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Distributed Control of the Laplacian Spectral Moments of a Network

Victor M. Preciado, Michael M. Zavlanos, Ali Jadbabaie, @eéorge J. Pappas

Abstract— It is well-known that the eigenvalue spectrum of and robustness properties of dynamical systems that are im-
the Laplacian matrix of a network contains valuable infor-  plemented over information networks [11, 12]. Optimizatio
mation about the network structure and the behavior of many of the spectral gap has been studied by several authors both

dynamical processes run on it. In this paper, we propose &ully . . 4
decentralized algorithm that iteratively modifies the structure 11" @ centralized [13]-[15] and decentralized context [16].

of a network of agents in order to control the moments of the ~contrast, our approach focuses on controlling the moments
Laplacian eigenvalue spectrum. Although the individual agnts  of the Laplacian eigenvalue spectrum. In this way, we can

have knowledge of their local network structure only (i.e., influence the behavior of certain dynamical processes run
myopic information), they are collectively able to aggregee this \yiihin the network. As we show, the benefit of controlling

local information and decide on what links are most beneficik th tral t d iallv the | d
to be added or removed at each time step. Our approach relies € spectral moments, and especially the lower order ones,

on gossip algorithms to distributively compute the spectra lies in lower computational cost and elegant distributed
moments of the Laplacian matrix, as well as ensure network implementation.

connectivity in the presence of link deletions. We illustrée our A major challenge in our approach is to efficiently control
approach in nontrivial computer simulations and show that a o ghectral moments of a network iriuly distributed fash-
good final approximation of the spectral moments of the targe . . L o
Laplacian matrix is achieved for many cases of interest. ion while maintainingnetwork connectivityn the presence
of link deletions. Our work is related to [17], where a fully
distributed algorithm is proposed to compute the full set of
. INTRODUCTION eigenvalues and eigenvectors of a matrix representing the
) ) o network topology. However, our approach is computatignall
A wide variety of distributed systems composed by augheaper since computation of the spectral moments does not
tonomous ag_ent_s are ab_le to display a remarkable l_evr%quire a complete eigenvalue decomposition, but can be
of sel_f-organlzanon despite the absence of a Centra“Z%rformed distributively by averaging local network infor
coordinator [1, 2]. For example, the structure of many,aion such as node degrees. On the other hand, control of
self-engineered” networks, such as social and economifis henvork structure to the desired set of spectral moments
networks, emerges from local interactions between ageniSpased on greedy actions (link additions and deletiors) th
aiming t(_) OP“m'Ze their local ,ut|I|t|es [3_]' Motivated by 516 the result of distributed agreement protocols between
the implications of a network's Laplacian spectrum ory,q agents. We show that our distributed topology control

its structure (i.e., number of connected components) angy,ithm is stable and converges to a network with spectral
behavior of dynamical processes implemented on |t. ("emoments “close” to the desired. The performance of our
speed of convergence of distributed consensus algornhmg]gorithm is illustrated in computer simulations.

we propose a distributed model of graph evolution in which The rest of this paper is organized as follows. In Sedfibn II,

autonomous agents can modify their local neighborhood We formulate the problem under consideration and review

order to control a set of moments of the network Laplaciag, . terminology. In SectiofJIl, we derive closed-form
spectrum. ) expressions for the first four moments of the Laplacian
_ The eigenvalue spectra of a network provide valuablg,e tym in terms of graph properties that can be measured
information r?gard'_ng the behavior of many dynamical prOrocally. Based on these expressions, we introduce a dis-
CESSES running within the network ,[4]' For.example, th?ributed algorithm to compute these moments. In Se¢fign IV,
eigenvalue spectrum of the Laplacian matrix of a grapfe nropose an efficient distributed algorithm to controlh t
affects the mixing speed of Markov chains [5], the Stab'“tyspectral moments of a network. Finally, in Sectloh V, we

of synchronization of a network of nonlinear oscillators [6 ) strate our approach with several computer simulations
7], the spreading of a virus in a network [8, 9], as well

as the dynamical behavior of many decentralized network

algorithms [10]. Similarly, the second smallest eigeneadti Il. PRELIMINARIES & PROBLEM DEFINITION
the Laplacian matrix (also called spectral gap) is broadly | ot ¢ — (V,€) denote a graph on nodes, wherd) =
considered a critical parameter that influences the stl;abili{vh v} d’enotes the set of nodes agdC V x V is

