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Abstract—This paper addresses the issue of the
practical implementation of Model Predictive Con-
trollers (MPC) to processes with short sampling
times. Given an explicit solution to an MPC problem,
the main idea is to approximate the optimal control
law defined over state space regions by a single poly-
nomial of pre-specified degree which, when applied
as a state-feedback, guarantees closed-loop stability,
constraint satisfaction, and a bounded performance
decay. It is shown how to search for such a polynomial
by solving a single linear program.

I. INTRODUCTION

The task of on-line implementation of MPC in the Re-
ceding Horizon fashion boils down to repetitively solving
a given optimization problem at each sampling instance.
Success of a practical real-time implementation of such
a control strategy therefore depends on whether enough
computational resources are available at the target imple-
mentation platform to perform the optimization within
the duration of one sampling period. If the sampling
time decreases, or if less powerful control platforms are
employed, additional care has to be taken to respect the
hard real-time constraints.

Nowadays it is a standard practice to address this
problem by solving the given MPC optimization problem
explicitly [3], i.e. to “pre-calculate” the optimal solution
for all feasible initial conditions. The result is an explicit
representation of the control law in a form of a look-
up table. Complexity of the real-time implementation of
such solutions is determined by the amount of memory
needed to describe the table and by the amount of CPU
time needed to traverse it. Clearly, both of these figures
grow proportionally with the table size.

Unfortunately, even in an ‘average’ case the complexity
of the look-up table in the number of defining state space
regions tends to be very large and above the storage
or speed limits of most real-time control devices [3].
Therefore, it is often essential for a real-life imple-
mentation to find an appropriate approximation of the
controller. Several authors approached this problem by
either modifying the original MPC problem, retrieving a
suboptimal solution, or by post-processing the computed
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optimal controller, cf. e.g. [2], [5], [12]. However, a direct
guarantee on the reduction of the complexity, closed-loop
stability, or performance decay is mostly neglected.

This paper aims at approximating the given explicit
MPC control law µ(x) by a single multivariate polyno-
mial

µ̃(x) =
d∑

i=0

nx∑

j=1

[αi]jx
i
j (1)

of pre-specified degree d in such a way that closed-loop
stability, feasibility, and bounded performance decay are
guaranteed. Here, αi ∈ Rnu×nx are the coefficients to be
determined, [αi]j denotes the j-th column of αi, xi

j is
the i-th power of the j-th element of vector x ∈ Rnx ,
and nx and nu denote, respectively, the number of states
and control inputs. Once calculated, the polynomial can
replace the explicit MPC solution as a feedback con-
troller, without negative impact on stability or constraint
satisfaction. The added benefit is that evaluation of the
polynomial feedback (1) for a given state measurements x
can be done much faster compared to traversing the look-
up table of the optimal MPC controller [9]. Memory foot-
print of the approximate controller is also significantly
smaller compared to that of the optimal MPC feedback
law.

The approximation is performed in two steps. First,
given an explicit representation of the MPC control law
µ(x) and a corresponding PWA Lyapunov function V (x),
the set of feedback laws which render V (x) a Control Lya-
punov Function is calculated using basic computational
geometry tools. It is shown that any control law from this
set asymptotically stabilizes the given system while also
providing constraint satisfaction for all time. Then, in the
second step, we show how to search for the coefficients of
the approximation polynomial such that it is always con-
tained in the set of stabilizing feedback laws by solving a
single linear program (LP). We have proposed a similar
procedure in [9] where the polynomial is searched for by
solving a sum-of-squares (SOS) optimization. The SOS
approach, however, quickly becomes prohibitive even for
small-scale problems. As will be illustrated in Section IV,
the LP-based procedure presented here outperforms the
SOS-based approach in terms of performance by several
orders of magnitude. Therefore the results of this paper
open up the idea of polynomial approximation to a much
wider class of problems. This is stressed in Section V
where the discussed procedure is applied to devise a
cheap control strategy for a real thermo-optical device.
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II. Preliminaries

