
ar
X

iv
:1

00
1.

41
22

v1
 [

cs
.M

A
]

23
 J

an
 2

01
0

1

Distributed Control of the Laplacian Spectral Moments of a Network

Victor M. Preciado, Michael M. Zavlanos, Ali Jadbabaie, andGeorge J. Pappas

Abstract— It is well-known that the eigenvalue spectrum of
the Laplacian matrix of a network contains valuable infor-
mation about the network structure and the behavior of many
dynamical processes run on it. In this paper, we propose afully
decentralized algorithm that iteratively modifies the structure
of a network of agents in order to control the moments of the
Laplacian eigenvalue spectrum. Although the individual agents
have knowledge of their local network structure only (i.e.,
myopic information), they are collectively able to aggregate this
local information and decide on what links are most beneficial
to be added or removed at each time step. Our approach relies
on gossip algorithms to distributively compute the spectral
moments of the Laplacian matrix, as well as ensure network
connectivity in the presence of link deletions. We illustrate our
approach in nontrivial computer simulations and show that a
good final approximation of the spectral moments of the target
Laplacian matrix is achieved for many cases of interest.

I. I NTRODUCTION

A wide variety of distributed systems composed by au-
tonomous agents are able to display a remarkable level
of self-organization despite the absence of a centralized
coordinator [1, 2]. For example, the structure of many
“self-engineered” networks, such as social and economic
networks, emerges from local interactions between agents
aiming to optimize their local utilities [3]. Motivated by
the implications of a network’s Laplacian spectrum on
its structure (i.e., number of connected components) and
behavior of dynamical processes implemented on it (i.e.,
speed of convergence of distributed consensus algorithms),
we propose a distributed model of graph evolution in which
autonomous agents can modify their local neighborhood in
order to control a set of moments of the network Laplacian
spectrum.

The eigenvalue spectra of a network provide valuable
information regarding the behavior of many dynamical pro-
cesses running within the network [4]. For example, the
eigenvalue spectrum of the Laplacian matrix of a graph
affects the mixing speed of Markov chains [5], the stability
of synchronization of a network of nonlinear oscillators [6,
7], the spreading of a virus in a network [8, 9], as well
as the dynamical behavior of many decentralized network
algorithms [10]. Similarly, the second smallest eigenvalue of
the Laplacian matrix (also called spectral gap) is broadly
considered a critical parameter that influences the stability

This work is partially supported by the ONR MURI HUNT and AFOR
MURI Complex Networks programs

Victor M. Preciado, Michael M. Zavlanos, Ali Jad-
babaie, and George J. Pappas are with GRASP Labora-
tory, School of Engineering and Applied Science, Uni-
versity of Pennsylvania, Philadelphia, PA 19104, USA
{preciado,zavlanos,jadbabai,pappasg}@seas.upenn.edu

and robustness properties of dynamical systems that are im-
plemented over information networks [11, 12]. Optimization
of the spectral gap has been studied by several authors both
in a centralized [13]–[15] and decentralized context [16].In
contrast, our approach focuses on controlling the moments
of the Laplacian eigenvalue spectrum. In this way, we can
influence the behavior of certain dynamical processes run
within the network. As we show, the benefit of controlling
the spectral moments, and especially the lower order ones,
lies in lower computational cost and elegant distributed
implementation.

A major challenge in our approach is to efficiently control
the spectral moments of a network in afully distributed fash-
ion while maintainingnetwork connectivityin the presence
of link deletions. Our work is related to [17], where a fully
distributed algorithm is proposed to compute the full set of
eigenvalues and eigenvectors of a matrix representing the
network topology. However, our approach is computationally
cheaper since computation of the spectral moments does not
require a complete eigenvalue decomposition, but can be
performed distributively by averaging local network infor-
mation, such as node degrees. On the other hand, control of
the network structure to the desired set of spectral moments
is based on greedy actions (link additions and deletions) that
are the result of distributed agreement protocols between
the agents. We show that our distributed topology control
algorithm is stable and converges to a network with spectral
moments “close” to the desired. The performance of our
algorithm is illustrated in computer simulations.

The rest of this paper is organized as follows. In Section II,
we formulate the problem under consideration and review
some terminology. In Section III, we derive closed-form
expressions for the first four moments of the Laplacian
spectrum in terms of graph properties that can be measured
locally. Based on these expressions, we introduce a dis-
tributed algorithm to compute these moments. In Section IV,
we propose an efficient distributed algorithm to control of the
spectral moments of a network. Finally, in Section V, we
illustrate our approach with several computer simulations.

II. PRELIMINARIES & PROBLEM DEFINITION

Let G = (V , E) denote a graph onn nodes, whereV =
{v1, . . . , vn} denotes the set of nodes andE ⊆ V × V is
the set of edges. If(vi, vj) ∈ E whenever(vj , vi) ∈ E we
say thatG is undirectedand call nodesvi and vj adjacent
(or neighbors), which we denote byvi ∼ vj . The set of all
nodes adjacent to nodev constitutes theneighborhoodof
node v, defined byN v = {w ∈ V : (v, w) ∈ E}, and
the number of those neighbors is called thedegreeof node

http://arxiv.org/abs/1001.4122v1

2

v, denoted bydeg v. In this paper, we consider finitesimple
graphs, meaning that two nodes are connected by at most
one edge and self-loops are not allowed.