. . . the set of edges. Ifv;,v;) € £ whenever(v;,v;) € € we
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v, denoted bydeg v. In this paper, we consider fini@mple for all initial conditions#(0) € R™.

graphs, meaning that two nodes are connected by at mosfTheoreniZB says that the gra@lis connected if and only

one edge and self-loops are not allowed. if all nodes eventually reach a consensus on their statesalu
We define avalk from vy to v, of lengthk to be an ordered 6;(t), for all initial conditions. Therefore, connectivity of a

sequence of nodegy,v1,...,vx) such thatv; ~ v; 41 for networkG can be verified almost surely by comparing the

i=0,1,...,k — 1. We say that a graply is connectedf asymptotic state value§l(1) of all agents, for any random

there exists a walk between every pair of nodesylf= v, initialization. Note that a similar result can be obtained

then the walk is closed. A closed walk with no repeatethy application of afinite-time maximum (or minimum)

nodes (with the exception of the first and last nodes) isonsensus [20].

called acycle Triangles and quadranglesare cycles of

length three and four, respectively. Létv, w) denote the A. Problem Definition

distance between two nodes and w, i.e., the minimum

length of a walk fromv to w. We say thatv and w are

k-th order neighbors ifd (v,w) = k and define thek-th

order neighborhood of a nodeas the set of nodes within

a distancek from v, i.e, N = {w eV : d(v,w) <k}.

A k-th order neighborhood, induces a subgragh C G

with node-set\ and edge-sef; defined as the set of 2l \k

edges in€ that connect two nodes iN. We say that a mi (s) = n Z i (5).

graphical property; is locally measurable within a radius _ =t

k around a nodev if Pg is exclusively a function of the Similarly, thek-th centralized spectral moment of the Lapla-

neighborhood subgraph, i.& = f (G). For example, both Cian can written as:

Consider a discrete-time sequence of grapfiés)}s>1
wheres € {1,2,...} is the discrete time index. We denote
by {\i(s)}s>1 the set of Laplacian eigenvalues @fs). We
define thek-th spectral moment of the Laplacian matrix of
G(s) at times as:

the degree and the number of triangles touching a node are a 1 - k
locally measurable within a radius Also, the number of mr(s) = o Z (Xi(s) —ma (5))
guadrangles touching a node is locally measurable within a klzl
radius2. B k k—r fe—r
Graphs can be algebraically represented viaatijacency N ; (r) (=07 mels)mi " (5)- ()

and Laplacian matrices. Theadjacency matrixof an undi-
rected graply/, denoted bydg = [a;;], is ann xn symmetric
matrix defined entry-wise as;; = 1 if nodesw; and v,
are adjacent and;; = 0 otherwisd] The powers of the
adjacency matrix is related to walks in a graph. In particul

The first four centralized spectral moments of the Laplacian
corresponds to the mean, variance, skewness and kurtosis of
the eigenvalue spectrum and they play a central role in this
Japer. Define further the error function:

we have the following results [18]: L Uk eask]?

Lemma 2.1:The number of closed walks of length CME (G(s)) = ) [(mk ()" = (my) } )
joining nodew; to itself is given by thei-th diagonal entry k=0
of the matrix A3. where m; denotes a given set of desired centralized mo-

Corollary 2.2: Let G be a simple graph. Denote iy and ments. Since thé-th moment is thek-th power-sum of
Q; the number of triangles and quadrangles touching npde the Laplacian eigenvalues, we include the expongpisin
respectively. Ther{Ag),; = 0, (Aé)“- = deguv;, (A?é)“- = the above error function with the purpose of assigning the
27, and (Aé)u' =2Q; + (deg vi)Q 4 ZjeNi (degv; — 1). same dimension to the summands[ih (3). Then, the problem
Arranging the node degrees on a diagonal matrix yielddddressed in this paper is:
the degree matrixDg = diag (deg v;). Then, the Laplacian Problem 1: Given an initially connected grapfi(0), de-
matrix Lg of a graphG can be defined by.g = Dg — Ag. sign a distributed algorithm that iteratively adds or dedet
Let \; < Ay < ... < )\, be the eigenvalues dfg, wherel links from G(s), so that the connectivity of(s) is main-
is the vector of all ones. One can prove tfiat is positive tained for all times and the error function CME(s)) is
semidefinite and\; = 0. Furthermoreg is connected if and locally minimized for large enough.
only if Ay > 0, or equivalently, ifker Lg = spar{1} [18]. In what follows, we first propose a distributed algorithm to
As a result, we have the following well-known result: efficiently compute and update CNi&(s)) without any ex-
Theorem 2.3 ( [19]):Consider a fixed undirected graphplicit eigendecomposition (Sectignlill). Then, in Sectidf