We consider the class of discrete-time, stabilizable
Piecewise Affine (PWA) systems of the following form

x(t + 1) = fPWA(x(t), u(t)) (2)

= Adx(t) + Bdu(t) + ad, if
[

x(t)
u(t)

]
∈ Dd,

where t ≥ 0, the domain D := ∪ND
d=1Dd of fPWA(·, ·)

is a non-empty compact set in Rnx+nu with ND < ∞
the number of system dynamics, and {Dd}ND

d=1 denotes
a polyhedral partition of the domain D, i.e. the closure
of Dd is D̄d :=

{
[ x
u ] ∈ Rnx+nu | Dx

dx + Du
du ≤ D0

d

}
and

int(Dd)∩ int(Dj) = ∅ for all d '= j. Note that linear state
and input constraints can be naturally incorporated in
the description of Dd.

Assumption 2.1: The origin in the extended state-
input space is an equilibrium point of the PWA system
(2), i.e. nx+nu ∈ D and nx = fPWA( nx , nu), where

n := [0 0 . . . 0]′ ∈ Rn. !
We define for the aforementioned PWA system (2) the

constrained finite time optimal control (CFTOC) problem

J∗T (x(0)) =min
UT

"T (x(T )) +
T−1∑

t=0

"(x(t), u(t)) (3a)

s.t.
{

x(t + 1) = fPWA(x(t), u(t))
x(T ) ∈ X f ,

(3b)

where "(·, ·) is the stage cost, "T (·) the final penalty
function, UT is the optimization variable defined as the
input sequence UT := {u(t)}T−1

t=0 , T < ∞ is the prediction
horizon, and X f is a compact terminal target set in
Rnx . The CFTOC problem (3) implicitly defines the set
of feasible initial states XT ⊂ Rnx (x(0) ∈ XT ) and
the set of feasible inputs UT−t ⊂ Rnu (u(t) ∈ UT−t,
t = 0, . . . , T − 1). In the sequel we will consider linear
cost functions of the form

"(x(t), u(t)) := ‖Qx(t)‖p + ‖Ru(t)‖p, (4a)
"T (x(T )) := ‖Px(T )‖p, (4b)

where ‖·‖p with p ∈ {1,∞} denotes the standard vector
1-/∞-norm.

The goal in this section is to summarize results on
explicit (closed-form) expression for u∗(t) : XT → UT .

Theorem 2.2 (Solution to CFTOC [3]): The
solution to the optimal control problem (3a)–(3b) with a
linear performance index (4) is a time-invariant piecewise
affine function of the initial state x(0)

µRH(x(t)) := KT,i x(t) + LT,i, (5)

if x(t) ∈ Pi, with u∗(t) = µRH(x(t)), and {Pi}NP
i=1 is

a polyhedral partition of the set of feasible states x(t),
XT = ∪NP

i=1Pi, with the closure of Pi given by P̄i = {x ∈
Rnx | P x

i x ≤ P 0
i }. "

Remark 2.3: The CFTOC problem (3) can be formu-
lated using YALMIP [13] and the closed-form solution

in the form of (5) can be calculated e.g. using the freely
available Multi-Parametric Toolbox (MPT) [10].

Assumption 2.4 (Stability, feasibility): Note that in
the following it is assumed that the parameters
T, Q, R, P , and X f are chosen in such a way that (5) is
closed-loop stabilizing, feasible for all time [4] and that
a polyhedral piecewise affine Lyapunov function of the
form

V (x) = V x
i x + V 0

i , if x ∈ Pi, (6)

for the closed-loop system

fCL(x(t)) := fPWA(x(t), µRH(x(t)), (7)

x(t) ∈ XT , exists and is given. !
This is not a restricting requirement but rather the

aim of most (if not all) control strategies. Furthermore,
we remark that if the parameters are chosen according to
e.g. [14] one can simply take V (·) equal to the optimal
cost J∗T (·).

