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Abstract— This paper is concerned with input adaptation in
dynamic processes in order to guarantee feasible and optimal
operation despite the presence of uncertainty. For optimal
control problems having terminal constraints, two sets of
directions can be distinguished in the input function space:
the so-called sensitivity-seeking directions, along which a small
input variation does not affect the terminal constraints, and
the complementary constraint-seeking directions, along which
a variation does affect the terminal constraints. Two selective
input adaptation scenarios are thus possible, namely, adaptation
along each set of input directions. This paper proves the

important result that the cost variation due to the adaptation
along the sensitivity-seeking directions is typically smaller
than that due to the adaptation along the constraint-seeking
directions.

Index Terms— Parametric optimal control, terminal con-
straints, sensitivity-seeking directions, constraint-seeking direc-
tions, Fredholm integral equations, selective input adaptation.

I. INTRODUCTION

Processes that are either inherently transient or operated

in an unsteady-state manner are abundant in the resource

industries. Examples in chemical engineering include batch

and semi-batch processes that are characterized by the ab-

sence of a steady state. In the energy sector, transient systems

are also expected to play a key role in future years, as many

alternative technologies rely on discontinuous operation.

We will consider the problem of optimal control of tran-

sient processes for which the uncertainties in the process

model are represented in the form of parametric variations.

The optimal input profiles are typically calculated off-line,

before the process starts, and are then applied to the process

in an open-loop manner. Naturally, when some parameters

deviate from their nominal values during the process oper-

ation, a change in optimal inputs is required to maintain

optimality and meet operational constraints. Adapting all

parts of the optimal input profiles to compensate for the

effect of parametric variations is rarely possible in practice,

nor is it expedient from a performance viewpoint. Partial or

selective input adaptation scenarios that result in acceptable

performance loss compared to optimal operation of the

perturbed process are therefore worth considering.

For problems comprising path constraints, the possibility

of splitting the input space, at each time instant, into the
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so-called (pointwise) sensitivity- and constraint-seeking di-

rections has been demonstrated in [1]. It follows that, for

example, a small input variation along the former set of

directions at a given time does not change the active path

constraint values at that time. The definition of these input

directions is thus tied to the variation in constraints due

to instantaneous input changes. On the other hand, in the

presence of terminal constraints, one must anticipate the

effect of input adaptation at every intermediate time on the

terminal constraint values. Accordingly, defining constraint-

and sensitivity-seeking directions in the pointwise sense

for terminal-constrained problems is not possible, thereby

making the design of selective input adaptation schemes

more challenging.

The purpose of this paper is to address this important

challenge. A new definition of sensitivity- and constraint-

seeking directions is developed, which considers the changes

in terminal constraint values resulting from all input vari-

ations along the optimization horizon. In this approach, a

sensitivity-seeking direction turns out to be the solution of

a particular linear Fredholm integral equation of the first

kind. In other words, the sensitivity- and constraint-seeking

directions are now directions in the input function space

C[t0, tf ]
nu as opposed to directions in the finite-dimensional

space IR
nu at each time instant as in [1]. It is then proved

that the cost variation (with respect to no adaptation of the

nominal optimal inputs) achieved by making the adaptation

along the sensitivity-seeking directions is smaller than when

making the adaptation along the constraint-seeking direc-

tions.

The outline of the paper is as follows. The mathemati-

cal formulation of the parametric optimal control problem

involving terminal constraints is given in Section II, along

with a summary of the necessary conditions of optimal-

ity (NCOs). In Section III, the sensitivity- and constraint-

seeking directions are defined, and the concept of selective

input adaptation along each set of directions is introduced.

Section IV presents a quantitative comparison of the cost

variation due to either of these two selective input adaptation

scenarios. A numerical procedure to compute a specific set

of constraint- and sensitivity-seeking directions is discussed

in Section V and is illustrated by means of an example in

Section VI. Finally, Section VII summarizes the results and

identifies future research directions.

