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Abstract— The paper considers the framework of distributed
Bayesian linear estimation. We introduce some consensus-based
estimation strategies that are equivalent to centralized ones
pending knowledge of some parameters, e.g. number of agents
in the network. If such parameters are not known, agents can
estimate them locally or exploit prior knowledge. We show that
in this case the performance depends on parameter uncertainty
in such a way that, in case of large errors, the distributed
estimator can perform worse than the local one. Then, we find
some sufficient conditions on the error magnitude which ensure
that the distributed scheme behaves better than the local one.

Index Terms— Bayesian linear model, distributed estimation,
consensus, performance characterization, sufficient conditions

I. INTRODUCTION

The continuous growth of large scale networks of de-
vices which are capable of sensing and interacting with
the environment, commonly referred as Networked Control
Systems (NCSs), is enabling a whole new range of applica-
tions ranging from ambient monitoring using wireless sensor
networks to surveillance using networks of smart cameras,
from multi-robot exploration to energy management using
smart grids, just to name a few [1]. However, these new
applications come with great challenges since the design of
a large scale network of cooperating systems, is still at an
empirical level and sound methodological strategies are only
recently appearing [2].

Within this context, in this paper we address the problem
of distributed estimation, i.e. the problem of estimating a set
of unknown system parameters based on the measurements
obtained from many sensor nodes. These nodes are provided
with computational and communication capabilities and their
objective is to obtain an estimate of the unknown parameters
possibly through cooperation. We also consider a framework
in which there is no central coordinating unit and sensor
nodes form a connected network, i.e. they might not be
able to communicate directly, but there is path of that
allows information to travel from any node to any other
node. An example of such a system is given by the next
generation power grids [3] where each energy producer or
user will be connected through a communication network
and can exchange information to estimate some unknown
parameters of the network like its efficiency, its capacity,
its current utilization, etc. These networks are likely to be
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dynamic, i.e. new nodes can appear or disappear, and the
nodes characteristic might not be known to any node. These
features make distributed estimation challenging since it is
necessary to design algorithms that do not rely on the a-priori
knowledge of the network topology and network parameters,
and need to be robust to node failure and dynamic changes.

Distributed estimation and, more generally, distributed
computation is a well established research areas [4] [5], in
particular in the context of computer networks. However it
has been witnessing a renewed interest mainly due to the
appearance of new technologies which pose new challenges
to these old problems, like lossy communication, bandwidth
limitation, energy constraints, unreliable devices [6] [7] [8]
(and references therein). Even standard problems in control
theory, like Bayesian estimation of linear systems [9], have
been shown to be nontrivial in the context of Wireless Sensor
Networks mainly due to limited computational and commu-
nication resources available to the network nodes [10] [11].
In the framework of Bayesian estimation, several authors
focused on distributed or decentralized computations. For
example, in [12] authors analyze how to combine multiple
independent results of learning algorithms performed by
identical agents, providing bounds on the number of agents
necessary to obtain a desired level of accuracy. In [13] the
author proposes estimation strategies using a hierarchical
structure: the sensor nodes perform measurements of the
process and preprocess this data, then a supervisor node
fuses these local outputs and compute a global estimate. It
considers also the expected losses for predicted data, giving
upper bounds as functions of the number of samples of
each agent. There is also a wide literature on distributed
estimation subject to communication constraints: in [14]
authors propose a message-passing scheme for a nonpara-
metric distributed regression algorithm, while in [15] they
survey the problems related to the distribution of the learning
process in wireless sensor networks, analyzing both paramet-
ric and nonparametric scenarios. In [16] the same authors
analyze the existence of decision and fusion rules assuring
consistency for a binary classification problem, where the
measurements are performed by a set of agents with limited
communication capabilities and transmitting information to
a central unit. In this framework also some authors propose
some asymptotic results on the performances of decision
transmission strategies, seeking for optimality in terms of
decision error probability for the central unit [17].

