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Abstract— Autocatalytic pathways are a necessary part of
core metabolism. Every cell consumes external food/resources
to create components and energy, but does so using processes
that also require those same components and energy. Here, we
study effects of parameter variations on the stability properties
of autocatalytic pathway models and the extent of the regions of
attraction around nominal operating conditions. Motivated by
the computational complexity of optimization-based methods
for estimating regions of attraction for large pathways, we take
a compositional approach and exploit a natural decomposition
of the system, induced by the underlying biological structure,
into a feedback interconnection of two input-output subsystems:
a small subsystem with complicating nonlinearities and a
large subsystem with simple dynamics. This decomposition
simplifies the analysis of large pathways by assembling region
of attraction certificates based on the input-output properties
of the subsystems. It enables us to numerically construct block-
diagonal Lyapunov functions for families of pathways that
are not amenable to direct analysis. Furthermore, it leads to
analytical construction of Lyapunov functions for a large family
of autocatalytic pathways.

I. INTRODUCTION

Autocatalytic pathways are a necessary part of core
metabolism. Every cell consumes external food/resources
to create components and energy, but does so using pro-
cesses that also require those same components and energy.
Indeed all biological networks viewed at a large enough
scope are massively autocatalytic. In this paper, we study
the metabolic network with the topology of Fig. 1. This
network is composed of a chain of reactions that convert one
metabolite to another, ultimately producing multiple copies
of the final product of the pathway. The pathway also requires
the consumption of copies of its final product to convert its
input into the first metabolite. All the reactions are catalyzed
by enzymes. Additionally, the product of the pathway inhibits
the enzyme that catalyzes the autocatalytic (first) reaction.
An example of such a pathway is the glycolysis pathway
[1], [2], [3].

Biochemical networks with different topologies and dif-
ferent reaction rate constraints have been a subject of study
for many decades. General results regarding the number of
the possible steady states and the convergence properties
for certain networks with mass-action kinetics (the so-called
networks of deficiency zero and one) have been established
[4], [5], [6]. The theory of monotone dynamical systems [7]
has proven a powerful tool for understanding the behavior
of biological systems. Using this theory, certain network
topologies have been shown to have global convergence
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to steady states for quite general reaction rates [8]. Cyclic
interconnection networks are closer to the topology shown in
Fig. 1 and for these networks a sufficient stability criterion
for cyclic interconnection with inhibition of the first reaction
by the end product of the network has been established [9],
[10]. These results are extended to prove global asymptotic
stability using diagonal stability and passivity of subsystems
if certain criteria are satisfied by the reaction rates [11], [12].

In most cases, the difficulty associated with analyzing
autocatalytic networks, with the topology and feedback
structure of Fig. 1, is that they do not exhibit such global
properties. These networks can have multiple equilibrium
points, each with large regions of attraction (RoA). The
nonlinear nature of the autocatalytic reaction rate makes
analysis of behavior due too non-infinitesmal perturbations
from nominal operating conditions, such as estimating re-
gions of attraction, difficult. This nonlinearity is caused
by the coupling of positive and negative feedback, which
induces many of the interesting properties in these networks.
Depending on the feedback gain, the (stable) dynamics near
the equilibrium points can be dominated by either positive or
negative feedback. In these autocatalytic networks, changes
in the concentration of metabolites and catalyzing enzymes
during the lifetime of the cell can perturb the system from the
nominal operating point of the pathway. Can the controller
restore the system to normal operating conditions from these
perturbations? We investigate effects of such perturbations
through the estimation of invariant subsets of the RoA around
nominal operating conditions (i.e., a measure of the set of
perturbations from which the cell recovers). In previous
work [3], we used a numerical procedure, composed of
system theoretic characterizations and optimization-based
formulations, for estimating the RoA in such networks with
applications to the glycolytic pathway. This procedure is
effective on relatively small pathways, however it becomes
impractical for large ones (due to computational complexity).
However, the underlying biological structure offers a natural
decomposition of the system into a feedback interconnection
of two input-output subsystems: a small subsystem with
complicating nonlinearities and a large subsystem with sim-
ple dynamics. This decomposition simplifies the analysis of
large pathways through a compositional framework for RoA
analysis based on the input-output properties of the subsys-
tems. It enables us to numerically construct block-diagonal
Lyapunov functions (that provide algebraic descriptions of
invariant subsets of the RoA) for families of pathways that
are not amenable to direct analysis. Furthermore, it leads
to analytical construction of Lyapunov functions for a large
family of autocatalytic pathways.
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Fig. 1. The autocatalytic network is composed of a chain of reactions
(black arrows) that convert one metabolite (black circles) to another. The
pathway requires the consumption of the final product (blue triangles) to
convert the input of the pathway into the first metabolite. Additionally, the
product of the pathway inhibits (dotted red line) the enzyme that catalyzes
the autocatalytic reaction.