II. PARAMETRIC OPTIMAL CONTROL PROBLEM

The following parametric optimal control problem in the

parameters θ, subject to the terminal inequality constraints
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T ≤ 0, with given initial time t0 and terminal time tf , is

considered (OC(θ)): 1

ẋ(t) = f(t,x(t),u(t),θ); x(t0) = h(θ), (1)

Ti(tf ,x(tf),θ) ≤ 0, i ∈ InT
, (2)

min
u

J = ψ(tf ,x(tf),θ)+

∫ tf

t0

φ(t,x(t),u(t),θ) dt, (3)

where u(t) ∈ IR
nu and x(t) ∈ IR

nx .

The functions f , T, ψ and φ in (OC(θ)) are assumed

to be continuously differentiable with respect to all their

arguments.

Let the nominal values of the system parameters be θ0, and

let (u∗(t),x∗(t)) be an optimal pair for the problem OC(θ0).

We assume the following constraint qualification to hold

([2]): rank{Ta
x
(tf ,x

∗(tf), θ0)} = nTa , where nTa denotes

the number of active terminal constraints.2 Introducing the

Hamiltonian function H,

H(t,x,u,λ,θ) := φ(t,x,u,θ) + λT
f(t,x,u,θ),

and assuming that the problem OC(θ0) is not abnormal, the

so-called first-order necessary condition of optimality must

hold almost everywhere (a.e.) in [t0, tf ] [2]:

0 = Hu(t,x∗(t),u∗(t),λ∗(t),θ0), (4)

λ̇
∗
(t) = −Hx(t,x∗(t),u∗(t),λ∗(t),θ0) (5)

λ∗(tf) = ψx(tf ,x
∗(tf),θ0) + Tx(tf ,x

∗(tf),θ0)
T ρ∗

0 = ρ∗iTi(tf ,x
∗(tf),θ0), ∀ i ∈ IT

0 ≤ ρ∗i , ∀ i ∈ IT.

for some multiplier functions λ∗(t) ∈ IR
nx , and multipliers

ρ∗ ∈ IR
nT .

For the analysis that will follow, we will make two more

assumptions:

• The following strict complementarity condition holds:

The multipliers ρ∗i corresponding to the active terminal

constraints are strictly nonzero; the vector of these

multipliers will henceforth be denoted by ρa.

• The Hamiltonian function is regular, which implies that

the optimal inputs u
∗ are continuous in [t0, tf ].

During process operation, the value of the system parame-

ters can deviate from their nominal values θ0. To compensate

the effect of such variations, it becomes necessary to adapt

the input profiles in such a way that they satisfy the opti-

mality conditions for the perturbed problem.

III. CONSTRAINT- AND SENSITIVITY-SEEKING

DIRECTIONS

In this section, the sensitivity- and constraint-seeking

directions in input space are characterized by considering

small variations of a specific type in the optimal inputs

around their nominal optimal values u
∗. The characterization

of the sensitivity- and constraint-seeking directions for the

1The following notation is used throughout the paper: In := {1, . . . , n}.
2The notation fz is used for the Jacobian matrix of the vector function f

with respect to the vector z.

problem under consideration will be based on the variation

in the values of the active terminal constraints due to the

aforementioned small input variations.

Consider a small variation around the nominal optimal

inputs of the form

ũ(t) = u
∗(t) + ηξu(t), |η| ≪ 1. (6)

Henceforth, we will say that such an input variation is along

the direction ξu. Let the resulting perturbed states be denoted

by x̃(t). Thus, the pair (x̃(t), ũ(t)) satisfies (1) for θ0, and

we have 3

˙̃x(t) − ẋ
∗(t) = f(t, x̃(t), ũ(t),θ0) − f [t].

Because of the continuous differentiability of f with respect

to the inputs and states at (u∗(t),x∗(t)), we can consider

the Taylor expansion of f around (u∗(t),x∗(t)) to obtain:

d

dt
{x̃(t) − x

∗(t)}

= fx[t] {x̃(t) − x
∗(t)} + ηfu[t]ξu(t) +O(η2).