We define awalk from v0 to vk of lengthk to be an ordered
sequence of nodes(v0, v1, ..., vk) such thatvi ∼ vi+1 for
i = 0, 1, ..., k − 1. We say that a graphG is connectedif
there exists a walk between every pair of nodes. Ifv0 = vk,
then the walk is closed. A closed walk with no repeated
nodes (with the exception of the first and last nodes) is
called a cycle. Triangles and quadranglesare cycles of
length three and four, respectively. Letd (v, w) denote the
distancebetween two nodesv and w, i.e., the minimum
length of a walk fromv to w. We say thatv and w are
k-th order neighbors ifd (v, w) = k and define thek-th
order neighborhood of a nodev as the set of nodes within
a distancek from v, i.e., N v

k = {w ∈ V : d (v, w) ≤ k}.
A k-th order neighborhood, induces a subgraphGv

k ⊆ G
with node-setN v

k and edge-setEv
k defined as the set of

edges inE that connect two nodes inN v
k . We say that a

graphical propertyPG is locally measurable within a radius
k around a nodev if PG is exclusively a function of the
neighborhood subgraph, i.e.,PG = f (Gv

k). For example, both
the degree and the number of triangles touching a node are
locally measurable within a radius1. Also, the number of
quadrangles touching a node is locally measurable within a
radius2.

Graphs can be algebraically represented via theadjacency
and Laplacian matrices. Theadjacency matrixof an undi-
rected graphG, denoted byAG = [aij], is ann×n symmetric
matrix defined entry-wise asaij = 1 if nodes vi and vj
are adjacent andaij = 0 otherwise.1 The powers of the
adjacency matrix is related to walks in a graph. In particular
we have the following results [18]:

Lemma 2.1:The number of closed walks of lengthα
joining nodevi to itself is given by thei-th diagonal entry
of the matrixAα

G .
Corollary 2.2: Let G be a simple graph. Denote byTi and

Qi the number of triangles and quadrangles touching nodevi,
respectively. Then(AG)ii = 0, (A2

G)ii = deg vi, (A3
G)ii =

2Ti and
(

A4
G

)

ii
= 2Qi + (deg vi)

2
+
∑

j∈Ni
(deg vj − 1).

Arranging the node degrees on a diagonal matrix yields
the degree matrixDG = diag (deg vi). Then, the Laplacian
matrix LG of a graphG can be defined byLG = DG −AG .
Let λ1 ≤ λ2 ≤ ... ≤ λn be the eigenvalues ofLG, where1
is the vector of all ones. One can prove thatLG is positive
semidefinite andλ1 = 0. Furthermore,G is connected if and
only if λ2 > 0, or equivalently, ifkerLG = span{1} [18].
As a result, we have the following well-known result:

Theorem 2.3 ([19]):Consider a fixed undirected graph
G on n nodes and letθi(t) ∈ R denote the state variable of
nodei. Let θ(t) = [θi(t)] ∈ R

n be the vector of all states and
assumeθ̇(t) = −LGθ(t). Then the networkG is connected
if and only if,

lim
t→∞

θ(t) =
1

n

n
∑

i=1

θi(0)1 ∈ span{1}. (1)

1For simple graphs with no self-loops,aii = 0 for all i.

for all initial conditionsθ(0) ∈ R
n.

Theorem 2.3 says that the graphG is connected if and only
if all nodes eventually reach a consensus on their state values
θi(t), for all initial conditions. Therefore, connectivity of a
networkG can be verified almost surely by comparing the
asymptotic state values (1) of all agents, for any random
initialization. Note that a similar result can be obtained
by application of afinite-time maximum (or minimum)
consensus [20].

A. Problem Definition

Consider a discrete-time sequence of graphs{G(s)}s≥1

wheres ∈ {1, 2, . . .} is the discrete time index. We denote
by {λi(s)}s≥1 the set of Laplacian eigenvalues ofG(s). We
define thek-th spectral moment of the Laplacian matrix of
G(s) at times as:

mk (s) ,
1

n

n
∑

i=1

λk
i (s).

Similarly, thek-th centralized spectral moment of the Lapla-
cian can written as:

m̄k(s) ,
1

n

n
∑

i=1

(λi(s)−m1 (s))
k

=

k
∑

r=0

(

k

r

)

(−1)
k−r

mr(s)m
k−r
1 (s). (2)

The first four centralized spectral moments of the Laplacian
corresponds to the mean, variance, skewness and kurtosis of
the eigenvalue spectrum and they play a central role in this
paper. Define further the error function:

CME (G(s)) =
4

∑

k=0

[

(m̄k (s))
1/k − (m̄∗

k)
1/k

]2

, (3)

where m̄∗
k denotes a given set of desired centralized mo-

ments. Since thek-th moment is thek-th power-sum of
the Laplacian eigenvalues, we include the exponents1/k in
the above error function with the purpose of assigning the
same dimension to the summands in (3). Then, the problem
addressed in this paper is:

Problem 1: Given an initially connected graphG(0), de-
sign a distributed algorithm that iteratively adds or deletes
links from G(s), so that the connectivity ofG(s) is main-
tained for all times and the error function CME(G(s)) is
locally minimized for large enoughs.