Recently, popular distributed algorithms, known as con-
sensus algorithms [18], have been proposed also for esti-
mation purposes [19] [20] since they require only limited



computation and communication resources, minimal node
synchronization, and they are robust to link and node failure.
The main idea of consensus algorithms is to average mea-
surements or local estimates among all network nodes, based
on the intuition that averaging reduces the noise and therefore
the parameter estimation error. However, this is not always
the case, since local estimates are correlated and a simple
average might not be the optimal strategy, in particular when
sensors have different accuracy.

In this work we address this problem. In particular we
analyze when averaging leads to better performance than a
local estimate under different noise conditions and when the
network nodes do not know the number of sensors in the
network or their noise levels. We show that indeed perfor-
mance improvement is not always guaranteed by consensus
and we provide some sufficient conditions which guarantee
it under mild conditions.

II. PROBLEM STATEMENT

In this section, first, we introduce three different scenarios of
Bayesian estimation. Then, we state the main problem which
will be investigated in the subsequent sections.

A. Local Bayesian estimation

Let
yi = Ca + νi, i = 1, . . . , S (1)

where S is the number of sensors, yi ∈ RM is the
measurements vector collected by the i-th sensor, a ∈ RE is
the vector of unknown parameters modeled as a zero-mean
Gaussian vector with autocovariance Σa , i.e. a ∼ N (0,Σa).
In addition, νi ∈ RM is the noise vector with density
N
(
0, σ2

i IM
)
, independent of a and of νj , for i 6= j. Finally,

C ∈ RM×E is a known matrix, equal for all sensors.
Under the assumptions above, the local Minimum Mean

Square Error (MMSE) estimator of a given yi, is

âloc,i := E [a | yi ] = cov (a,yi) var (yi)
−1 yi

= ΣaC
T
(
V
(
σ2
i

))−1
yi .

(2)

where, for θ ∈ R:

V (θ) := CΣaC
T + θIM (3)

The autocovariance of the local estimation error ãloc,i :=
a− âloc,i is given by:

var (ãloc,i) = Σa − ΣaC
T
(
V
(
σ2
i

))−1
CΣa . (4)

B. Centralized Bayesian estimation

If S ≥ 2 and all measurements {yi} are collected by a
central unit, the MMSE estimate of the parameter vector a
can be computed in a centralized way via the following:

âcent := cov

a,

 y1

...
yS


var


 y1

...
yS



−1 y1

...
yS

 (5)

where:

var


 y1

...
yS


 =

 V
(
σ2

1

)
. . . V (0)

...
...

V (0) . . . V
(
σ2
S

)
 (6)

Using the matrix inversion lemma and simple algebraic
manipulations, eqn. (5) can be rewritten as:

âcent = ΣaC
T
(
V (α−1)

)−1

∑S
i=1

yi

σ2
i∑S

i=1
1
σ2

i

. (7)

where above, and in the sequel:

α :=
S∑
i=1

1
σ2
i

. (8)

C. Distributed Bayesian estimation

Let’s assume that no central units can collect the whole data
set and (in this section) that all sensors know the value of the
sum of the precisions α before starting the various estimation
strategies.

If the number of measurements for each sensor M is
smaller than the number of parameters E, then, since:∑S

i=1
yi

σ2
i∑S

i=1
1
σ2

i

=
1
S

∑S
i=1

yi

σ2
i

1
S

∑S
i=1

1
σ2

i

(9)

sensors can reach average-consensus on yi

σ2
i

and 1
σ2

i
, then

compute their ratio (9), and then compute the estimate (7),
while if M > E, it is preferable to use algorithm 1. Since in
the practical case it is easier to have M � E, we will refer
through the paper to this situation.

Algorithm 1 distributed estimation with known sum of
precisions

1: (requirement) sensors have knowledge of the quantity α
before starting step 2

2: sensors achieve average consensus on the quantities
ΣaC

T
(
V
(
α−1

))−1 yi

σ2
i

and 1
σ2

i
;

3: at the end of the consensus process, sensors compute
the optimal estimate dividing the two obtained averaged
variables.