This yields the following first-order approximation of x̃(t; η):

x̃(t; η) = x
∗(t) + ηξx(t) +O(η2), (7)

where ξx(t) is the solution of

ξ̇
x

(t) = fx[t]ξx(t) + fu[t]ξu(t), ∀ t ∈ [t0, tf ],

ξx(t0) = 0.

In particular, the unique solution to the above linear system

can be written in the form [3]

ξx(t) =

∫ t

t0

Φ
fx(t, s)fu[s]ξu(s) ds, ∀ t ∈ [t0, tf ], (8)

where Φ
A(t, s) stands for the state-transition matrix of the

homogeneous system

ż(t) = A(t)z(t), z(t0) = z0, ∀ t ≥ t0.

The variation in the active terminal constraint values T
a

caused by the input variation (6) is given by the Gâteaux

derivative [4] –provided it exists– of T
a with respect to ξ

u

at u
∗:

δTa(u∗; ξu) :=
∂

∂η
T

a(tf , x̃(tf ; η),θ0)

∣

∣

∣

∣

η=0

= T
a
x[tf ]ξ

x(tf),

which using (8) becomes

δTa(u∗; ξu) = T
a
x[tf ]

∫ tf

t0

Φ
fx(tf , s)fu[s]ξu(s) ds. (9)

If the input variation ξu does not cause any change in the

value of the terminal constraints, we have

Dξu = 0, (10)

3The following compact notation is used subsequently:

y[t] := y(x∗(t), u∗(t), λ∗(t), ρ∗, θ0).
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where D : C[t0, tf ]
nu → IR

nTa

defined by

Dξ := T
a
x
[tf ]

∫ tf

t0

Φ
fx(tf , s)fu[s]ξ(s) ds

is a linear operator. Equation (10) is a linear Fredholm

integral equation of the first kind in ξu [5]. Hence, the input

variation functions ξu that do not cause any change in the

value of the active terminal constraints are those satisfying

(10).

We are now ready to define the sensitivity-seeking (SS)

directions.

Definition 1 (Sensitivity-seeking Directions): A function

ξu in the input function space C[t0, tf ]
nu along which an

infinitesimal input variation ηξu does not modify the values

of the active terminal constraints T
a(tf ,x

∗(tf),θ0), in the

sense of (10), is called a sensitivity-seeking direction in

C[t0, tf ]
nu .

The foregoing discussion makes it clear that any solution

of (10) yields a SS direction and so does any linear com-

bination of solutions of (10). Let the set of all solutions to

(10) be denoted by Vs,

Vs := {v ∈ C[t0, tf ]
nu | Dv = 0} .

Note that Vs is a linear subspace of C[t0, tf ]
nu . Since Vs

is the span of the SS directions, it shall be referred to as

the sensitivity-seeking subspace of the input function space

subsequently.

Next, a constraint-seeking (CS) direction is defined as one

that is orthogonal to the sensitivity-seeking subspace.

Definition 2 (Constraint-seeking Directions): A function

ξu ∈ C[t0, tf ]
nu is called a constraint-seeking direction for

the optimal control problem OC(θ0) at u∗ if ξu is orthogonal

to Vs, i.e.,

0 = 〈ξu, ξ〉 , ∀ξ ∈ Vs,

where 〈·, ·〉 stands for any inner product on C[t0, tf ]
nu .

Let us denote by Vc the set

Vc := {v ∈ C[t0, tf ]
nu | 〈v,w〉 = 0, ∀ w ∈ Vs} .

Note that, by the linearity property of the inner product, Vc is

also a linear subspace of C[t0, tf ]
nu . Since Vc is the span of

CS directions, it shall be referred to as the constraint-seeking

subspace of the input function space subsequently.

Lemma 3: No non-zero vc ∈ Vc satisfies (10), i.e.,

Vs ∩ Vc = {0} .

Proof: Let ξ ∈ Vs ∩Vc. By construction, we have 〈ξ, ξ〉 =
0, which by the elementary properties of an inner product

implies ξ = 0.