In what follows, we first propose a distributed algorithm to
efficiently compute and update CME(G(s)) without any ex-
plicit eigendecomposition (Section III). Then, in SectionIV,
we propose a greedy algorithm where the most beneficial
edge addition/deletion is determined based on a distributed
agreement over all possible actions that satisfy network
connectivity (Theorem 2.3). In this framework, the time
variable s increases by one whenever an action is taken
(i.e., an addition or deletion of a link). For simplicity, we
assume that actions are taken one at a time, although this
assumption can be relaxed to accommodate more complex
action schemes.

3

III. D ISTRIBUTED COMPUTATION OF SPECTRAL

MOMENTS

In what follows, we assume that the agents in the network
have very limited knowledge of the network topology. In
particular, we assume that every agentv only knows the
topology of the second-order neighborhood subgraph around
it, Gv

2 . (This is the case, for example, for many online social
networks, where each individual can retrieve a list of his
friends’ friends.) Then, computing the first four Laplacian
spectral moments relies on counting the presence of certain
subgraphs, such a triangles and quadrangles, in every agent’s
neighborhood and averaging these quantities via distributed
average consensus. In particular, since the matrix trace opera-
tor is conserved under diagonalization (in general, under any
similarity transformation) the first three spectral moments of
the Laplacian matrix of a graph can be written as

mk (LG) =
1

N
trLk

G =
1

n
tr (DG −AG)

k

=
1

n

k
∑

p=0

(

k

p

)

(−1)p tr (Ap
GD

k−p
G), (4)

for k ≤ 3, where we have used the fact that the trace is
preserved under cyclic permutations (i.e., trADD=tr DAD=
tr DDA). We cannot use Newton’s binomial expansion for
the forth moment; nevertheless, we may still obtain the
following closed form solution:

m4 (LG) =
1

n
tr (DG −AG)

4

=
1

n

[

tr
(

D4
G

)

− 4tr
(

D3
GAG

)

+ 4tr
(

D2
GA

2
G

)

(5)

+2tr (DGAGDGAG)− 4tr
(

DGA
3
G

)

+ tr
(

A4
G

)]

.

Expanding the traces that appear in (4) and (5) we get

tr
(

Dq
GA

p
G

)

=

n
∑

i=1

(deg vi)
q (

Ap
G

)

ii

and

tr (DGAGDGAG) =
n
∑

i=1

n
∑

j=1

(deg viaij) (deg vjaji)

=

n
∑

i=1

n
∑

j=1

(deg vi deg vj) aij =

n
∑

i=1

deg vi
∑

j∈Ni

deg vj ,

which substituted back in equations (4) and (5) give the
following expression fork ≤ 3

mk (LG) =
1

n

n
∑

i=1

k
∑

r=0

(

k

r

)

(−1)r (deg vi)
k−r (

Ar
G

)

ii
. (6)

For k = 4, we can also simplify the Laplacian spectral
moment, which now becomes

m4 (LG) =
1

n

n
∑

i=1

[

(deg vi)
4 − 4 (deg vi)

3
(AG)ii +

+4 (deg vi)
2
(AG)

2
ii + 2deg vi

∑

j∈Ni

deg vj−

−4 (deg vi) (AG)
3
ii + (AG)

4
ii

]

. (7)

Substituting the expressions for(AG)
r
ii form Lemma 2.1

and Corollary 2.2 in equations (6) and (7) we obtain the
first four spectral moments of the Laplacian matrixLG as a
function of the second-order neighborhood subgraphs only

m1 (LG) =
1

n

n
∑

i=1

deg vi, (8a)

m2 (LG) =
1

n

n
∑

i=1

[

(deg vi)
2 + deg vi

]

, (8b)

m3 (LG) =
1

n

n
∑

i=1

[

(deg vi)
3
+ 3 (deg vi)

2 − 2Ti

]

, (8c)

m4 (LG) =
1

n

n
∑

i=1

[

(deg vi)
4
+ 4 (deg vi)

3
+ (deg vi)

2 −

(8d)

− deg vi + (2 deg vi + 1)
∑

j∈Ni

deg vj − 8Ti deg vi + 2Qi



 .

Note that the expressions for the spectral moments in
equations (8) are allaveragesof locally measurable quan-
tities (within a 2-hop neighborhood), namely, node degrees,
triangles and quadrangles touching the node. Hence, we can
apply consensus and use the result of Theorem 2.3 to obtain
the first four moments in a distributed way.

IV. D ISTRIBUTED CONTROL OFSPECTRAL MOMENTS

A. Possible Local Actions

The possible actions (or control variables) we consider are
local link additionsand local linkdeletions. A link addition
is local if it connects a node with another node within its
second-order neighborhood. Since agents in the network only
know their local neighborhood, a fully distributed algorithm
must limit edge additions to be local. (One could extend the
algorithm to allow connections between nodes being further
than two hops away, but this option would require much
more computation and communication.)

