl and Pr

are strictly smaller than P .

(b) Equation (5) holds.

Proof: (a) Non-overlapping polytopes always admit a

separating hyperplane due to their convexity. Hence, at least

one polytope is assigned exclusively to each side, left and

right, and the result follows.

(b) With (17) and (11), Pl contains all polytopes Pi ∈ P ,

except those with Ri = 1. Since (9b) holds, the first

equations of (5) follows. The argument for Pr is identical.

IV. MODIFICATIONS AND EXTENSIONS

This section lists some useful modification of (OCM) and

derives the large margin extension needed for suboptimal

EMPC.

A. Modifications

Optimization algorithms can be terminated early to return

suboptimal solutions. In order to still give guarantees on

how much the tree differs from optimum using Lemma 3,

tightening constraints can be added to (OCM):

N
∑

i=1

Li ≥ t ·N
N
∑

i=1

Ri ≥ t ·N (18)

For numerical stability of (OCM) and for overlapping poly-

topes, slack variables can be introduced. The costfunction of

(OCM) can be modified to account for regions with identical

control laws, in order to reduce the depth of the tree.

B. Large margin and relation to support vector machines

Recent results on suboptimal robust EMPC study con-

trollers that only use a subset of the polytopic regions of the

original EMPC solution as an approximation of the optimal

solution [2], while still giving some stabilizing guarantees

[3]. The resulting control policy is defined over a set of non-

overlapping polytopes that are possibly seperated in space.

5510

During the online evaluation, points outside the polytopic

set are assigned to one of the polytopes nearby. A binary

hyperplane decision tree for that task can be obtained with

a small modification of (OCM). The separating hyperplane

H(α, β) is chosen to maximize the distance to the closest

polytope entirely on the left or right of the hyperplane. Such a

“best fit” of the decision criterion is closely related to support

vector machines (SVM), see [15]. The solution to the optimal

cutting problem for polytopic sets seperated in space can be

seen as a type of SVM for polytopic data instead of point

data. One crucial difference is, that the assignement to the

two sets is not known beforehand but determined through an

optimization problem, captured in the variables Li and Ri

in (12d). The following derivation reformulates the optimal

cutting problem (OCM) to maximize the margin around the

hyperplane containing no polytopes assigned to either left or

right. Let x+ (x−) denote the extreme point of the polytope

in question closest to the left (right) of the hyperplane and

let xP
+ (xP

−) be the projection of this point onto H(α, β). If

the points x+ and x− do not have the same distance to the

hyperplane H, then H can be shifted until they do.

Define H+(α, β + 1) (H−(α, β − 1)) as the hyperplanes

intersecting x+ (x−). We have

x+ = xP
+ +

α

‖α‖2
‖x+ − xP

+‖2 (19)

and want to maximize the distance ‖x+ − xP
+‖2. Taking the

inner product with α gives

αT x+ = αT xP
+ +

αT α

‖α‖2
‖x+ − xP

+‖2

β + 1 = β + ‖α‖2‖x+ − xP
+‖2

‖x+ − xP
+‖2 =

1

‖α‖2
(20)

Hence, maximizing the thickness of the margin around the

hyperplane is equivalent to minimizing the 2-norm of α

and can be captured through an additional term in the cost

function and the constraints of (OCM), resulting in the Large

Margin Optimal Cutting problem (LM-OCM):

J(j) = min
y,α,β,L,R

Ja + ω2 · α
T α

s.t. ∀i = 1, 2, ..., N

(12a), (12c), (12d)

−M(1− Li) ≤ bT
i yi − β − Li

bT
i yi − β + Ri ≤M(1−Ri) (21)

where the central term of the inequality follows from the

hyperplane with β +1(β−1) whenever Li = 1(Ri = 1). As

for the (OCM), it is possible to introduce slack variables

to the (LM-OCM) . In SVMs, slack variables are also

well known and are used to characterize the tolerance for

misclassifications [16].

V. SIMULATION RESULTS

This section compares the optimized tree to the facet tree

for an ordinary and a suboptimal EMPC solution.

Optimized tree Facet tree

depth of the tree 16 15
non-terminal nodes 4385 4218

terminal nodes (leafs) 4386 4219

TABLE I

TREES OBTAINED FOR A SET OF 487 3D-POLYTOPES (OPTIMIZATION

TERMINATED EARLY)

A. Ordinary EMPC

The test data is a polytopic set from the EMPC solution

for a LTI system with statefeedback:

xk+1 =





0.7 −0.1 0
0.2 −0.5 0.1
0 0.1 0.1



 xk +





0.1 0
0.1 0.1
0.1 0



 uk

−500 ≤ xi ≤ 480 i = 1, 2, 3

−5 ≤ uj ≤ 5 j = 1, 2 (22)

The EMPC solution is calculated with the Multi-Parametric

Toolbox (MPT) [17] in MATLAB, no preproccessing step

like the removal of redundant control laws are applied.

The resulting polytopic set consists of N = 487 polytopes

in three dimensions. Algorithm 2 has been implemented

in MATLAB, with the YALMIP-interface [18] using the

ILOG-CPLEX Optimizer [19]. The assignment ratio was

chosen to be t = 0.1. For the facet tree, the standard MPT

implementation (MPT_SEARCHTREE) has been used.

In Table V-A, the depth of both trees is larger than the

theoretical depth of ⌈log2 N⌉ = 9, the optimized tree having

a slightly larger depth and number of nodes than the facet

tree. This is because the first MILPs have up to 1000 integer

variables and were terminated early with a suboptimal tree.

On small problems in two dimensions, the optimized

tree had the same depth and size as the facet tree. As for

now, no higher dimensional problem could be solved with a

significant improvement over the facet tree.