At this point, it is easy to define selective input adaptation

along each of the set of directions defined above.

Definition 4 (Selective Input Adaptation): Adaptation of

the nominal optimal inputs according to (6) along the

nonzero direction ξu ∈ Vs is called selective input adap-

tation along a SS direction. Similarly, an adaptation along

a nonzero direction ξu ∈ Vc is called selective input

adaptation along a CS direction.

Note that, because the CS and SS directions are tied to

the nominal optimal solution, no variation in the parameters

θ is involved in the foregoing definitions.

IV. EFFECT OF SELECTIVE INPUT ADAPTATION ON COST

This section deals with the scenario of a change in

parameters from θ0 to θ̃(η) := θ0 + ηξθ, with |η| ≪ 1.

Suppose that one wishes to avoid repeating the whole

solution procedure to compute the modified optimal inputs

ũ
∗. Either one of two options are possible:

1) No Input Adaptation: The nominal optimal inputs u
∗

are applied ‘as is’ to the perturbed system. Let the

pair of perturbed states and resulting cost be denoted

by (x̂(t), Ĵ). Thus, (x̂(t),u∗(t)) satisfies (1) for θ̃.

Because of the continuous differentiability of f with

respect to x and θ, x̂(t) has a first-order approximation

around x
∗(t) as

x̂(t; η) = x
∗(t) + ηξx̂(t) +O(η2).

2) Selective Input Adaptation: The nominal optimal in-

puts are adapted along a general direction ξu(t) ∈
C[t0, tf ] and the resulting inputs (6) are then applied to

the perturbed system. Let the pair of perturbed states

and resulting cost be denoted by (x̃(t), J̃), respectively.

Thus, (x̃(t), ũ(t)) satisfies (1) for θ̃. Because of the

continuous differentiability of f with respect to x, u

and θ, x̃(t) also has a first-order approximation around

x
∗(t) as

x̃(t; η) = x
∗(t) + ηξx̃(t) +O(η2).

Subscript s or c will be added to various notation

when the direction of input adaptation ξ
u(t) under

consideration is a SS or a CS direction, respectively.

Evidently, both of the above options will result in sub-

optimal process operation, although Option 2 can be expected

to perform better under judicious choice of the input adap-

tation directions. The objective here is to compare the cost

variations J̃s − Ĵ and J̃c − Ĵ .

Following common practice in optimal control theory [6],

the cost functional J is augmented as

Ja := ψ(tf ,x(tf),θ) +

∫ tf

t0

φ(t,x(t),u(t),θ)dt

+

∫ tf

t0

π(t)T [f(t,x(t),u(t),θ) − ẋ(t)] dt,

for some multiplier functions π ∈ C1[t0, tf ]
nx . It is clear that

Ja = J for any π(t) ∈ C1[t0, tf ]
nx provided that the pair

(x(t),u(t)) satisfies (1) for θ, in which case minimizing J

with respect to u becomes equivalent to minimizing Ja with

respect to u. Using integration by parts, the expression of Ja

can be rearranged as follows:

Ja = ψ(tf ,x(tf),θ) − π(tf)
T
x(tf) + π(t0)

T
h(θ)

+

∫ tf

t0

[

φ(t,x(t),u(t),θ) + π(t)T
f(t,x(t),u(t),θ)

]

dt

+

∫ tf

t0

π̇(t)T
x(t)dt. (11)
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Since both pairs (x̃(t), ũ(t)) and (x̂(t),u∗(t)) satisfy (1) for

θ̃,4

J̃a − Ĵa = ψ̃[tf ] − ψ̂[tf ] − π(tf)
T
x̃(tf) + π(tf)

T
x̂(tf)

+

∫ tf

t0

(

φ̃[t] − φ̂[t]
)

dt

+

∫ tf

t0

(

π(t)T
f̃ [t] − π(t)T

f̂ [t]
)

dt

+

∫ tf

t0

(

π̇(t)T
x̃(t) − π̇(t)T

x̂(t)
)

dt. (12)