Let h be the harmonic mean of the measurements noises
variances, i.e.:

h := H
(
σ2

1 , . . . , σ
2
S

)
:=

S∑S
i=1

1
σ2

i

. (10)

It is evident that average consensus on the quantities 1
σ2

i

corresponds to a distributed estimation of h−1. Since:

α :=
S∑
i=1

1
σ2
i

=
S

h
, (11)

once the number of sensors in the network S is known, it
is possible to satisfy requirement 1 of algorithm 1 using a
pre-distributed estimation step for h−1.



D. Problem statement

We are now in a position to formulate the main problem
investigated in this paper. Assume that α, S and h are
unknown (plausible situation when sensors do not have
knowledge on the whole network). Then sensors have two
possible strategies: the first is to make a guess α of α, use
it in step 2 of algorithm 1, run in parallel two average-
consensi (one on ΣaC

T
(
V
(
α−1

))−1 yi

σ2
i

and one on 1
σ2

i
)

and obtain a (suboptimal) estimate. The second is firstly to
distributely estimate h with an average consensus on 1

σ2
i

,
then make a guess S of S (the same among all sensors),

then reach average consensus on ΣaC
T
(
V
(
h
S

))−1
yi

σ2
i

and
finally divide the result for h. The first strategy is faster, while
the second requires a guess on a quantity that is more easily
deducible. Notice also that, as previously discussed, when the
number of measurements per sensor is smaller than the num-
ber of parameters, it is convenient first to obtain 1

S

∑
i

yi

σ2
i

and
1
S

∑
i

1
σ2

i
via consensus and then apply the transformation

matrix ΣaC
T
(
V
(
h
S

))−1

so that, subsequently, in this case
the problem is always reduced to make a guess on S.

We would like now to derive conditions that guarantee
that the process of sharing and combining the information
described by these suboptimal versions of algorithm 1 im-
proves the estimation of a with respect to the local estimation
strategy of eqn. (2). In other words, we want to obtain
conditions relative to the level of uncertainty on the values
of α and S that ensure that the distributed strategy returns a
smaller autocovariance (in a matrix sense) of the estimation
error than that obtainable by the local one.

III. AN UNIFORM SUFFICIENT CONDITION

We start the analysis considering the first suboptimal strategy,
where sensors make a (common) guess α of α and then
run 2 parallel average-consensi. The second strategy will be
considered in sec. III-C.

Using a guess α, at the end of the consensus process the
distributed estimate result is:

âdist (α) := ΣaC
T
(
V
(
α−1

))−1
1
S

∑S
i=1

yi

σ2
i

1
S

∑S
i=1

1
σ2

i

. (12)

Obviously the variance of the estimation error of âcent is
smaller than the one of âdist (α). An interesting question is:
can we find values of α s.t. at the end of the estimation
process the variance of the error of the distributed strategy
is smaller than the error of the local strategy, independently
of Σa and on C? The answer is in the following:

Theorem 1. If

α ∈
[
α−

√
α2 − α

σ2
i

, α+
√
α2 − α

σ2
i

]
(13)

then the variance of the estimation error of the distributed
estimator âdist (α) is smaller than the one of the local
estimator âloc,i, for every prior Σa , number of parameters
E, sum of precisions α and matrix C.

Notice that even if α is assumed to be the same among
all the sensors, the bound (13) is different for each sensor i.