G onn nodes and le#;(t) € R denote the state variable of We propose a greedy algorithm where the most beneficial
nodei. Letd(t) = [0;(t)] € R™ be the vector of all states and edge addition/deletion is determined based on a distidbute

assuméel(t) = —Lg0(t). Then the network; is connected agreement over all possible actions that satisfy network
if and only if, connectivity (Theorenl_213). In this framework, the time
N variable s increases by one whenever an action is taken
lim (1) = 1 Z9i(0)1 e spar{1}. 1) (i.e., an addition or deletion of a link). For simplicity, we
t—o0 n assume that actions are taken one at a time, although this

assumption can be relaxed to accommodate more complex
1For simple graphs with no self-loops;; = 0 for all 4. action schemes.



I1l. DISTRIBUTED COMPUTATION OF SPECTRAL Substituting the expressions forg);, form Lemmal 2]l
MOMENTS and Corollary[ 2R in equation§l(6) and (7) we obtain the

In what follows, we assume that the agents in the networi'St four spectral moments of the Laplacian matfiy as a
have very limited knowledge of the network topology. Infunction of the second-order neighborhood subgraphs only

particular, we assume that every agenbnly knows the

1 n
topology of the second-order neighborhood subgraph around: (Lg) = o Z degv;, (8a)
it, G5. (This is the case, for example, for many online social i=1
networks, where each individual can retrieve a list of his 1 & 9
friends’ friends.) Then, computing the first four Laplacian™2 (£g) = — Z {(degvi) + degvl} ’ (8)

1

-
Il

spectral moments relies on counting the presence of certain
subgraphs, such a triangles and quadrangles, in everyageqln (Lg) =
neighborhood and averaging these quantities via disa@but

average consensus. In particular, since the matrix trageaep

tor is conserved under diagonalization (in general, undgr a m4 (Lg) =
similarity transformation) the first three spectral monseit

the Laplacian matrix of a graph can be written as

:IH

[(degv)® +3 (degwi)’ — 273, (8o)
1

-
Il

S

{(deg Ui)4 +4 (deg vi)?’ + (deg Ui)2 —
(8d)

1

-
Il

— deg’Ui + (2 degvi + 1) Z degvj — STZ degvi + 2Q1
JEN;

my (Lg) = itl’Lé = ltl’ (Dg — Ag)k

= _Z< ) )P tr (A”Dé "), (4) Note that the expressions for the spectral moments in
equations[(B) are athveragesof locally measurable quan-

for £k < 3, where we have used the fact that the trace isties (within a 2-hop neighborhood), namely, node degrees

preserved under cyclic permutations (i.e A D=tr DAD=  triangles and quadrangles touching the node. Hence, we can

tr DDA). We cannot use Newton’s binomial expansion foapply consensus and use the result of Thedrein 2.3 to obtain

the forth moment; nevertheless, we may still obtain théhe first four moments in a distributed way.

following closed form solution:

(Lo) 1tr(D A )4 V. DISTRIBUTED CONTROL OF SPECTRAL MOMENTS
m4 = — - . .
gl n ¢ ¢ A. Possible Local Actions
= - [tr (Dg) — 4tr (D3 Ag) + 4tr (DZA?) ) The possible actions (or control variables) we consider are
local link additionsand local linkdeletions A link addition
2tr (DgAgDgAg) — 4tr (Dg AZ) +tr (AZ)]. : o )
+2r (DgAgDgAg) (DgAg) +1r (45)] is local if it connects a node with another node within its