Taylor expansion around (x̂(t),u∗(t)) and rearrangement of

the various terms in (12) leads to:

J̃a − Ĵa = η
{(

ψ̂x[tf ]
T − π(tf)

T
)

ςx(tf)

+

∫ tf

t0

(

φ̂x[t]T + π(t)T
f̂x[t] + π̇(t)T

)

ςx(t)dt

+

∫ tf

t0

(

φ̂u[t]T + π(t)T
f̂u[t]

)

ξu(t)dt

}

+O(η2),

where

ςx(t) := ξx̃(t) − ξx̂(t), ∀t ∈ [t0, tf ].

With the following choice of π,

˙̂π(t) = −f̂x[t]T π̂(t) − φ̂x[t],

π̂(tf) = ψ̂x[tf ],
(13)

the cost difference further reduces to

J̃a − Ĵa = η

∫ tf

t0

(

φ̂u[t]T + π̂(t)T
f̂u[t]

)

ξu(t)dt+O(η2).

Note that the inhomogeneous linear differential equations

(13) can always be solved to obtain a unique π̂(t). In turn,

φ̂u[t] and f̂u[t] can be expanded around (x∗(t),u∗(t),θ0) to

give

J̃a − Ĵa = η

∫ tf

t0

(

φu[t]T + π̂(t)T
fu[t]

)

ξu(t)dt+O(η2).

Hence, a first-order approximation of J̃a is Ĵa + ηδJ , with

δJ :=

∫ tf

t0

(

φu[t]T + π̂(t)T
fu[t]

)

ξu(t)dt. (14)

Next, utilizing the fact that (4) holds along the nominal

optimal trajectory,

0 = Hu[t] = φu[t] + fu[t]T λ∗(t), a.e. in [t0, tf ],

δJ can be rewritten as

δJ =

∫ tf

t0

β(t)T
fu[t]ξu(t)dt, (15)

4We introduce the additional notations:

ŷ[t] := y(t, x̂(t), u∗(t), θ̃), and ỹ[t] := y(t, x̃(t), ũ(t), θ̃).

where β(t) is the first-order approximation of π̂(t)−λ
∗(t),

i.e.,

π̂(t) − λ∗(t) = β(t) + ηξπ(t) +O(η2),

and is given by

β(t) = −Φ
fx(tf , t)

T
T

a
x[tf ]

T ρa, ∀t ∈ [t0, tf ] . (16)

Finally, combining (15) and (16) gives:

δJ = −ρT
a T

a
x[tf ]

∫ tf

t0

Φ
fx(tf , t)fu[t]ξu(t)dt. (17)

Now we are ready to state the following theorem:

Theorem 5: Consider parametric variations of the form

θ̃(η) := θ0+ηξ
θ , with |η| ≪ 1. The cost variation by making

selective input adaptation along any nonzero SS direction

ξu

s ∈ Vs is O(η2), whereas that by making selective input

adaptation along any nonzero CS direction ξu

c ∈ Vc is O(η).
Proof: By Definition 1, ξ

u

s satisfies (10), and from (17),

δJs = −ρT
a T

a
x[tf ]

∫ tf

t0

Φ
fx(tf , t)fu[t]ξu

s (t)dt = 0.

Therefore, J̃a
s − Ĵa is O(η2). On the other hand, no non-

zero direction in Vc satisfies (10) by Lemma 3. Hence,

from (17), δJc = −ρT
a {non-zero vector} 6= 0, as strict

complementarity condition holds at the nominal optimal

solution of (OC(θ)). Therefore, J̃a
c − Ĵa is O(η).

The main implication of Theorem 5 is that, for small para-

metric variations, adapting the inputs along the constraint-

seeking directions has the greatest impact on the perfor-

mance of the perturbed system. Note, however, that no

restriction has been considered so far regarding the choice

of the input adaptation directions ξu

c . A judicious choice

of ξ
u

c will permit a substantial cost improvement, while a

poor choice of ξu

c could potentially lead to worsening the

performance of the adapted system, even with respect to

the no-input-adaptation scenario (Option 1). Special care

must therefore be taken when selecting the input-adaptation

directions. A numerical procedure for computing sensitivity-

and constraint-seeking directions and a way of choosing the

input adaptation directions are discussed in the following

section.