Let N i
1(s) and N i

2(s) denote the sets of neighbors and
two-hop neighbors of nodei at time s ≥ 0, respectively.
Since any of the two nodes adjacent to a link can take an
action to delete that link, we need to decide which of the two
nodes has the authority to delete the link. To avoid ambigu-
ities, we define the set of edges that nodei has authority
to remove as:E i

d(s) ,
{

(i, j) ∈ E(s) | j ∈ N i
1(s), i > j

}

.
Similarly, to disambiguate between nodes adding a (still
non-existing) link between them, we define the set of
potential edges that nodei can create as:E i

a(s) ,
{

(i, j) ∈ E(s) | j ∈ N i
2(s)\N

i
1(s), i > j

}

2. In other words,
node i can eitheradd a link (i, j) ∈ E i

a(s), or delete a
link (i, j) ∈ E i

d(s). Note that link deletions may violate
network connectivity. In this case, those link deletions should
be excluded from the set of allowable actions. In the next
two sections we address the cases of link deletions and link
additions separately.

2Note that since the indices of all nodes in the network are distinct, this
definition results in a unique assignment of links to nodes.

4

1) Link Deletions: Network connectivity is typically in-
ferred from the number of trivial eigenvalues of the Laplacian
matrix. However, such approaches are not applicable in
our framework, since we assume no global knowledge of
the network topologyG(s), but only knowledge of local
neighborhoods. Instead, we employ finite-time-maximum
consensus which is a distributed algorithm and converges
to equal values on nodes belonging to the same connected
component of a graph (Theorem 2.3). Therefore, if deletion
of a link violates connectivity, both nodes adjacent to that
link will lie in different connected components and will have
different consensus values. In what follows, we extend this
idea to simultaneously checking connectivity for all possible
edge deletions in the graph using a single high-dimensional
consensus algorithm.

Consider nodej that has authority to remove any of the
links in the setEj

d(s). Each one of these links needs to be
checked with respect to connectivity and each connectivity
verification relies on a scalar consensus update, accordingto
Theorem 2.3. Therefore, checking all links inEj

d(s) requires
|Ej

d(s)| consensus updates.3 We associate with every link in
Ej
d(s) a consensus variable, and stacking all these variables

in a vector we obtain the state vectorxjj(s) ∈ R
|Ej

d
(s)|.

Running a distributed consensus over the network, requires
participation of all other nodesi 6= j. This is possible by
defining the state variablesxij(s) ∈ R

|Ej

d
(s)|. All vectors

xij(s) are initialized randomly and are updated by nodei
according to the following maximum consensus:
Case I: If (i, j) 6∈ E i

d(s) ∪ Ej
d(s), i.e., if nodesi and j are

not neighbors, then

xij(s) := max
k∈N i

1
(s)

{xij(s),xkj(s)} , (9)

with the maximum taken elementwise on the vectors,
Case II: If (i, j) ∈ Ej

d(s), i.e., if nodesi andj are neighbors
and nodej has authority over link(i, j), then

[xij(s)](i,j) := max
k∈N i

1
(s)\{j}

{

[xij(s)](i,j), [xkj(s)](i,j)
}

,

(10)
and

[xij(s)](l,j) := max
k∈N i

1
(s)

{

[xij(s)](l,j), [xkj(s)](l,j)
}

, (11)

for l 6= i, where[xkj(s)](l,j) ∈ R denotes the entry ofxkj(s)
corresponding to the link(l, j),
Case III: If (i, j) ∈ E i

d(s), i.e., if nodesi andj are neighbors
and nodei has authority over link(i, j), then

[xii(s)](i,j) := max
k∈N i

1
(s)\{j}

{

[xii(s)](i,j), [xki(s)](i,j)
}

.

(12)
Once consensus (9)–(12) has converged, nodei compares

the entries [xii(s)](i,j) and [xji(s)](i,j) for all (i, j) ∈
E i
d(s). Since, violation of connectivity due to deletion of

the link (i, j) would result in nodesi and j being in dif-
ferent connected components of the network,[xii(s)](i,j) =

3We define by|X| the cardinality of the setX.

Algorithm 1 Connectivity verification

Require: xij ∈ R
|Ei

d| for all j ∈ V ;
Require: Tij = [0 . . . 1i . . . 0]

T , ∀ j ∈ V ;
1: if ∃ j ∈ V such thatmin{Tij} = 0 then
2: Updatexij by (9)–(12);
3: Tij := maxk∈N 1

i
{Tij, Tkj};

4: else ifmin{Tij} = 1 for all j ∈ V then
5: UpdateE i

σ by (13);
6: end if

[xji(s)](i,j) implies that the reduced network is still con-
nected. Hence, we can define a set

E i
σ(s) ,

{

(i, j) ∈ E i
d(s)|[xii(s)](i,j) = [xji(s)](i,j)

}

, (13)

containing thesafe links adjacent to nodei that if deleted,
connectivity is maintained.