In order to present the complete result for the new
controller approximation approach, the two underlying
core ideas need to be explained. The first idea is based
on the inherent freedom of the Lyapunov function (6):

Theorem 2.5 (Asymptotic/exponential stability [11]):
Let XT be a bounded positively invariant set
in Rnx for the autonomous (closed-loop) system
x(t + 1) = fCL(x(t)) with x(t) ∈ XT and let α(·), α(·),
and β(·) be K-class functions [17]. If there exists a
non-negative function V : XT → R≥0 with V ( nx) = 0
such that

α(‖x‖) ≤ V (x) ≤ α(‖x‖), (8a)
∆V (x) := V (fCL(x))− V (x) ≤ −β(‖x‖), (8b)

for all x ∈ XT , then the following results hold:
(a) The equilibrium point nx is asymptotically stable

[17] in the Lyapunov sense in XT .
(b) If α(‖x‖) := a‖x‖γ , α(‖x‖) := a‖x‖γ , and β(‖x‖) :=

b‖x‖γ for some positive constants a, a, b, γ > 0 then
the equilibrium point nx is exponentially stable [17]
in the Lyapunov sense in XT . "

Simply speaking, if all the prerequisites of Theorem 2.5
are fulfilled with a given controller µRH(·), the resulting
behavior of the closed-loop system is stabilizing. If, for
the given function V (·), β(·) is now relaxed, one can
(possibly) find a set of controllers that will render the
closed-loop system stabilizing and feasible. These sets of
controllers are denoted in the following as stability tubes.
The concept and results of stability tubes – along with
their computation – are elaborated in further detail in
[4, Ch. 10].

Definition 2.6 (Stability tube): Let V (·) be a Lya-
punov function for the general nonlinear, closed-loop
system x(t + 1) = f(x(t), u(t)), with x(t) ∈ XT , under
the stabilizing control u(t) = µ(x(t)) and constraints
[ x
u ] ∈ D and let the prerequisites of Theorem 2.5 be
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fulfilled. Furthermore, let β(·) be a K-class function.
Then the set

S(V,β) :=
{

[ x
u ] ∈ Rnx×nu

∣∣∣ f(x, u) ∈ XT ,

[ x
u ] ∈ D, V (f(x, u))− V (x) ≤ −β(‖x‖)

}

is called stability tube. !
Theorem 2.7 ([4]): Let the assumptions of Definition

2.6 be fulfilled. Then every control law u(t) = µ̃(x(t)),
x(t) ∈ XT , (also any sequence of control samples u(t))
fulfilling [

x(t)
u(t)

]
∈ S(V,β) (9)

asymptotically stabilizes the system x(t + 1) =
f(x(t), u(t)), where x(t) ∈ XT , to the origin. "

Naturally, for general nonlinear systems, the stability
tube S(V,β) can basically take any form. Note, however,
that for the considered class of PWA systems (2), PWA
control laws u(x) = µRH(x) of the form (5), and PWA
Lyapunov functions of the form (6) with β(·) consisting
of a sum of weighted vector 1-/∞-norms, the stability
tube can be described by a collection of polytopic sets
in the state-input space and can be computed with basic
polytopic operations:

S(V,β) :=
{

[ x
u ]

∣∣∣ fPWA(x, µRH(x)) ∈ XT ,

V (fPWA(x, µRH(x)))− V (x) ≤ −β(‖x‖)
}

. (10)

In the case considered here, the stability tube
can be represented and ‘easily’ be obtained as
a collection (or union) of polytopes of the form
S(V,β) := ∪NS

j=1Sj , where the closure of Sj is S̄j :={
[ x
u ] ∈ Rnx+nu | Sxu

j [ x
u ] ≤ S0

j

}
.

Without going into details, by construction, we have
the following properties: (a) for some index set Ii ⊆
{1, . . . , NS}, the union ∪j∈IiSj is defined over the con-
troller region Pi, and (b),

∑NP
i=1 |Ii| = NS . This means

that each Sj is defined over a single region Pi, i.e. if for
some i1 and j we have projx(Sj) ⊆ Pi1 then there does
not exist a i2 '= i1 with projx(Sj) ⊆ Pi2 . We remark that
simulations seem to indicate that most often Ii = 1 for
all i, i.e. only one Sj is defined over Pi.