Expanding the traces that appear[ih (4) ddd (5) we get  second-order neighborhood. Since agents in the netwoyk onl

n know their local neighborhood, a fully distributed algbrit
tr (DEAL) = Z (degvi)? (4%),, must limit edge additions to be local. (One could extend the
i=1 algorithm to allow connections between nodes being further
and than two hops away, but this option would require much
n n more computation and communication.)
tr(DgAgDgAg) = ZZ deg via;;) (degvja;) Let Ni(s) and Ni(s) denote the sets of neighbors and

two-hop neighbors of nodé at time s > 0, respectively.
non Since any of the two nodes adjacent to a link can take an

= Z Z (degv;degv;)a;; = Z deg v; Z degv;,  action to delete that link, we need to decide which of the two
i=1 j=1 i=1 JEN; nodes has the authority to delete the Iink To avoid ambigu-

following expression fork < 3 to remove asti(s) = {(i,j) € £(s) | j € N{(s), i > j}.
Similarly, to dlsamblguate between nodes adding a (still

_ liz )" (de v) (AT) ©6) non-existing) link between them, we define the set of
e s & 9/di potential edges that nodé can create as&i(s) =

i=1 j=1

(i,5) € E(s) | 7 € N3(s )\N(),z>y|§lnotherwords

For £k = 4, we can also simplify the Laplacian SpeCtralr{mdez can eitheradd a Ilni (i.j) € }51( ), or deletea
moment, which now becomes link (i,j) € &.(s). Note that link deletions may violate

" network connectivity. In this case, those link deletionsidtl

mi(Lg) = = 3" [(degvi)’ — 4 (degvn)” (Ag),; +

i=1

+4 (degv;)? (Ag)% + 2 degu; Z degv;—

JEN;
~4 (degvi) (Ag); + (Ag)h]

be excluded from the set of allowable actions. In the next
two sections we address the cases of link deletions and link
additions separately.

2Note that since the indices of all nodes in the network aréndis this
definition results in a unique assignment of links to nodes.



1) Link Deletions: Network connectivity is typically in- Algorithm 1 Connectivity verification
ferred from the number of trivial eigenvalues of the Lapdaci Require: X;j € R forall j eV ;
matrix. However, such approaches are not applicable Require: Tij=100...1...01T,VjeV
our framework, since we assume no global knowledge ofy. if 3 j €  such thatmin{7};} = 0 then
thg network topologyG(s), but only knquledge of Iogal 2. Updatex;; by @)-[12);
neighborhoods. Instead, we employ finite-time-maximums. Ty := maxen {Tij, Thj s
consensus which is a distributed algorithm and converges. g|se if min{7;;} =1 for all j € V then
to equal values on nodes belonging to the same connectegl Update€&’ by (@3);
component of a graph (Theordm12.3). Therefore, if deletiong: end if
of a link violates connectivity, both nodes adjacent to that
link will lie in different connected components and will leav
_dlfferent consensus values. I_n what foIIo_ws, we extend_thl&ﬁ(s)](i’j) implies that the reduced network is still con-
idea to S|m_ultan_eously checkmg conngctlwty _for aI_I pbks_l nected. Hence, we can define a set
edge deletions in the graph using a single high-dimensional
consensus algorithm. _ E,(5) £ {(i,5) € Eq(o)|xii ()] iy = s ()i} » (3)

Consider nodg that has authority to remove any of the o . . _ .
links in the set&’(s). Each one of these links needs to becontaining thesafelinks adjacent to node that if deleted,
checked with respect to connectivity and each connectivi§onnectivity is r.namta-lr.]ed.. N o
verification relies on a scalar consensus update, accotding 2) Connectivity VerificationThe connectivity verification
Theoren{ZB. Therefore, checking all links&f(s) requires  of link deletions, discussed in Section IV-A.1, is illuged in
€7(s)| consensus updatBaie associate with every link in Alg. [l Convergence of the finite-time consendls (91-(12) is
&)(s) a consensus variable, and stacking all these variablg8ptured by a vector of tgkerﬁj(s)’e {0,1}", initialized
in a vector we obtain the state vectss;(s) € RI€()I ~ 8S Tij(s) = [0...1;...0]" for all j € V and indicating
Running a distributed consensus over the network, requird@t node: has initialized the consensus variables for link