2) Connectivity Verification:The connectivity verification
of link deletions, discussed in Section IV-A.1, is illustrated in
Alg. 1. Convergence of the finite-time consensus (9)–(12) is
captured by a vector of tokensTij(s) ∈ {0, 1}n, initialized
as Tij(s) := [0 . . . 1i . . . 0]

T for all j ∈ V and indicating
that nodei has initialized the consensus variables for link
deletions for which nodej is responsible. In particular,
when all tokens of all nodes have been collected (line 4,
Alg. 1), then consensus has converged and the set of safe
link deletionsE i

σ(s) can be computed (line 5, Alg. 1). Note
that nodei does not need to know the neighbor sets of its
non-neighbors in the network, neither their size. Instead,the
vectorsxij(s) are initialized both in values and dimension
as soon as vectorsxkj(s) are received from a neighbor
k ∈ N i

1(s). Clearly, xjj(s) are initialized first and then
propagated in the network via maximum consensus until the
information they contain reaches nodei.

B. Most Beneficial Local Action

As discussed in Problem 1, the objective of this work is to
minimize the error function CME(G(s)). For this we propose
a greedy algorithm, which for every times selects the action
that maximizes the quantity CME(G(s))−CME(G(s+1)), if
such an action exists, and terminates if no such action exists.
By construction, such an algorithm converges to a network
that locally minimizes CME(G(s)), while in Section V, we
show that it performs well in practice too.

In what follows we first compute the effect of a link
addition or deletion on the four first spectral moments.
Although distributed consensus could be used to compute
the new moments resulting from each possible action, as
in Section III, this would clearly be computationally very
expensive. Instead, we can achieve this goal locally and with
minor computational overhead, based on the observation that
the addition or removal of an edge(i, j) only influences the
degrees of nodesi and j, as well as and the triangles and
quadrangles touching their neighboring nodes. Hence, agents
i and j can communicate to compute the net increment in
the spectral moments due to the addition or deletion of edge

5

(i, j). In particular, we get the following expressions for the
increments in the first three moments

∆m
±(i,j)
1 = ±

2

n
,

∆m
±(i,j)
2 =

2

n
[1± (di + dj + 1)] ,

∆m
±(i,j)
3 =

1

n

[

(3± 6) (di + dj)± 3(d2i + d
2
j) + (6± 2) ∓ 6Tij

]

where the notation± (i, j) indicates a link addition(+) or
deletion(−) and the dependence on times has been dropped
for simplicity. (Similarly, one can obtain a complicated
closed-form expression for∆m

±(i,j)
4 , which we omit due to

space limitations.) Then, agent’si copy of thek-th spectral
momentmi

k(s) becomes

m
±(i,j)
k (s) = mi

k(s) + ∆m
±(i,j)
k (s),

and the associated centralized momentm̄
±(i,j)
k (s) can be

computed using (2). Then, for all possible actions discussed
in Section IV-A, agenti computes the error function

CME±(i,j)(s) =

4
∑

k=0

[

(

m̄
±(i,j)
k (s)

)1/k

− (m̄∗
k)

1/k

]2

.

Then, the localmost beneficial actionto the target centralized
moments, namely, the action that results in the maximum
decrease in the error function CME(·), can be defined by4

νi(s) , max

{

argmin
j

(

CME±(i,j)(s)− CMEi(s)
)

}

,

where CMEi(s) denotes agenti’s copy of CME(s), and the
largest decrease in the error associated with actionνi(s)
becomes:

CMEi(s) = CME±(i,νi(s))(s)

if minj(CME±(i,j)(s) − CME(s)) ≤ 0 and CMEi(s) = D,
otherwise. Note that CMEi(s) is nontrivially defined only if
the exists a link adjacent to nodei that if added or deleted
decreases the error function CME(·). Otherwise, a large value
D > 0 is assigned to CMEi(s) to indicate that this action
is not beneficial to the final objective. We can include all
information of a best local action in the vector

vi(s) ,
[

i νi(s) CMEi(s) m̄±(i,νi(s))(s)
]T

∈ R
7

containing the local best action(i, νi(s)), the associated
distance to the desired moments CMEi(s), and the vector
of centralized moments̄m±(i,νi(s))(s) due to this action. In
the following section we discuss how to compare all local
actionsvi(s) for all nodesi ∈ V to obtain the one that
decreases the distance to the desired moments the most.

4The max in the expression bellow indicates that in case of ties in the
min, the highest index node wins.

Algorithm 2 Globally most beneficial action

Require: vi , [i νi CMEi m̄±(i,νi)]
T ;

Require: Ti := [0 . . . 1i . . . 0]
T ;

1: if min{Ti} = 0 then
2: vi := vj , with j = max{argmink∈N i

1

{[vi]3, [vk]3};
3: Ti := maxj∈N i

1

{Ti, Tj};
4: else ifmin{Ti} = 1 and [vi]3 < D then
5: UpdateNi, m̄i and CMEi according to (14)–(17);
6: else ifmin{Ti} = 1 and [vi]3 = D then
7: No beneficial action. Algorithm has converged;
8: end if

C. From Local to Global Action

To obtain the overall most beneficial action, all local
actions need to be propagated in the network and compared
against each other. For this we require minimal storage and
communication as well as no propagation of any information
regarding the network topology. As in Section IV-A, we
achieve this goal using a finite time minimum consensus
algorithm.