III. Main Results

Let us state the main aim of the paper:
Problem 3.1: Given µRH(x) as in (5) and V (x) of

the form (6) as an optimal closed-form solution to the
CFTOC problem (3) for a PWA system (2) with p = 1
or p = ∞ in (4), find coefficients α0, . . . ,αd of the
polynomial state-feedback law (1) of fixed degree d which
approximates µRH(x) in such a way that closed-loop
stability, constraint satisfaction, and a bounded perfor-
mance decay are guaranteed.

Assumption 3.2: For the pair µRH(x), V (x) there ex-
ists a stability tube S(V,β) =

⋃
Si(V,β) of the form (10)

with Si defined over the i-th regions Pi being convex (i.e.
|Ii| = 1), and the union

⋃
Si(V,β) being connected.

Existence of S(V,β) hints at existence of control laws
other than µRH(x) which would yield the same closed-
loop properties (stability and constraint satisfaction).
Connectivity is implied by the assumption that a single
polynomial covers the whole space of interest and con-
vexity is assumed in order to obtain a unique solution.

Theorem 2.7 provides a sufficient condition for exis-
tence of µ̃(x) which solves Problem 3.1:

Lemma 3.3: Let a stability tube S(V,β) satisfying
Assumption 3.2 be given and denote by pi(α, x) a set
of polynomials

pi(α, x) := S0
i − Sxu

i

[ x
eµ(x)

]
. (11)

Then µ̃(x) as in (1) is a solution to Problem 3.1 if

pi(α, x) ≥ 0, ∀x ∈ Pi, ∀i ∈ [1, . . . , NP ]. (12)
Proof: By assuming convexity of Si(·) we have

Si(·) =
{ [ x

eµ(x)

]
| Sxu

i

[ x
eµ(x)

]
≤ S0

i

}
. Hence (12) is

equivalent to (9) with pi(α, x) as in (11). From Theo-
rem 2.7 it follows that any control law, i.e. also u =
µ̃(x), satisfying [ x

u ] ∈
⋃
Si(V,β) will provide closed-loop

stability, constraint satisfaction, and a guaranteed worst-
case performance decay of β(‖x‖).

Lemma 3.3 suggests that finding µ̃(x) of the form (1)
as a solution to Problem 3.1 can be cast as finding
coefficients α0, . . . ,αd such that polynomials pi(α, x) are
non-negative for all points x ∈ Pi, ∀i ∈ [1, . . . , NP ].
In [9] we have shown how to search, conservatively, for
the coefficients of µ̃(x) satisfying (12) by formulating a
sum-of-squares (SOS) problem, which can be solved using
semidefinite programming (SDP) techniques. However,
as will be illustrated later, from practical point of view
complexity of the underlying SDP problem is often pro-
hibitive even for small values of NP .

In this work we suggest an alternative procedure of
finding the coefficients α0, . . . ,αd of µ̃(x) which is, from
a computational point of view, superior to the SOS-based
approach of [9]. The proposed approach is based on the
following theorem, due to Pólya [6]:

Theorem 3.4 (Pólya’s theorem): If a homogeneous
polynomial pi(α, x) is positive ∀x ∈ Pi with Pi

being a simplex, all the coefficients of pM
i (α, x) =

pi(α, x) · (
∑nx

j=1 xj)M are positive for a sufficiently large
Pólya degree M .

Remark 3.5: Search for α such that pM
i (α, x) ≥

0,∀x ∈ Pi can be performed by using the more obvious
reverse of Pólya’s theorem, i.e. that positive coefficients
of the extended polynomial imply positivity over the
whole simplex.