A. Asymptotic analysis of bound (13)

Before deriving other results it is interesting to analyze the
asymptotic behavior of bound (13). For ease of notation we
define b− (i) := α−

√
α2 − α

σ2
i

and b+ (i) := α+
√
α2 − α

σ2
i

:

• if the topology and σ2
i are fixed but we vary the noisiness

of sensors j 6= i, we have that:

∃j s.t. σ2
j → 0 ⇒ b− (i)→ 1

2σ2
i

, b+ (i)→ +∞
(14)

i.e. if there exists a sensor that has “perfect” measurements,
then sensor i will improve its estimation with any guess α
that is at least half of its precision 1

σ2
i

. In the contrary, if:

∀j σ2
j → +∞ ⇒ b− (i)→ 1

σ2
i

, b+ (i)→ 1
σ2
i

, (15)

i.e. if all the sensors have unreliable measures then sensor i
should use the local estimator (2);
• if the noisiness of all the sensors are the same but we vary
the number of sensors S in the network, we have that:

S → +∞ ⇒ b− (i)→ 0 b+ (i)→ +∞ (16)

but we send back the reader to Sec. V for a more detailed
discussion of this case;
• if the topology and the noisiness of all sensors j are fixed
but the one of sensor i, and we vary it, then we have that:

σ2
i → 0 ⇒ b− (i)→ +∞, b+ (i)→ +∞ (17)

i.e. if the measurements of sensor i are “perfect” then sensor
i should estimate without caring about the other sensors. In
the contrary, if the measurements of sensor i are unreliable
we should expect to have an improvement for every guess α.
Unfortunately from bound (13) we obtain only the following:

σ2
i → +∞ ⇒ b− (i)→ 0, b+ (i)→ 2α (18)

i.e. a subset of the interval we were expecting. This is due
to the fact that thm. 1 gives only a sufficient condition for
the optimality we are looking for.

As a general consideration, if sensor i is highly accurate
while all the others are not, then bound (13) is thight for
the sensor i (the accurate one), so it is more probable that
the guessed α falls outside of its bound. Since (13) is a
sufficient condition, it could be that, if α falls near outside
the indicated interval, then still the distributed estimation is
better than the local one also for the accurate sensor i. But
if it falls far outside, this could become false.

B. Conditions referred to the network as a whole

The following condition assures that each sensor in the
network has an advantage from the distributed algorithm:

Corollary 2. Define σ2
min := mini

{
σ2
i

}
. Then if

α ∈
[
α−

√
α2 − α

σ2
min
, α+

√
α2 − α

σ2
min

]
(19)



then the variance of the estimation error of the distributed
estimator âdist (α) is smaller than the one of the local
estimator âloc,i for each sensor i.

Since in a distributed scenario it could be interesting to
analyze average behaviors, it is important to answer to the
following question: can we find values of α s.t. the variance
of the error of the distributed strategy is smaller than the
average error of the various local strategies, independently
of the used prior Σa and of the matrix C? The answer is
given in the following:

Theorem 3. Considering the harmonic mean h defined in
Eqn. (10), if

α ∈
[
α−

√
α2 − α

h
, α+

√
α2 − α

h

]
(20)

then the variance of the estimation error of the distributed
estimator âdist (α) is smaller than the average variance of the
estimation errors of the local estimators âloc,i.

As expected, since the minimum element of the set of
scalars is always smaller than the harmonic mean of this set,
the interval described in bound (19) is always included in the
interval described in bound (20), implying that condition (19)
is sufficient for condition (20).

C. Uniform conditions when knowing the harmonic mean of
the measurements noises
If sensors use the second suboptimal strategy of sec. II-D
(composed by a distributed estimation of h, a guess S of S
and subsequently an average consensus), the previous results
can be immediately reformulated as follows:

Corollary 4. If

S ∈

[
S −

√
S2 − Sh

σ2
i

, S +

√
S2 − Sh

σ2
i

]
(21)

then the variance of the estimation error of the distributed
estimator âdist (α) is smaller than the one of the local
estimator âloc,i, for every prior Σa , number of parameters
E, sum of precisions α and matrix C.

Corollary 5. If

S ∈

[
S −

√
S2 − Sh

σ2
min
, S +

√
S2 − Sh

σ2
min

]
(22)

then the variance of the estimation error of the distributed
estimator âdist (α) is smaller than the one of the local
estimator âloc,i for each sensor i.