In particular, the desired local actionsvi(s) are propagated
in the network, along with vectors of tokensTi(s) ∈ {0, 1}n,
initialized asTi(s) := [0 . . . 1i . . . 0]

T , indicating that nodei
has transmitted its desired action. During every iterationof
the algorithm, every nodei communicates with its neighbors
and updates its vector of tokensTi(s) (line 3, Alg. 2), as well
as its desired actionvi(s) with the actionvj(s) correspond-
ing to the nodej that contains the smallest distance to the
target moments[vj(s)]3, i.e.,

j ∈ argmink∈N1i(s){[vi(s)]3, [vk(s)]3}.

In case of ties in the distances to the targets[vj(s)]3, i.e., if
argmink∈N i

1
(s){[vi(s)]3, [vk(s)]3} contains more than one

nodes, then the nodej with the largest label is selected
(line 2, Alg. 2). Note that line 2 of Alg. 2 is essentially a
minimum consensus update on the entries[vi(s)]3 and will
converge to a common outcome for all nodes when they
have all been compared to each other, which is captured by
the conditionminnj=1 Tij(s) = 1 (lines 4 and 6, Alg. 2).
When the consensus has converged, if there exists a node
whose desired action decreases the distance to the target
moments, i.e., if[vi(s)]3 < D (line 4, Alg. 2), then Alg. 2
terminates with a greedy action and nodei updates its set of
neighborsN i

1(s) and vector of centralized moments̄mi(s)
(line 5, Alg. 2). If the optimal action is a link addition, i.e.,
if [vi(s)]2 6∈ N i

1(s), then

N i
1(s+ 1) := N i

1(s) ∪ {[vi(s)]2} . (14)

On the other hand, if the optimal action is a link deletion,
i.e., if [vi(s)]2 ∈ N i

1(s), then

N i
1(s+ 1) := N i

1(s)\ {[vi(s)]2} . (15)

In all cases, the centralized moments and error function are
updated by

m̄i(s+ 1) := [vi(s)]4:7 (16)

6

Run 1 Run 3Run 2

Reset 3 Reset 1

Reset 2

Fig. 1. Synchronization: Assume nodei is in run 1. Necessary for nodei to
transition to run 2 is that all other nodes are also in run 1, since otherwise
node i will be missing tokens from the nodes that are not in run 1 yet
(currently in run 3) and Alg. 2 will not be able to converge. Once nodei
transitions to run 2, it initializes all variables for that run with the latest
values from run 1, while it maintains the variables of run 1 for nodes that
are still in run 1 and it clears all variables of run 3 since, nonode is in this
run any more.

and
CMEi(s+ 1) := [vi(s)]3, (17)

respectively, where[vi(s)]4:7 = [[vi(s)]4 . . . [vi(s)]7]
T . Fi-

nally, if all local desired actions increase the distance tothe
target moments, i.e., if[vi(s)]3 = D (line 6, Alg. 2), then no
action is taken and the algorithm terminates with a network
topology with almost the desired spectral properties. Thisis
because no action exists that can further decrease the distance
to the target moments.

D. Synchronization

Communication time delays, packet losses, and the asym-
metric network structure, may result in runs of the algorithm
starting asynchronously, outdated information being usedfor
future decisions, and consequently, nodes reaching different
decisions for the same run. In the absence of a common
global clock, the desired synchronization is ideallyevent
triggered, where by a triggering event we understand the
time instant that a messageMsg[i] has been received by
any of nodei’s neighborsj ∈ N i

1 . We achieve such a
synchronization by labeling every algorithm run in the set
{1, 2, 3} and requiring that all information exchange takes
place among neighbors that are in equally labeled runs [21].
Essentially, “fast” nodes wait for their “slower” peers and,
hence, all nodes are always synchronized in the sequence
{1, 2, 3, 1, 2, 3, . . .} (Fig. 1).

V. NUMERICAL SIMULATIONS

In this section we illustrate our algorithm with several
numerical examples.

Example 1 (Star networks):Consider a star network on
10 nodes. The first four central moments of the associated
Laplacian matrix are:̄m∗

1 = 1.8, m̄∗
2 = 7.56, m̄∗

3 = 54.14,
and m̄∗

4 = 453.49. Our objective is to control the topology
of a randomly initialized network on 10 nodes so that it
eventually has the same set of moments as the given star
network. We observe in Fig. 2 that our algorithm decreases
the error function (blue line) to zero in finite time. Similar
performances are observed when we repeat this procedure for
star networks of any size. Furthermore, although we are con-
trolling the first four moments solely, the resulting network
structures are exactly the star topologies whose moments
we were trying to approximate. The perfect reconstruction
observed in this case is due to the fact that a star graph is a

Fig. 2. Convergence of the error function CME(·) for the star graph
(blue plot) and the two-stars graph (red plot). The subgraphin the upper
right corner shows the behavior of the error function in a neighborhood of
zero. Observe that our algorithm can match the first four moments of the
star network with zero error in finite time, but can not exactly match the
moments of a the two-stars graph, although the final error is very small.