participation of all other nodes # j. This is possible by deletions for which nodej is responsible. In particular,
defining the state variables;;(s) € RIEXS! All vectors When all tokens of all nodes have been collected (line 4,

xi;(s) are initialized randomly and are updated by nade Al9- D). then consensus has converged and the set of safe
according to the following maximum consensus: link deletions& (s) can be computed (line 5, Algl] 1). Note
Case | If (i,5) & Ei(s) U EX(s), i.e., if nodesi and j are that nodei does not need to know the neighbor sets of its

) d d y LC,

not neighbors, then non-neighbors in t_he_ _ne_twork, nelfther their size. Ir_lstdelael_,
vectorsx;;(s) are initialized both in values and dimension
x;i(s) == max {x;;(s),xx;(s)}, (9) as soon as vectorsy;(s) are re_cgjvgd from a neighbor
kENT (s) k € N{(s). Clearly, x;;(s) are initialized first and then
propagated in the network via maximum consensus until the
information they contain reaches node

with the maximum taken elementwise on the vectors,
Case It If (i,7) € &(s), i.e., if nodesi and;j are neighbors
and nodej has authority over links, j), then

B. Most Beneficial Local Action

(xij (s)](ij) = max {[xi;(s)]eij), [%xi ()i f »
D kENf(S>\{j}{ /(M. bes (e As discussed in Proble 1, the objective of this work is to

(10) " minimize the error function CME(s)). For this we propose
a greedy algorithm, which for every timeselects the action
y o - _ . _ that maximizes the quantity CME(s)) —CME(G(s+1)), if
bxig ()] 0.3y = kén/\%ﬂ)((s) {eis (), b (N} (1) such an action exists, and terr'\r;{inétes if no SEJc(h actionsexist
By construction, such an algorithm converges to a network
for I # i, where[xy; (s)]¢ ;) € R denotes the entry ofy;(s)  thatlocally minimizes CMEG(s)), while in SectiorlV, we
corresponding to the "”'@J): . show that it performs well in practice too.
Case lIt If (i, j) € &(s), I.e., if nodes and; are neighbors |, \yhat follows we first compute the effect of a link
and nodei has authority over linki, j), then addition or deletion on the four first spectral moments.
() = max  {xa(s)] s ee(s)] ) - Although distributed consensus could be usgd to compute
#ASAwI) keNT (N} L (6.0)> EERiA)1G0) the new moments resulting from each possible action, as
(12) in Section[Tll, this would clearly be computationally very
Once consensuBl(9)=(12) has converged, rictiEmpares expensive. Instead, we can achieve this goal locally anil wit
the entries|[x;;(s)];,;) and [x;i(s)]i,;) for all (i,j) €  minor computational overhead, based on the observatidn tha
Ei(s). Since, violation of connectivity due to deletion ofthe addition or removal of an eddé j) only influences the
the link (4,7) would result in nodes and j being in dif- degrees of nodes and j, as well as and the triangles and
ferent connected components of the netwdrk; (s)]; ;) = quadrangles touching their neighboring nodes. Hence tagen
i andj can communicate to compute the net increment in
3We define by| X| the cardinality of the sek. the spectral moments due to the addition or deletion of edge

and



(i,). In particular, we get the following expressions for theAlgorithm 2 Globally most beneficial action

increments in the first three moments Require: v; £ [i v; CME; rﬁi(iw)]T;
Require: T; :=[0...1;...0]7;
. 9 1: if min{7;} =0 then
Ami(%J) =42, i e v H S H ) . .
1 " 20 v = vy, with j = max{argmingc yri {[vi]s, [Vi]s};