In this paper, we omit the proofs of the results due to space
considerations. See [13], [14] for more details on the proofs
and for more general network topologies that allow for the
inclusion of the degradation of intermediate metabolites as
well as the reversibility of the chemical reactions.

The rest of the paper is organized as follows: We introduce
an autocatalytic pathway model in section II followed by
linear stability analysis in section III. A compositional anal-
ysis framework is introduced in section IV. This framework
is used to analytically construct Lyapunov functions for a
family of autocatalytic pathways in sections IV-A and IV-B.
The scope and limitations of this framework are discussed
in section IV-C and its generalization is discussed in section
V.

II. A MODEL FOR AUTOCATALYTIC PATHWAYS

Consider the autocatalytic metabolic pathway with multi-
ple intermediate metabolite reactions (see Fig. 1)

u+ ay ⇀f x1

x1 ⇀
g1 x2 · · ·⇀gn−1 xn ⇀

gn (a+ b)y + xn+1

y ⇀gy φ.
(1)

Here, u is some precursor and source of energy for the
pathway with no dynamics associated, y denotes the product
of the pathway, xi are intermediate metabolites, φ is a null
state, a is the number of y molecules that are invested in the
pathway, and a+ b is the number of y molecules produced.
A ⇀f B denotes a chemical reaction that converts the
chemical species A to the chemical species B at rate f . The
corresponding ordinary differential equations in terms of the
stoichiometry matrix and reaction fluxes are

ẋ1

ẋ2

...
ẋn
ẏ

 = S



f(y)
g1(x1)

...
gn−1(xn−1)
gn(xn)
gy(y)


(2)

for xi ≥ 0, y ≥ 0, where

S :=


1 −1 0 0 0

0 1
. . . 0 0 0

...
. . . . . .

...
0 0 1 −1 0
−a 0 · · · 0 b+ a −1



In (2), g1, . . . , gn, and gy are continuous, monotone, increas-
ing functions that vanish at 0. These assumptions on gi and
gy are consistent with large classes of chemical kinetics
models such as mass-action and Michaelis-Menten. The
rate f(y) of the autocatalytic reaction captures the negative
feedback of the output (y) via the inhibition of the catalyzing
enzyme of the first reaction. We choose f(y) = V yq

1+γyh

that is consistent with biological intuition and experimental
data in the case of the glycolysis pathway [15], [1]. In this
parameterization V > 0 depends on the concentration of the
input (u), q > 0 captures the strength of autocatalysis and
γ > 0 and h > 0 capture the strength of inhibition (negative
feedback). Note that f is not monotone and captures the
coupling between the autocatalysis and inhibition. For the
rest of the paper, we take a = b = 1 and note that the
generalization of the results for a > 0 and b > 0 is
straightforward.

The system (2) can have different number of points in
the positive orthant, but we will examine the behavior of
the system at or around the fixed point of interest ξ̄ =
(x̄1, . . . , x̄n, ȳ) � 0. Without loss of generality, we use the
normalization ȳ = 1 which implies that V = gy(ȳ) (1 + γ)
and perform a change of coordinates to move the fixed point
ξ̄ to the origin. Then, with some abuse of notation, the vector
field can be written as

ẋ1 = f(y)− g1(x1)
ẋ2 = g1(x1)− g2(x2)

...
ẋn = gn−1(xn−1)− gn(xn)
ẏ = 2gn(xn)− f(y)− gy(y)

(3)

in D := {ξ ∈ Rn+1 : ξ � −ξ̄} where f(y) =
gy(ȳ)(1+γ)(y+1)q

1+γ(y+1)h
− gy(ȳ). Note that g1, . . . , gn, and gy in

(3) are continuous, monotone, increasing and to vanish at 0
(since they are shifted and translated versions of the original
reaction rates).

III. LINEAR STABILITY ANALYSIS

Define ĥ := γ
1+γh, ki := ∂gi

∂xi
|0 > 0, ky :=

∂gy
∂y |0 > 0,

ry := gy(0) > 0. The linearization of (3) around the origin
is given by [ ˙̃xT ˙̃y]T = J [x̃T ỹ]T where J is

−k1 0 · · · 0 0 ry(q − ĥ)
k1 −k2 0 0 0

. . . . . .
...

...
0 0 −kn−1 0 0
0 0 kn−1 −kn 0

0 0 · · · 0 2kn −ky − ry(q − ĥ)


.

Remark 1: Define J0 := J |ĥ=0 and note that the lin-
earization of (3) can be viewed as the closed-loop dynamics
of

˙̃
ξ = J0ξ̃ + ry[1 0 · · · 0 − 1]Tu

η = [0 · · · 0 1]ξ̃.

using a proportional (negative) feedback controller of gain ĥ
(i.e., u = −ĥη).