Remark 3.6: The advantage of Theorem 3.4 over other
conservative techniques for ensuring positivity of polyno-
mials (such as the SOS formulation of [9]) stems from the
fact that given a symbolic representation of pM

i (α, x), the
coefficients α can be found by solving a linear program
(LP). To see this, observe that α enters (11) in a linear
fashion and that all constraints (12) are linear in α.
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Notice, however, that Theorem 3.4 is not directly
applicable to find α from (12) as Pi are not simplices,
in general. To overcome this limitation, we observe that,
by Theorem 2.2, we have Pi = {x | P x

i x ≤ P 0
i }, which

is a polytope described by an intersection of finitely
many half-spaces. Given Vi = vertices(Pi) being a
set of extremal vertices of Pi, the i-th region can be
equivalently expressed as a convex combination of Vi:

Pi =
{

x
∣∣∣ x =

|Vi|∑

j=1

λj [Vi]j , ∀λ ∈ Λi

}
, (13)

Λi =
{

λ
∣∣∣ 0 ≤ λj ≤ 1,

|Vi|∑

j=1

λj = 1
}

, (14)

where |Vi| stands for the number of extremal points of
the i-th region, [Vi]j denotes the j-th vertex of Pi, and
λ = [λ1, . . . ,λ|Vi|]. By substituting for x =

∑
j λj [Vi]j

into (12) we get

pi(α,λ) ≥ 0, ∀λ ∈ Λi, ∀i ∈ [1, . . . , NP ]. (15)

Notice that Λi in (15) are now simplices and Theorem 3.4
can therefore be applied to find α such that pi(α,λ) is
non-negative ∀λ ∈ Λi.

We can now state the main result of the paper, which
is Theorem 3.7 and Algorithm 1 for calculating values
of the coefficients α0, . . . ,αd of the polynomial feedback
law µ̃(x) which is an admissible solution to Problem 3.1.

Algorithm 1 Polynomial approximation
INPUT: PWA system (2), parameters T , Q, R, P , X f

of the CFTOC problem (3), desired maximal per-
formance decay β(‖x‖), degree of the approximation
polynomial d, Pólya degree M .

OUTPUT: Coefficients α0, . . . ,αd of the polynomial
feedback (1) which, when applied as a state-feedback,
assymptotically stabilizes the given PWA system.

1: Obtain a closed-form solution µRH(x), Pi, V (x) to
the CFTOC problem (3) according to Theorem 2.2.

2: Calculate the stability tube S(V,β) per (10).
3: Calculate extremal vertices Vi of all regions Pi.
4: Formulate polynomials pi(α,λ) per (15).
5: Homogenize pi(α,λ) by multiplying single monomials

by (
∑|Vi|

j=1 λj) until all monomials have the same
degree.

6: Compute, symbolically, coefficients cM
i of the Pólya’s

polynomial pM
i (α,λ) = pi(α,λ) · (

∑|Vi|
j=1 λj)M .

7: Search for α by solving the following linear program:

find α0, . . . ,αd, (16)
s.t. cM

i ≥ 0, ∀i ∈ [1, . . . , NP ]. (17)

8: return α0, . . . ,αd.

Theorem 3.7: Let the input arguments of Algorithm 1
satisfy the conditions of Assumptions 2.1, 2.4, and 3.2.
Then the polynomial feedback µ̃(x) of the form (1)
calculated by Algorithm 1 is a solution to Problem 3.1.

Proof: Directly by Lemma 3.3 and Theorem 3.4.
Remark 3.8: All conditions of Assumption 2.4 will be

satisfied (and hence V (x) = J∗T (x)) for T = ∞ and P ,
X f calculated as shown in [1].

Remark 3.9: Computation in Steps 1 and 3 of Al-
gorithm 1 can be carried out using Multi-Parametric
Toolbox. The code for calculating S(V,β) can be ob-
tained upon mail request from the authors. Steps 4–7
can be solved using YALMIP [13], which takes care of
all symbolic and non-symbolic calculations.

Remark 3.10: Algorithm 1 is a non-iterative procedure
and therefore it always terminates.

Remark 3.11: It is worth noting that Algorithm 1
always found a feasible approximation for d = 5 for all
cases investigated in Section IV. However, since Theo-
rem 3.4 is just a sufficient condition, it cannot be ruled
out that Step 7 could fail. In such a case it is advised
to repeat Steps 4–7 with an increased degree of the
approximation polynomial.