3: T, .= MaX;e i {Tl, Tj};
4: else ifmin{7;} =1 and[v;]s < D then

UpdateN;, m; and CME according to[(TW)E(7);
else ifmin{T;} = 1 and[v;]s = D then

No beneficial action. Algorithm has converged;
- end if

AmF) = % 1+ (di +d;+1)],

a1
AmiD) = - [(3£6) (di + dj) £3(d} +dF) + (6 £2) F 6T5;]

o N o’

where the notationt (7, j) indicates a link additior(+) or

deletion(—) and the dependence on timéas been dropped
for simplicity. (Similarly, one can obtain a complicated
closed-form expression fakm: "), which we omit due to C. From Local to Global Action

space limitations.) Then, agentscopy of thek-th spectral ~ To obtain the overall most beneficial action, all local

momentmj (s) becomes actions need to be propagated in the network and compared
i) ) (i) against each other. For this we require minimal storage and
my 7V (s) = mi(s) + Amy Y (s), communication as well as no propagation of any information

N regarding the network topology. As in Sectibn 1V-A, we
and the associated centralized mommﬁ(“”(s) can be achieve this goal using a finite time minimum consensus
computed using{2). Then, for all possible actions disadisselgorithm.
in SectionIV-A, agent computes the error function In particular, the desired local actiong(s) are propagated

in the network, along with vectors of tokefi¥(s) € {0,1}",
1/k 2 initialized asT;(s) :=[0...1;...0]T, indicating that node
) } : has transmitted its desired action. During every iteratibn
the algorithm, every nodecommunicates with its neighbors

Then, the locainost beneficial actioto the target centralized and updates its vector of tokeffy(s) (line 3, Alg.[2), as well
moments, namely, the action that results in the maximuf its desired actiom; (s) with the actionv,(s) correspond-

decrease in the error function CNHE can be defined Ey ing to the nodej that cqntains the smallest distance to the
target momentgv;(s)]s, i.e.,

vi(s) & max {argjr_nin (CMEL(; j(s) — CMEZ'(S))} , J € argmingen, () 1vi(8)ls, [V (s)]a}-

1/k

CME. ;) (s) = 24: [(mki(i’j)(s)) (g
k=0

In case of ties in the distances to the targetss)]s, i.e., if
where CME(s) denotes agents copy of CME(s), and the  argming . v+ () {[vi(s)]3. [vi(s)]s} contains more than one
largest decrease in the error associated with actign) nodes, then the nodg with the largest label is selected
becomes: (line 2, Alg.[2). Note that line 2 of Algl]2 is essentially a

CME;(s) = CME..(; ., () (s) minimum consensus update on the entfiegs)]; and will
' converge to a common outcome for all nodes when they
if min;(CMEL(, ;)(s) — CME(s)) < 0 and CME(s) = D, have all been compared to each other, which is captured by
otherwise. Note that CMfs) is nontrivially defined only if the conditionminy_, T3;(s) = 1 (lines 4 and 6, Alg[P).
the exists a link adjacent to nodehat if added or deleted When the consensus has converged, if there exists a node
decreases the error function CNIE Otherwise, a large value Whose desired action decreases the distance to the target
D > 0 is assigned to CMEs) to indicate that this action moments, i.e., ifivi(s)]s < D (line 4, Alg.[d), then Alg[?
is not beneficial to the final objective. We can include alferminates with a greedy action and nadepdates its set of

information of a best local action in the vector neighbors\7 (s) and vector of centralized momenis; (s)
(line 5, AIg.I]).. If the optimal action is a link addition, i,e
vi(s) £ [i vi(s) CMEi(s) ﬁ’li(i,ui(s))(s)}T eR’ if [vi(s)l2 & NVi(s), then
Ni(s+1) = Ni(s) U{[vi(s)]2} - (14)

containing the local best actioti,»;(s)), the associated
distance to the desired moments CNIB, and the vector on the other hand, if the optimal action is a link deletion,
of centralized momenten., (;,,, () (s) due to this action. In j e if [v,(s)], € Ni(s), then
the following section we discuss how to compare all local . .
actionsv;(s) for all nodesi € V to obtain the one that Ni(s+1) := N7 (s)\ {[vi(s)]2} - (15)
decreases the distance to the desired moments the most. ) )

In all cases, the centralized moments and error function are

4The max in the expression bellow indicates that in case of ties in theupdated by
min, the highest index node wins. ﬁli(S + 1) = [Vi(s)]4:7 (16)
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Fig. 1. Synchronization: Assume nodl& in run 1. Necessary for nodeo

transition to run 2 is that all other nodes are also in run dgesiotherwise 6 5
node i will be missing tokens from the nodes that are not in run 1 yet =
(currently in run 3) and AlglJ2 will not be able to converge. @®modei
transitions to run 2, it initializes all variables for thatnr with the latest
values from run 1, while it maintains the variables of run i fiodes that
are still in run 1 and it clears all variables of run 3 since,noale is in this
run any more.