V. A NUMERICAL PROCEDURE TO COMPUTE

SENSITIVITY- AND CONSTRAINT-SEEKING DIRECTIONS

This section proposes a numerical procedure to compute

sensitivity- and constraint-seeking directions.

Let ξu denote a given direction in the input function space.

We would like to compute the SS and CS directions ξ
u

s and

ξu

c obtained by projecting ξu on Vs and Vc, respectively.

To avoid the difficulty of computing projections on the

infinite-dimensional function spaces Vc and Vs, we propose

to proceed by approximating the optimal control problem by

a nonlinear programming problem (NLP) as follows:

1) Approximate the input profiles u(t) using a control

vector parameterization (e.g., piecewise constant or

affine) in terms of n parameters, the vector of which
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will be denoted by ω. Thus, we have the following

expression which relates ω to u(t):

u(t) = U(t,ω), ∀t ∈ [t0, tf ]. (18)

2) Transform the optimal control problem into an NLP

in terms of the decision variables ω. Note that the

terminal constraint in the optimal control problem will

be transformed into a - typically nonlinear - constraint

in ω.

3) Solve the resulting NLP numerically to obtain the

optimal values ω∗ and find the set of active constraints

G of the NLP at ω∗.

4) From the singular value decomposition of Gω at ω∗,

find the orthogonal matrices Vc and Vs that define the

CS and SS directions, respectively, of the NLP problem

[7].

5) Compute the orthogonal projections of the vector ξω

on the column space of Vc and Vs, respectively:

ξω
c =VcVc

T ξω,

ξω
s =VsVs

T ξω.
(19)

6) ξω
c and ξω

s are the approximations of the desired

profiles ξ
u

c and ξ
u

s , respectively, under the same pa-

rameterization as used in Step 1, i.e.,

ξu

c (t) = U(t, ξω
c ), ∀t ∈ [t0, tf ],

ξu

s (t) = U(t, ξω
s ), ∀t ∈ [t0, tf ].

Naturally, we can expect the approach to yield better

approximations of the desired directions ξu

c and ξu

s as the

number of parameters n increases.

In case of small parametric variations around θ0, it is

possible to specialize the choice of the input variation ξ
u(t)

to the first-order input variation ξu
∗

(t) [1]. Note that, in

the present approach, it is not necessary to compute ξu
∗

(t)
using the sensitivity analysis of the optimal control problem.

Indeed, if ξω∗

denotes the parameterization of ξu
∗

(t) of the

type chosen in Step 1 above, then ξ
ω∗

can be computed

from the sensitivity analysis of the (resulting) NLP problem

[7], [8], [9]. Steps 3 to 6 will then yield the specific

input adaptation directions ξu
∗

c (t) ∈ Vc and ξu
∗

s (t) ∈ Vs,

respectively.

VI. ILLUSTRATIVE EXAMPLE

Consider the following parametric optimal control prob-

lem corresponding to the optimization of a chemical reactor.

There is one input variable, the reactor temperature, and one

terminal constraint [10]:

max
u(t),0≤t≤tf

xB(tf) (20)

s. t. ẋA(t) = −k1(u(t))xA(t)

ẋB(t) = k1(u(t))xA(t) − k2(u(t))xB(t)

k1(u(t)) = k◦1exp

(

−
E1

u(t)

)

k2(u(t)) = k◦2exp

(

−
E2

u(t)

)

xA(0) = 0.53, xB(0) = 0.43

xA(tf) − 0.1(2 − θ) ≤ 0,

where θ denotes the uncertain system parameter, with nom-

inal value θ0 = 1.

The values of all constants in the equations above are given

in Table I.