Corollary 6. If

S ∈
[
S −

√
S2 − S, S +

√
S2 − S

]
(23)

then the variance of the estimation error of the distributed
estimator âdist (α) is smaller than the average variance of the
estimation errors of the local estimators âloc,i.

Notice that corollary 6 is not independent of the various
noises variances σ2

i since it implicitly requires the knowledge
on their harmonic mean h.

IV. EQUAL MEASUREMENTS NOISES VARIANCES

The special case σ2
i = σ2 for all i’s is interesting because

it corresponds to networks composed by the same type of
sensors. In this case we have that:

α :=
S∑
i=1

1
σ2
i

=
S

σ2
(24)

and the centralized estimator can be rewritten as:

âcent := ΣaC
T

(
V

(
σ2

S

))−1
(

1
S

S∑
i=1

yi

)
. (25)

The estimation error variance in this case is optimal and
given by:

var (ãcent) = Σa − ΣaC
T

(
V

(
σ2

S

))−1

CΣa . (26)

Eqn. (25) can be distributely computed using algorithm 2.
The main differences with algorithm 1 and the different
noises scenario of sec. II-C are:
• sensors must know the exact number of active sensors
S and not the sum of precisions α;

• sensors need to achieve consensus only to one vectorial
quantity (consensus on the precisions is not needed);

• even if the steady state has not been reached, the quanti-
ties involved in the consensus algorithm are estimations
of the parameters a.

Algorithm 2 distributed estimation with equal noises and
known number of sensors

1: each sensor i locally computes an initial estimate of the

parameters ΣaC
T
(
V
(
σ2

S

))−1

yi;
2: sensors achieve average consensus on the previous quan-

tities.

A. Estimation without perfect knowledge on S
In order to achieve the optimal performances, the various
sensors must use the correct parameter σ2

S in step 1 of
algorithm 2, thus all sensors must have perfect knowledge
on S. But what happens when this is infeasible? Assume all
sensors use in step 1 of this algorith a certain guess S (the
same among all the sensors), instead of the correct parameter
S. The resulting distributed estimator is now dependent on
this new parameter S:

âdist
(
S
)

:=
1
S

S∑
i=1

(
ΣaC

T

(
V

(
σ2

S

))−1

yi

)

= ΣaC
T

(
V

(
σ2

S

))−1
(

1
S

S∑
i=1

yi

)
.

(27)
The new estimation error, defined as ãdist

(
S
)

:= a −
âdist

(
S
)
, has a variance equal to:

var
(
ãdist

(
S
))

= Σa − 2ΣaC
T
(
V
(
σ2

S

))−1

CΣa+

+ΣaC
T
(
V
(
σ2

S

))−1

V
(
σ2

S

)(
V
(
σ2

S

))−1

CΣa

(28)



that obviously is equal to expression (26) whenever S = S.

V. AN UNIFORM SUFFICIENT CONDITION FOR EQUAL
MEASUREMENTS NOISES VARIANCES

As before, we are interested to understand what happens
when the various sensors use in step 1 of algorithm 2 not
the exact number of sensors S but a guess S (the same among
the network). Using eqn. (24) we can reformulate bound (13)
for the current case, and obtain the following bound:

α ∈
[

1
σ2

(
S −

√
S2 − S

)
,

1
σ2

(
S +

√
S2 − S

)]
(29)

that is dependent on the measurement noise variance σ2.
Using a different proof (not suitable for thm. 1) we can
remove this dependence and obtain a more elegant result:

Theorem 7. If
S ∈ [1, 2 (S − 1)] (30)

then the variance of the estimation error of the distributed
estimator âdist

(
S
)

is smaller than the one of the local
estimators âloc,i, for every prior Σa , number of parameters
E, measurement noise variance σ2, matrix C and sensor i.

Notice that if S = 1 then equation (12) reduces to the
local strategy (2). For this reason thm. 7 assures that local
estimation (2) plus average consensus is, at the end of the
consensus process, always better than local MMSE estimate,
independently of S, σ2, Σa and C.