and % 10 2 30 20 50 50 70 80
CME; (s + 1) := [vi(s)]s, 17 Iterationstep
. T .
respectively, whergv;(s)|a.r = [[Vi(s)]a...[vi(s)]7]" . Fi- Fig. 2. Convergence of the error function CME for the star graph

nally, if all local desired actions increase the distancéht® (blue plot) and the two-stars graph (red plot). The subgriapthe upper

; ) _ ; right corner shows the behavior of the error function in ayhkorhood of
target moments, €., {fVZ(S)]?’ N D (line _6’ AIg.I]_), then no ero. Observe that our algorithm can match the first four nmsnef the
action is taken and the algorithm terminates with a networkar network with zero error in finite time, but can not exactiatch the
topology with almost the desired spectral properties. This moments of a the two-stars graph, although the final erroeig small.
because no action exists that can further decrease thadhista

to the target moments. .« * o f

D. Synchronization

Communication time delays, packet losses, and the asym- ="
metric network structure, may result in runs of the alganith
starting asynchronously, outdated information being deed ]
future decisions, and consequently, nodes reaching €liffer o ;
decisions for the same run. In the absence of a common : @) ®)
global clock, the desired synchronization is ideadlyent
t_rlgge_red where by a triggering event we underétand th%ig. 3. Structures of the two-stars network (a) and the netweturned
time instant that a messaddsg[i] has been received by by our algorithm (b).
any of nodei’s neighborsj € N{. We achieve such a
synchronization by labeling every algorithm run in the set

{1,2,3} and requiring that all information exchange takegxtreme case in which the graph topology is uniquely defined
place among neighbors that are in equally labeled runs [2Yy their eigenvalue spectrum. Moreover, if each agent in a
Essentially, *fast” nodes wait for their “slower” peers and star network has access to its second-order neighborhiood, i
hence, all nodes are always synchronized in the sequenggs access to the complete star topology.

{1,2,3,1,2,3,...} (Fig.0). Example 2 (Two-stars networkAlthough our approach
works very well for star networks, the case of two-stars
V. NUMERICAL SIMULATIONS networks points out one of its weaknesses, namely, its lim-
In this section we illustrate our algorithm with severalitation in modeling network communities. In this example,
numerical examples. we consider two star graphs on 10 nodes each, and connect

Example 1 (Star networks)Consider a star network on their two central hubs with a link. The resulting graph is the
10 nodes. The first four central moments of the associatd@o-stars graph shown in Fifl]l 3(a). As before, we initialize
Laplacian matrix arem} = 1.8, m} = 7.56, mj = 54.14, our algorithm with a random graph on 20 nodes and try
andm; = 453.49. Our objective is to control the topology to approximate the first four central moments of the two-
of a randomly initialized network on 10 nodes so that istars graph. In Fig.]2, we observe that the error functiod (re
eventually has the same set of moments as the given st#@e) quickly reaches a neighborhood of zero but does not
network. We observe in Fi@l] 2 that our algorithm decreasg€ach zero exactly. Therefore, although our algorithmstrie
the error function (blue line) to zero in finite time. Similarto generate the two hubs in the two-star network, its local
performances are observed when we repeat this procedurefi@ture will not allow it recover the highly-structured two-
star networks of any size. Furthermore, although we are costars graph. Instead, it returns the final network shown in
trolling the first four moments solely, the resulting networ Fig. [3(b). Nevertheless, the eigenvalue spectra between th
structures are exactly the star topologies whose momerttgsired two-star network and the network in Hig. 3(b) are
we were trying to approximate. The perfect reconstructiostill very similar, as shown in Fig.14.
observed in this case is due to the fact that a star graph is aExample 3 (Chain vs. ring networksYhe objective of
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(c)

. . . .. Fig. 5. Networks returned by our algorithm when trying to chathe first
this example is to illustrate how two structurally very diami foﬂr central moments of a rinyg on 23 nodes. ying