TABLE I

CONSTANTS

Constants Values

k◦

1
0.535 × 1011

k◦

2
0.461 × 1018

E1 9 × 103

E2 15 × 103

tf 8

Following the procedure outlined in Section V, a

piecewise-constant input parameterization over n = 90
equal-length stages over [0, tf ] is considered. Figure 1 shows

the nominal optimal solution of (20) reconstructed using the

solution of the resulting NLP.
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Fig. 1. Nominal optimal input profile (top plot) and corresponding state
trajectories (bottom plot).

Next, ξω∗

is computed from the sensitivity analysis of

the NLP problem for ξθ = 1. Using ξω∗

in (19) yields

ξω∗

c and ξω∗

s . These three vectors are used to reconstruct

approximations for the first-order input variation ξu∗(t) and

corresponding CS and SS directions ξu∗

c (t) and ξu∗

s (t),
respectively. The latter three functions are shown in Figure

2.

Finally, the performances of the following strategies are

compared for 5% and 10% variation in the parameter θ, i.e.,

η = 0.05 and 0.1:

• No input adaptation : ũ(t) = u∗(t).
• Full input adaptation : ũ(t) = u∗(t) + ηξu∗(t).
• Selective input adaptation in the CS direction only :

ũ(t) = u∗(t) + ηξu∗

c (t).
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The results are given in Table II.

TABLE II

RESULTS OF INPUT ADAPTATION STRATEGIES

Strategy J T (tf ,x(tf ))

η = 0.05

No adaptation 0.648 500 × 10−5

CS-selective adaptation 0.642 6 × 10−5

Full adaptation 0.642 6 × 10−5

Perturbed optimal 0.642 0

η = 0.1

No adaptation 0.648 1000 × 10−5

CS-selective adaptation 0.636 23 × 10−5

Full adaptation 0.636 23 × 10−5

Perturbed optimal 0.635 0

In both perturbation scenarios, the performance of full and

CS-selective input adaptation are almost identical, thereby

validating the principle of selective input adaptation. Note

also that the terminal constraint violation by the two adap-

tation strategies is negligible compared to that due to the

strategy of no adaptation in both perturbation scenarios.

There is degradation, in terms of the value of terminal con-

straint, in the performance of both input adaptation strategies,

when the magnitude of the parametric variation (η) increases

from 5% to 10%. This latter effect results from the first-order

approximations becoming less accurate as the magnitude of

the parametric variation increases. The degradation effect on

terminal constraint violation is very pronounced in case of

no input adaptation.

The results also make it evident that it may become

necessary to back-off the terminal constraints in practical

implementation of input adaptation strategies.

VII. CONCLUSIONS

The complexity of optimal control problems makes those

methods that do not require recomputing the exact solution

to be much more tractable and thus highly desirable.

For problems involving terminal constraints, it is demon-

strated that the input function space can be split into two

distinct sets of directions, based on whether an infinitesimal

input variation along these directions modifies the terminal

constraints or not; the criterion for separation turns out to be

a linear Fredholm integral equation of the first kind. These

two orthogonal sets of directions are termed constraint-

seeking and sensitivity-seeking directions, respectively.

In order to mitigate the effect of parametric variations,

while keeping the adaptation problem tractable, selective

input adaptation along either the SS directions or the CS

directions is considered. It is shown that the cost variation

by making the latter adaptation is O(η), whereas it is O(η2)
with the former one. This paves the way for the development

of selective input adaptation schemes which will greatly

reduce, if not eliminate, the need for reoptimizing a system

in the presence of parametric variations.

A possible application of these results is in the field of a

recently developed methodology for constrained optimal con-

trol problems called NCO tracking [11], in which parts of the

input profiles can be adapted selectively. Hence, prioritization

of selective-adaptation strategies is of paramount importance

for developing practical NCO-tracking controllers.

Extensions of these results to problems involving discon-

tinuous u
∗(t), problems having non-regular Hamiltonians

and singular arcs as well as problems having a combination

of terminal-, mixed control-state- and pure state-constraints

will be addressed in future work.
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