VI. SOME NON UNIFORM SUFFICIENT CONDITIONS FOR
EQUAL MEASUREMENTS NOISES VARIANCES

Considering still the case σ2
i = σ2, assuming the knowledge

of CΣaC
T (or equivalently on its eigenvalues dm), it is pos-

sible to enlarge bound (30) and find some other interesting
properties.

First of all, there could be networks (i.e. S and σ2) where,
no matter how the guess S is chosen, distributed estimation
leads to a smaller error variance than the local one:

Proposition 8. If dmin is the smallest eigenvalue of CΣaC
T

and if
dmin >

σ2

S − 1
(31)

then the variance of the estimation error of the distributed
estimator âdist

(
S
)

is smaller than the one of the local
estimators âloc,i, for every sensor i and guess S ∈ [1,+∞).

In this case, the distributed estimator behave better than
the local one also assuming S = +∞, that is equivalent to
assume that the averaged measurements have no measure-
ments error. Note that networks with high S or low σ2 have
higher probability to satisfy condition (31). The statistical
requirement of proposition 8 is that the smallest eigenvalue of
CΣaC

T has to dominate the resulting noise of the averaged
measurements.

If S and σ2 are s.t. proposition 8 is not satisfied, then we
can state (as an intermediate consequence of the proof of
Thm. 7) the following:

Corollary 9. Define:

d̂ (S) := min
m∈{1,...,M}

{
dm s.t. σ2 + (1− S) dm > 0

}
(32)

and:

Smin (S) :=
σ2S +

√
σ2S (S − 1)

(
σ2 + d̂ (S)

)
σ2 + (1− S) d̂ (S)

. (33)

If
S ∈ [1, 2 (Smin (S)− 1)] (34)

then the variance of the estimation error of the distributed
estimator âdist

(
S
)

is smaller than the one of the local
estimators âloc,i, for every prior Σa , number of parameters
E, measurement noise variance σ2, matrix C and sensor i.

VII. CONCLUSIONS

In this work we studied general consensus-based distributed
Bayesian estimation scheme useful for networks of smart
sensors whose number and noise characteristics are only
partially known. In particular, we have derived mild sufficient
conditions on the system parameters ensuring that the error
variances affecting the estimates obtained by each node after
consensus are smaller than those affecting the local estimates,
i.e. the ones obtained by a sensor using only its sensor data.

This is a preliminary work to analyze consensus-based
distributed estimation performance in terms of robustness
to system parameters and characteristics. Future work also
includes the extension to sensors with different observation
models, i.e. C = Ci, to measurements with correlated
noise, i.e. E

[
νi,mνj,n

T
]
6= 0, and to non-parametric function

estimation where the parameter vector a is replaced by an
unknown infinite-dimensional function.

APPENDIX

Lemma 10. If ai ≥ 0, i = 1, . . . , S and b ≥ 0, then:

H (b+ a1, . . . , b+ aS) ≥ b+H (a1, . . . , aS) (35)

Proof. Defining:

f(b) := H (b+ a1, . . . , b+ aS)−H (a1, . . . , aS)− b (36)

we need to demonstrate that f(b) ≥ 0 for b ≥ 0. Since
f(0) = 0, it is sufficient to demonstrate that df(b)

db ≥ 0. Now
this is true if:

S

S∑
i=1

(
1

b+ ai

)2

≥

(
S∑
i=1

1
b+ ai

)2

. (37)

Considering the two vectors x =
[

1
b+a1

, . . . , 1
b+aS

]T
and y = [1, . . . , 1]T , condition (37) corresponds to
〈x, x〉 〈y, y〉 ≥ |〈x, y〉|2 that is the well-known Cauchy-
Schwarz inequality.