Remark 3.12: Instead of a pure feasibility objective
in (16), an alternative is to look for α which minimize the
point-wise distance ‖µRH(xj)− µ̃(xj)‖1 with xj = [Vi]j ,
∀j = [1, . . . , |Vi|], ∀i = [1, . . . , NP ]. Another approach
is to try to aim for low-order polynomials by minimizing
coefficients for higher-order terms. Alternatively, one can
even aim for low-complexity controller by minimizing the
number of non-zero coefficients, which would lead to a
mixed-integer LP problem.

Example 3.13: To illustrate the results of Theo-
rem 3.7, consider the following 1D PWA system [9]:

x(t + 1) =
{

4/5 x(t) + 2u(t) if x > 0,
−6/5 x(t) + u(t) if x ≤ 0,

(18)

with u(t) ∈ [−1, 1] and x(t) ∈ [−4, 4]. The CFTOC
problem (3) was solved with p = 1, Q = 1, R = 1,
P = 0, T = ∞ and the corresponding stability tube S(·)
was calculated for β(‖x‖) = b‖x‖γ with b = 1 · 10−6

and γ = 1. The closed-form solution consisted of 7
regions and the stability tube satisfied Assumption 3.2.
The sets S(·) are depicted in gray in Figure 1 along
with the optimal feedback law µRH(x). Coefficients of
three approximation polynomials with d = 3, 5, 7 have
been subsequently calculated using Theorem 3.4 with
M = 1 and are also depicted in Figure 1. The distance-
minimization criterion suggested in Remark 3.12 was
used when solving the LP in Step 7 of Algorithm 1.

IV. Complexity Comparison

The purpose of this section is to compare computa-
tional complexity of the LP-based procedure of Algo-
rithm 1 against the SDP-based approach of [9]. As out-
lined in the previous section, both methods aim at show-
ing positivity of (12) and therefore are equivalent from
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Fig. 1. Stability tubes S(·) (gray sets), optimal control law µRH(x)
(blue dashed line), and stabilizing polynomial approximations of
different degrees.

a functional point of view, but they differ performance-
wise.

To evaluate performance of both approaches, we have
considered random PWA systems with 2 dynamics, 1
input, and a varying number of nx states. All systems
satisfied Assumption 2.1. For these systems we have
subsequently calculated the closed-form solution to the
CFTOC problem (3) with Q = I, R = 1, and T = ∞,
which guarantees that the solution satisfies Assump-
tion 2.4 [1]. Naturally, for different systems, different
number of regions NP was obtained. The stability tubes
S(·) have been calculated for b = 1 · 10−6 and γ = 1
and they always satisfied conditions of Assumption 3.2.
The sets S(·) were then used to find the approximation
polynomial µ̃(x) of degree d = 5. The Pólya degree of
M = 1 was sufficient to find a polynomial approximation
in all considered cases using the LP-based procedure of
Algorithm 1. The results summarizing the runtimes of
the approximations are reported in Table I. All compu-
tations have been carried out on a Core2Duo CPU with
2.5GHz and 2GB of RAM running Matlab R2007b on
Linux. The SDPT3 solver [15] was employed to solve the
SDP formulation, while CPLEX 11.2 [8] was used as an
LP solver. As can be observed, the LP-based procedure
for finding the approximation polynomial clearly outper-
forms the SOS-based approach in terms of runtime.

It should be noted that although the calculation of
extremal vertices in Step 3 is considered a hard problem
in general, the physical runtime of this step is usually
minute compared to the runtime of the LP solver in
Step 7. In fact, calculation of the extremal vertices for
all cases reported in Table I did not exceed 0.1 seconds
using the MPT toolbox.

V. Experimental Results

To further emphasize practical applicability of the pro-
posed approximation scheme, we have applied it to design
a polynomial controller for a thermo-optical device [7].
The plant consists of a lightbulb, a temperature sensor
and a sensor measuring light intensity. The device is

TABLE I

Comparison of runtimes for Step 7 of Algorithm 1

(Runtime LP) and the SOS-based procedure of [9] (Runtime

SOS). † means that the procedure failed because it ran

out of memory.

nx NP Runtime LP Runtime SOS
2 34 0.1 secs 285 secs
2 50 0.2 secs 658 secs
2 60 0.2 secs 1390 secs
2 78 1.9 secs 3436 secs
2 92 4.9 secs 5475 secs
2 146 12.7 secs †
2 170 22.8 secs †
3 66 2.9 secs †
3 122 4.6 secs †

TABLE II

State-update matrices of the PWA model (2).