Fig. 3. Structures of the two-stars network (a) and the network returned
by our algorithm (b).

extreme case in which the graph topology is uniquely defined
by their eigenvalue spectrum. Moreover, if each agent in a
star network has access to its second-order neighborhood, it
has access to the complete star topology.

Example 2 (Two-stars network):Although our approach
works very well for star networks, the case of two-stars
networks points out one of its weaknesses, namely, its lim-
itation in modeling network communities. In this example,
we consider two star graphs on 10 nodes each, and connect
their two central hubs with a link. The resulting graph is the
two-stars graph shown in Fig. 3(a). As before, we initialize
our algorithm with a random graph on 20 nodes and try
to approximate the first four central moments of the two-
stars graph. In Fig. 2, we observe that the error function (red
line) quickly reaches a neighborhood of zero but does not
reach zero exactly. Therefore, although our algorithm tries
to generate the two hubs in the two-star network, its local
nature will not allow it recover the highly-structured two-
stars graph. Instead, it returns the final network shown in
Fig. 3(b). Nevertheless, the eigenvalue spectra between the
desired two-star network and the network in Fig. 3(b) are
still very similar, as shown in Fig. 4.

Example 3 (Chain vs. ring networks):The objective of

7

Fig. 4. Empirical cumulative distribution functions for the eigenvalues of
the two-stars graph (blue) and the graph returned by our algorithm (red).

this example is to illustrate how two structurally very similar
(but topologically different) target graphs, such as a chain
and a ring, may affect the performance of our algorithm. In
particular, if we run our algorithm to control the first four
centralized moments of an initially random graph towards the
moments of a chain graph, we observe how the error function
converges exactly to zero in finite time. Furthermore, the
final result of our algorithm is an exact reconstruction of
the chain graph. Nevertheless, when transforming the target
graph from a chain graph into a ring graph (by adding
a single link), an exact reconstruction is very difficult. In
Fig. 5, we illustrate some graphs returned by our algorithm
for different initial conditions when we control the set of
moments toward the moments of a ring network on 20 nodes.
Observe that, although the algorithm tends to create long
cycles and the majority of nodes have degree two, it fails to
recreate the exact structure of the ring graph due to the local
nature of the algorithm (as in Example 2). However, although
the structure of the resulting networks is not exactly the
desired ring graph, their spectral properties are remarkably
close to those of a ring. In Fig. 6, we illustrate the empirical
cumulative distribution functions of the eigenvalues of the
ring graph (blue plot), versus the four empirical cumulative
distribution functions corresponding to the graphs in Fig.5.

Example 4 (Small-Worlds):In our final example, we use
our algorithm to control the moments of a randomly gener-
ated graph to those of a small-world network. We consider
small-world graphs as defined in [22], namely, we take a
ring of n nodes, and connect each node in the ring with
all the nodes in its 3-hop neighborhood. Then, we randomly
rewire a fraction of the resulting edges with probabilityp
as proposed by Watts and Strogatz [22]. Our objective is to
approximate the first four centralized moments of a random
instance of a small world graph withn = 40 nodes and link
probabilityp = 1/n. We observed a fast convergence of the
error to a neighborhood of zero, i.e., CME(27 iterations) =
.0009, which suggests (although does not guarantee) a good
approximation between the spectra of the target small-world
graph and the graph returned by our algorithm. We repeated

Fig. 5. Networks returned by our algorithm when trying to match the first
four central moments of a ring on 20 nodes.

Fig. 6. Empirical cumulative distribution of eigenvalues for the ring graph
with 20 nodes (blue plot) and the graphs in Fig. 5(a) (red), Fig. 5(b) (green),
Fig. 5(c) (magenta) and Fig. 5(d) (cyan).

this process for a link probabilityp = 4/n and similar results
were obtained. We should note, however, that although the
spectral properties between the target small-world graphsand
the graphs returned by our algorithm are remarkably similar
(Fig. 7), we expect the structures to be quite different as in
Example 3 (although this difference is not easy to observe
from a direct visualization of both graph structures).

VI. CONCLUSIONS ANDFUTURE RESEARCH

In this paper, we have described a fully decentralized al-
gorithm that iteratively modifies the structure of a networkof
agents with the objective of controlling the spectral moments
of the Laplacian matrix of the network. Although we assume
that each agent has access to local information regarding the
graph structure, we show that the group is able to collectively
aggregate their local information to take a global optimal
decision. This decision corresponds to the most beneficial

8

Fig. 7. Empirical cumulative distrubution of eigenvalues for the small-
world graphs in the example forp = 1/n (left) andp = 4/n (right).

link addition/deletion in order to minimize an error function
that involves the first four Laplacian spectral moments of the
network. The aggregation of the local information is achieved
via gossip algorithms, which are also used to ensure network
connectivity throughout the evolution of the network.