Proof. (of thm. 1) Let us introduce the orthogonal matrix U
that diagonalizes the first addendum of matrix (3):

CΣaC
T = UDUT . (38)

Since UUT = IM , we can also write:

V (θ) := CΣaC
T + θIM

= UDUT + θUUT

= U (D + θIM )UT .
(39)

Now we are looking for the set of α s.t.:

var (a− âdist (α)) ≤ var (a− âloc,i) (40)

where:

var (a− âdist (α)) = Σa − 2ΣaC
T
(
V
(

1
α

))−1
CΣa

+ΣaC
T
(
V
(

1
α

))−1
V
(

1
α

) (
V
(

1
α

))−1
CΣa

(41)
and:

var (a− âloc,i) = Σa − ΣaC
T
(
V
(
σ2
i

))−1
CΣa . (42)

Using the fact that for a generic matrix B then A ≤
0 ⇒ BABT ≤ 0, we can derive a sufficient condition
assuring (40):

−2
(
V
(

1
α

))−1+
(
V
(

1
α

))−1
V
(

1
α

) (
V
(

1
α

))−1≤
≤ −

(
V
(
σ2
i

))−1
. (43)

Diagonalizing the various V (θ)’s in eqn. (43) we obtain:

−2U
(
D + 1

αIM
)−1

UT+
+U

(
D + 1

αIM
)−2 (

D + 1
αIM

)
UT ≤

≤ −U
(
D + σ2

i IM
)−1

UT
(44)

where we also used the fact that diagonal matrices commute.
It is easy to show that for orthogonal matrices U we have
that A ≤ 0 ⇔ UAUT ≤ 0, so if we remove all the
U ’s from equation (44) we still have a sufficient condition
for inequality (40). Now all the remaining matrices are
diagonal, so the condition is satisfied as soon as it is satisfied
component by component, so once we define dm := Dmm,
with m = 1, . . . ,M , the sufficient condition is:

−2
dm + 1

α

+
dm + 1

α(
dm + 1

α

)2 ≤ −1
dm + σ2

i

∀m. (45)

Note that each dm is an eigenvalue of CΣaC
T , thus it is

dm ≥ 0 for all m’s since Σa is at least semi-positive definite.
Now condition (45) can be rewritten as:

pi,m (α) :=
(
σ2
i +

(
1− ασ2

i

)
dm
)
α2 −

(
2ασ2

i

)
α+ α ≤ 0

(46)
for all m. Notice that:

ασ2
i =

S∑
j=1

σ2
i

σ2
j

= 1 +
∑
j 6=i

σ2
i

σ2
j

≥ 1 (47)

thus
(
1− ασ2

i

)
dm ≤ 0, thus parabolas pi,m (α) can be

convex, concave or degenerated depending on σ2
i . Their roots

are in general:

r± (i,m) :=
ασ2

i ±
√

(ασ2
i − 1) (αdm + ασ2

i )
σ2
i + (1− ασ2

i ) dm
=

α

ασ2
i ∓

√
(ασ2

i − 1) (αdm + ασ2
i )
.

(48)

Recalling that we have to find the α’s that assure condi-
tion (46) independently of i and m, we analyze separately
the three cases.

Convex parabolas: (i.e. σ2
i +

(
1− ασ2

i

)
dm > 0): in

this case r− (i,m) < r+ (i,m) for all i and m. Since:

r− (i,m) <
α

ασ2
i +

√
(ασ2

i − 1)ασ2
i

=: b− (i) (49)

r+ (i,m) >
ασ2

i +
√

(ασ2
i − 1)ασ2

i

σ2
i

=: b+ (i) (50)

and since it can be shown by rationalization of b− (i) that
b− (i) < b+ (i) for all σ2

i ≥ 0, we are sure that for any
convex parabola pi,m (α):

α ∈ [b− (i) , b+ (i)] ⇒ pi,m (α) ≤ 0 . (51)

Concave parabolas: (i.e. σ2
i +

(
1− ασ2

i

)
dm < 0): we

check that implication (51) is still valid. For doing so it is
sufficient to check if pi,m (b− (i)) ≤ 0, pi,m (b+ (i)) ≤ 0
and that:

sign

(
∂pi,m (α)

∂α

∣∣∣∣
b−(i)

)
= sign

(
∂pi,m (α)

∂α

∣∣∣∣
b+(i)

)
(52)

and by simple algebraic majorizations this can be easily
shown to always subsist.