(but topologically different) target graphs, such as a chai

and a ring, may affect the performance of our algorithm. In 1
particular, if we run our algorithm to control the first four 0.9
centralized moments of an initially random graph towards th
moments of a chain graph, we observe how the error function
converges exactly to zero in finite time. Furthermore, the
final result of our algorithm is an exact reconstruction of 06
the chain graph. Nevertheless, when transforming the ttarge = o0s
graph from a chain graph into a ring graph (by adding ©
a single link), an exact reconstruction is very difficult. In
Fig.[H, we illustrate some graphs returned by our algorithm
for different initial conditions when we control the set of 02
moments toward the moments of a ring network on 20 nodes. o+
Observe that, although the algorithm tends to create long
cycles and the majority of nodes have degree two, it fails to
recreate the exact structure of the ring graph due to the loca eigenvalues

nature of the algorithm (as in Example 2). However, although . R _ _
the structure of the resultina networks is not exactly th Fig. 6. Empirical cumulative distribution of eigenvalues the ring graph
g Y WMEith 20 nodes (blue plot) and the graphs in [Ely. 5(a) (red),[B{b) (green),

desired ring graph, their spectral properties are remaykalrig.[H(c) (magenta) and Fif] 5(d) (cyan).

close to those of a ring. In Fifi] 6, we illustrate the emplrica

cumulative distribution functions of the eigenvalues oé th

ring graph (blue plot), versus the four empirical cumulativ this process for a link probability = 4/» and similar results

distribution functions corresponding to the graphs in Bg. Were obtained. We should note, however, that although the
Example 4 (Small-Worlds)tn our final example, we use spectral properties between the tgrget small-world grapFis_

our algorithm to control the moments of a randomly genert_he graphs returned by our algorithm are remarkably similar

ated graph to those of a small-world network. We considdf19: ). we expect the structures to be quite different as in
small-world graphs as defined in [22], namely, we take Example[B (although this difference is not easy to observe

ring of n nodes, and connect each node in the ring witfrom a direct visualization of both graph structures).

all the nodes in its 3-hop neighborhood. Then, we randomly

rewire a fraction of the resulting edges with probability VI. CONCLUSIONS AND FUTURE RESEARCH

as proposed by Watts and Strogatz [22]. Our objective is to In this paper, we have described a fully decentralized al-
approximate the first four centralized moments of a randogorithm that iteratively modifies the structure of a netwofk
instance of a small world graph witthh= 40 nodes and link agents with the objective of controlling the spectral motaen
probabilityp = 1/n. We observed a fast convergence of thef the Laplacian matrix of the network. Although we assume
error to a neighborhood of zero, i.e., CNE iterationg = that each agent has access to local information regardeng th
.0009, which suggests (although does not guarantee) a gogdaph structure, we show that the group is able to collelgtive
approximation between the spectra of the target smalldvorbggregate their local information to take a global optimal
graph and the graph returned by our algorithm. We repeatéeécision. This decision corresponds to the most beneficial
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[11]
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CDF

[13]

[14]

[15]

[16]

eigenvalues

Fig. 7. Empirical cumulative distrubution of eigenvalues the small- (17]

world graphs in the example fgr = 1/n (left) andp = 4/n (right).
[18]

link addition/deletion in order to minimize an error furarti
that involves the first four Laplacian spectral moments ef th
network. The aggregation of the local information is achikv 20
via gossip algorithms, which are also used to ensure network
connectivity throughout the evolution of the network. [21]
Future work involves identifying sets of spectral moments
that are reachable by our control algorithm. (We say that [a2]
sequence of spectral moments is reachable if there exists a
graph whose moments match the sequence of moments.) Fur-
thermore, we observed that fitting a set of low-order moments
does not guarantee a good fit of the complete distribution of
eigenvalues. In fact, there are important spectral parnset
such as the algebraic connectivity, that are not captureal by
small set of spectral moments. Nevertheless, we observed in
numerical simulations that fitting the first four moments of
the eigenvalue spectrum often achieves a good reconstnucti
of the complete spectrum. Hence, a natural question is to
describe the set of graphs most of whose spectral informatio
is contained in a relatively small set of low-order moments.

[19]
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