B. Suboptimal EMPC

The case study to present (OC-LM) is based on a random

subset of the EMPC solution of a 2D plant, obtaining the blue

regions in Fig. 2. Together with Fig. 3 the plots illustrate the

trees obtained with the two methods. The red cells are the

sets of points that are assigned to the same region when

evaluating the search tree - namely to the blue polytope

contained in the cells. For the facet tree in Fig. 2, it can be

seen that the hyperplanes were generated by the facets of the

polytopes. Points very close to a polytope but on the other

side of the hyperplane are assigned to a different polytope

further away. The optimized tree, Fig. 3, fits the hyperplanes

better between the polytopes. Also, the additional freedom

when choosing the hyperplanes decreases the size of the tree,

reflected in the total number of nodes: 13 for the optimized

vs. 21 for the facet tree.

To implement suboptimal EMPC controllers, it is therefore

preferable to use the optimized search trees with the large

margin extension.

5511

−5 −4 −3 −2 −1 0 1 2 3 4 5

−4

−3

−2

−1

0

1

2

3

4

x
1

x
2

facet tree, 21nodes

Fig. 2. Facet tree for a 2D polytopic set: polytopes (blue), hyperplane
segments (dashed lines), cells of points (red) assigned to the polytope
contained in the cell

−5 −4 −3 −2 −1 0 1 2 3 4 5

−4

−3

−2

−1

0

1

2

3

4

x
1

x
2

optimized tree, 13nodes

Fig. 3. Optimized tree for a 2D polytopic set: polytopes (blue), hyperplane
segments (dashed lines), cells of points (red) assigned to the polytope
contained in the cell

VI. CONCLUSION

We showed how to build a search tree for point-location in

polytopic sets using MILPs to determine the best hyperplanes

used as decision criteria. The method performes slightly

worse than the facet tree on a 3D example of ordinary

EMPC because the MILPs could not be solved to optimality.

For a random 2D polytopic set separated in space, as could

occur in suboptimal EMPC, the method significantly reduced

the number of nodes of the tree. Besides, the hyperplanes

are spread between the polytopes because they are not

constrained to the facets.

For future work, semidefinite relaxations are suggested to

obtain optimized trees for higherdimensional polytopic sets.

REFERENCES

[1] A. Bemporad, M. Morari, V. Dua, and E.N. Pistikopoulos. The
Explicit Solution of Model Predictive Control via Multiparametric

Quadratic Programming. In American Control Conference, pages 872–
876, Chicago, USA, June 2000.

[2] G. Pannocchia, J. B. Rawlings, and S. J. Wright. Fast, large-scale
model predictive control by partial enumeration. Automatica, 43:852–
860, 2007.

[3] H. Manum, C.N. Jones, J. Loefberg, M. Morari, and S. Skogestad.
Bilevel programming for analysis of low-complexity control of linear
systems with constraints. 2009.

[4] P.Tondel, T.A.Johansen, and A.Bemporad. Evaluation of piecewise
affine control via binary search tree. Automatica, 39(5):945–950, 2003.

[5] M. Baotic, F. Borrelli, A. Bemporad, and M. Morari. Efficient On-
Line Computation of Constrained Optimal Control. SIAM Journal on

Control and Optimization, 47(5):2470–2489, September 2008.
[6] C.N. Jones, P. Grieder, and S. Rakovic. A Logarithmic-Time Solution

to the Point Location Problem for Parametric Linear Programming.
Automatica, 42(12):2215–2218, December 2006.

[7] Y. Wang, C.N. Jones, and Jan M. Maciejowski. Efficient point location
via subdivision walking with application to explicit MPC. In European

Control Conference, Kos, Greece, July 2007.
[8] Ivan E. Sutherland, Robert F. Sproull, and Robert A. Schumacker. A

characterization of ten hidden-surface algorithms. ACM Comput. Surv.,
6(1):1–55, 1974.

[9] Yi jen Chiang and Roberto Tamassia. Dynamic algorithms in compu-
tational geometry. volume 80, pages 1412–1434, 1992.

[10] Schwarzkopf and Otfried. Ray shooting in convex polytopes. In SCG

’92: Proceedings of the eighth annual symposium on Computational

geometry, pages 286–295, New York, NY, USA, 1992. ACM.
[11] B. Chazelle and J. Friedman. Point location among hyperplanes and

unidirectional ray-shooting. volume 4, pages 53–62. Elsevier, 1994.
[12] A. Nemirovski. Robust Optimization. Princeton University Press,

2009.
[13] J. Löfberg. Big-M reformulation - a tutorial, http://control.ee.ethz.ch/

joloef/wiki/pmwiki.php?n=Tutorials.Big-M, 10/2009.
[14] Lou Hafer. Tightening big M constraints. DIMACS Workshop on

COIN-OR, July 17-20 2009.
[15] Guosheng Wang. A survey on training algorithms for support vector

machine classifiers. Networked Computing and Advanced Information

Management, International Conference on, 1:123–128, 2008.
[16] C. Cortes and V. Vapnik. Support-vector networks. volume 20, pages

273–297. Kluwer Academic Publishers, 1995.
[17] M. Kvasnica, P. Grieder, M. Baotic, and M. Morari. Multi-Parametric

Toolbox (MPT). In HSCC (Hybrid Systems: Computation and Con-

trol), pages 448–462, March 2004.
[18] J. Löfberg. Yalmip : A toolbox for modeling and optimization in

MATLAB. In Proceedings of the CACSD, Taipei, Taiwan, 2004.
[19] ILOG CPLEX webpage. http://www.ilog.com/products/cplex/. 2009.

5512