Degenerated parabolas: (i.e. σ2
i +

(
1− ασ2

i

)
dm = 0):

in this case pi,m (α) = −
(
2ασ2

i

)
α + α is a negatively

skewed line. Since it easy to verify that also in this case
pi,m (b− (i)) ≤ 0, it is true that condition (51) is always
satisfied, for all m. Now, by simple algebraic manipulations,
it can be shown that α ∈ [b− (i) , b+ (i)] is equivalent to
condition (13).

Proof. (of thm. 3) We are seeking the guesses α such that:

1
S

S∑
i=1

var (a− âdist (α)) ≤ 1
S

S∑
i=1

var (a− âloc,i) (53)

and, repeating the initial steps of the proof of thm. (1), we
obtain the following sufficient condition:

−2
dm + 1

α

+
dm + 1

α(
dm + 1

α

)2 ≤ 1
S

S∑
i=1

−1
dm + σ2

i

∀m. (54)

Now if the following inequality is true:

−1
dm + h

?
≤ 1
S

S∑
i=1

−1
dm + σ2

i

∀m (55)



then we can repeat the other steps of proof of thm. 1 to
obtain the bound (20). Now condition (55) can be rewritten
as:

dm + h
?
≤ H

(
dm + σ2

1 , . . . , dm + σ2
S

)
(56)

but, since h = H
(
σ2

1 , . . . , σ
2
S

)
, this is true for lemma 10.

Proof. (of thm. 7) As in thm. 3 we are seeking the guesses
S such that:

var
(
a− âdist

(
S
))
≤ var (a− âloc,i) (57)

and, repeating once more the initial steps of the proof of
thm. (1), we obtain the sufficient condition (recall that σ2

i =
σ2 for all i’s):

pm
(
S
)

:=
(
σ2 + (1− S) dm

)
S

2
+
(
−2σ2S

)
S+
(
σ2S

)
≤ 0
(58)

for all m’s. Now for all m’s and dm’s we have that pm (0) =
σ2S > 0, that pm (1) = (1− S)

(
dm + σ2

)
< (1− S)σ2 <

0 (we are assuming there are at least two sensors), and if
ṗm
(
S
)

:= ∂pm
(
S
)
/∂S, then we have also that ṗm (0) =

−2σ2S < 0 and that ṗm (1) = pm (1) < 0. This imply
that each pm (·) has exactly one root in (0, 1) (say r1 (m)),
while the other root, say r2 (m), can be before 0 or after 1
depending on the sign of σ2 + (1− S)dm.

Now consider a fixed m. Condition (46) is assured for
S ∈ [1,Sm), where:

Sm :=
{

+∞ if r2 (m) < 0
r2 (m) otherwise. (59)

If we define Smin := minm (Sm), condition (43) is now
assured for S ∈ [1,Smin). Note that this condition still
depends on m (i.e. depends on CΣaC

T ). Consider now
the parabola with the smallest Sm, say the m̂-th. If mbm
is its point of minimum, then 2 (mbm − 1) < Smin, so if
S ∈ [1, 2(mbm − 1)] then condition (43) is again satisfied.
Since (1− S)dbm < 0 we have:

mbm =
σ2S

σ2 + (1− S)dbm >
σ2S

σ2
= S (60)

and thus [1, 2(S − 1)] ⊂ [1, 2(Smin − 1)]. Now we can
conclude that if S ∈ [1, 2(S − 1)] then inequality (43) is
satisfied, and this proves the proposition.

Proof. (of prop. 8) Condition (31) assures parabolas of
equation (46) to be all concave, thus Smin = +∞, and this
is sufficient for the thesis.
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