A1 B1 a1

A2 B2 a2

A3 B3 a3

=

0.813 0.936 -0.862 2.124
-0.239 0 0.455 -2.269
0.813 0.348 -0.522 0.391
-0.644 0 0.247 -1.125
0.813 0.246 -0.462 0
-0.912 0 0.107 0

connected to a PC via an USB interface. From a physical
point the plant is characterized by heat exchange from
the lightbulb to ambient air with slow dynamics and a
light emission with fast dynamics. Presence of physical
constraints and a short sampling time of Ts = 0.05
seconds of the closed-loop system make control design
challenging. The control task is to manipulate voltage to
the bulb in such a way that a pre-scribed light intensity
setpoint is reached without violating temperature limits.

The plant model was obtained by experimental iden-
tification techniques around multiple operating points
using the IDTOOL toolbox [18]. Numerical values of the
corresponding PWA model can be found in Table II.
Moreover, physical constraints of the plant translate into
state bounds −2.57 ≤ x1(t) ≤ 7.43, −6.78 ≤ x2(t) ≤
3.22, and the input bound −7 ≤ u(t) ≤ 3.

We have then applied Algorithm 1 to obtain a polyno-
mial control law (1). In Step 1 the CFTOC problem (3)
was solved using Multi-Parametric Toolbox (MPT) with
T = ∞, Q = 2I, and R = 1. The resulting closed-
form solution consisted of 61 regions in the 2-dimensional
state-space. Subsequently, the stability tube S(V,β) =⋃
Sj(V,β) was calculated for b = 1·10−6 and γ = 1 using

the polytopic library of the MPT toolbox. We remark
that S(·) satisfied all conditions of Assumption 3.2.
Finally, the coefficients of the polynomial control law (1)
have been calculated by Algorithm 1. For d = 3 we have
obtained the feedback µ̃(x) = 0.0006x3

1 + 0.0041x3
2 −

0.0627x2
1 − 0.0031x2

2 + 0.8272x1 − 0.0366x2. Graphical
representation of µ̃(x) ∈ S(V,β) is shown in Figure 2.
Interesting to notice is that the memory footprint of
µ̃(x) is just 24 bytes (each of the 6 coefficients requires
4 bytes when stored as floating-point numbers) and the
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Fig. 2. Visualization of eµ(x) inside of the stability tube.

Fig. 3. Closed-loop evolution of plant’s state under optimal con-
trol (solid lines) and under the approximate polynomial feedback
(dashed lines).

polynomial can be evaluated for a given value of x in
14 FLOPS using Horner’s scheme. Optimal closed-form
solution µRH(x), defined over 61 regions, would require
2584 bytes of memory and 35 FLOPS to evaluate using
the binary search tree of [16].

The optimal feedback µRH(x) as well as its polynomial
approximation µ̃(x) of degree 3 have been implemented
in real time and experimental data have been obtained.
The case in Figure 3 shows closed-loop transition of
system states starting from x(0) = [7.43, − 6.78]
(lightbulb fully dimmed) to the origin. As can be ob-
served, the approximate polynomial controller performs
well, and provides guarantees of stability and constraint
satisfaction.

VI. Conclusions

In this paper we have presented a novel way of de-
riving simple stabilizing feedback laws for the class of
constrained PWA systems. Stability and feasibility of
the presented scheme is guaranteed by employing the
concept of stability tubes, which can be viewed as a
parametrization of stabilizing feedback laws. Such sets
are subsequently approximated by a polynomial of a
fixed degree. The advantage of such approach, compared
to other schemes, is that the on-line implementation of

such controller can be performed faster and requires less
memory storage.
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