Future work involves identifying sets of spectral moments
that are reachable by our control algorithm. (We say that a
sequence of spectral moments is reachable if there exists a
graph whose moments match the sequence of moments.) Fur-
thermore, we observed that fitting a set of low-order moments
does not guarantee a good fit of the complete distribution of
eigenvalues. In fact, there are important spectral parameters,
such as the algebraic connectivity, that are not captured bya
small set of spectral moments. Nevertheless, we observed in
numerical simulations that fitting the first four moments of
the eigenvalue spectrum often achieves a good reconstruction
of the complete spectrum. Hence, a natural question is to
describe the set of graphs most of whose spectral information
is contained in a relatively small set of low-order moments.

REFERENCES

[1] N. Wiener, The Mathematics of Self-Organising Systems. Recent
Developments in Information and Decision Processes, Macmillan,
1962.

[2] H. Haken,Synergetics: An Introduction, 3rd Edition, Springer-Verlag,
1983.

[3] M.O. Jackson,Social and Economic Networks, Princeton University
Press, 2008.

[4] V.M. Preciado,Spectral Analysis for Stochastic Models of Large-Scale
Complex Dynamical Networks, Ph.D. dissertation, Dept. Elect. Eng.
Comput. Sci., MIT, Cambridge, MA, 2008.

[5] D.J. Aldous, Some Inequalities for Reversible Markov Chains, J.
London Math. Soc. (2)25, pp. 564-576, 1982.

[6] L.M. Pecora, and T.L. Carroll, “Master Stability Functions for Syn-
chronized Coupled Systems,”Physics Review Letters, vol. 80(10), pp.
2109-2112, 1998.

[7] V.M. Preciado, and G.C. Verghese, “Synchronization in Generalized
Erdös-Rényi Networks of Nonlinear Oscillators,”Proc. of the 44th
IEEE Conference on Decision and Control, pp. 4628-4633, 2005.

[8] M. Draief, A. Ganesh, and L. Massoulié, “Thresholds forVirus Spread
on Networks,” Annals of Applied Probability, vol. 18, pp. 359-378,
2008.

[9] V.M. Preciado, and A. Jadbabaie, “Spectral Analysis of Virus Spread-
ing in Random Geometric Networks,”Proc. of the 48th IEEE Confer-
ence on Decision and Control, 2009. (to appear).

[10] N.A. Lynch, Distributed Algorithms, Morgan Kaufmann Publishers,
1997.

[11] A. Fax, and R. M. Murray, “Information Flow and Cooperative Control
of Vehicle Formations,”IEEE Transactions on Automatic Control, vol.
49, pp. 1465-1476, 2004.

[12] R. Olfati-Saber, and R. M. Murray, “Consensus Problemsin Networks
of Agents with Switching Topology and Time-Delays,”IEEE Trans-
actions on Automatic Control, vol. 49, pp. 1520-1533, 2004.

[13] A. Ghosh, and S. Boyd, “Growing Well-Connected Graphs,” Proc. of
the 45th IEEE Conference on Decision and Control, pp. 6605-6611,
2006.

[14] R. Grone, R. Merris, and V.S. Sunder, “The Laplacian Spectrum of a
Graph,” SIAM Journal Matrix Analysis and Applications, vol. 11, pp.
218-238, 1990.

[15] Y. Kim, and M. Mesbahi, “On Maximizing the Second-Smallest
Eigenvalue of a State Dependent Graph Laplacian,”IEEE Transactions
on Automatic Control, vol. 51, pp. 116-120, 2006.

[16] M.C. DeGennaro, and A. Jadbabaie, “Decentralized Control of Con-
nectivity for Multi-Agent Systems,”Proc. of the 45th IEEE Conference
on Decision and Control, San Diego, CA, Dec. 2006, pp. 3628-3633.

[17] D. Kempe, and F. McSherry, “A Decentralized Algorithm for Spectral
Analysis,” Journal of Computer and System Science, vol. 74, pp. 70-
83, 2008.

[18] N. Biggs,Algebraic Graph Theory, Cambridge University Press, 2nd

Edition, 1993.
[19] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of Groups of

Mobile Autonomous Agents Using Nearest Neighbor Rules,”IEEE
Transactions on Automatic Control, vol. 48(6), pp. 988-1001, 2003.

[20] J. Cortes, “Distributed algorithms for reaching consensus on general
functions,” Automatica, vol. 44(3), pp. 726-737, 2008.

[21] M. M. Zavlanos, and G. J. Pappas, “Distributed Connectivity Control
of Mobile Networks,” IEEE Transactions on Robotics, vol. 24(6), pp.
1416-1428, 2008.

[22] D.J. Watts, and S. Strogatz, “Collective Dynamics of Small World
Networks,” Nature, vol. 393, pp. 440-42, 1998.

	I Introduction
	II Preliminaries & Problem Definition
	II-A Problem Definition

	III Distributed Computation of Spectral Moments
	IV Distributed Control of Spectral Moments
	IV-A Possible Local Actions
	IV-A.1 Link Deletions
	IV-A.2 Connectivity Verification

	IV-B Most Beneficial Local Action
	IV-C From Local to Global Action
	IV-D Synchronization

	V Numerical Simulations
	VI Conclusions and Future Research
	References