5930



0 1 2 3 4 5
0

1
2

3

4

5
6

7

k
 

 

UNSTABLE

2 4 6 8 10 12 14 16

0

0.5

1

1.5

2

n
 

 

hd(n)

hr
hs
h=q

Fig. 2. Left: Illustration of the stability bounds (ĥd, ĥs, and ĥr). The grey
area marks the set of parameters that define stable systems. The area between
the blue lines corresponds to systems that satisfy the secant condition.
Right: As the pathway size increases, the upper bound on the feedback
strength ĥ given by the secant condition gets smaller.

For ĥ > q, stability of the linearized dynamics can be
studied using the so-called secant condition [9], [10]. To this
end, for a given n > 1 define θ(n) := (sec(π/(n+ 1)))

n+1
,

ĥd(n) := q +
ky
ry

θ(n)
2+θ(n) , and ĥd(1) := q +

ky
ry
. Then, J is

Hurwitz for q < ĥ < ĥd(n). Furthermore, if k1 = k2 =
· · · = kn = ky + ry(q − ĥ), then J is Hurwitz only if
ĥ < ĥd(n) [9], [10]. The upper bound ĥd(n) depends on the
pathway size n, consumption rates ky and ry of the pathway
output y, and the autocatalysis parameter q, but not on the
rate ki of the intermediate reactions. Note that as n increases,
the maximum allowable stabilizing feedback gain decreases.
For general feedback gain ĥ (i.e., removing the restriction
ĥ > q), we establish a different set of bounds.

Proposition 1: Let ĥr := q + 1
3
ky
ry

and ĥs := q − ky
ry

.
If ĥs < ĥ ≤ ĥr, then J is Hurwitz for arbitrary size n and
arbitrary values of intermediate reaction rates ki. The bounds
above are tight, i.e., for any value of gain ĥ /∈ (ĥs, ĥr], one
can construct an unstable pathway of appropriate size. C

For general stoichiometry of autocatalysis, i.e., a, b > 0
(instead of a = b = 1), Proposition 1 holds for ĥr = q +
b

2a+b
ky
ry

and ĥs = q − ky
ry

. Note that ĥr = limn→∞ ĥd(n)

(see Fig. 2 (right)). Both the secant condition bound ĥd and
ĥr can be conservative for specific pathways, especially for
those with high intermediate reaction rates (as illustrated in
Fig. 2 (left) for n = 1, q = 1, ky = 1, ry = 1). Later in this
paper, we will revisit these bounds.

IV. A SIMPLE DECOMPOSITION

Having established conditions on the linear stability of
system (3), we now study the RoA properties of these
dynamics. To this end, we decompose the system (3) into
2 subsystems S1 and S2 governed by

ẋ1 = z − g1(x1)
ẋ2 = g1(x1)− g2(x2)
...

...
...

ẋn = gn−1(xn−1)− gn(xn)
w = gn(xn)

(4)

and
ẏ = 2w − f(y)− gy(y)
z = f(y)

(5)

and interconnected as shown in Fig. 3. S1 and S2 are single-
input-single-output systems with n and 1 states, respectively.
Note that S1 is composed of a chain of chemical reactions
and the reactions rates gi are monotone functions. Because

z w- S1

S2
�

Fig. 3. The system (3) is represented as feedback interconnection of 2
subsystems S1 and S2, given by (4) and (5).

of its special structure, it is relatively easy to establish its
input-output properties for even large values of n. On the
other hand, S2 captures the most dominant nonlinearity:
the dynamics of y and its involvement in autocatalysis and
feedback regulation f. Using this decomposition, we have
separated the complexity of high dimensional states (in
S1) from the complexity of the important nonlinearity of
autocatalysis control (in S2).

Definition 1: A continuously differentiable function U :
Rm → R is positive definite in a neighborhood N of the
origin if U(0) = 0 and for all nonzero x ∈ N , U(x) > 0. For
such U and β ∈ R, define the set ΩU,β to be the connected
component of {x ∈ Rm : U(x) ≤ β} containing the origin.

Reference [16] proposes a method for computing invariant
subsets of the RoA of the asymptotically stable equilibrium
points of systems with unmodeled dynamics, where the
unmodeled dynamics are required to satisfy certain gain
relations or dissipation inequalities. We apply this idea to
the feedback interconnection of Fig. 3 to compute invariant
subsets of the RoA for (3). For notational simplicity, let us
rewrite the dynamics in (4) and (5), respectively, as

ẋ = F1(x, z), w = G1(x), (6)
ẏ = F2(y, w), z = G2(y). (7)

Proposition 2: Let δ, κ ∈ R. Let U1 : Rn → R be a
continuously differentiable, positive definite function such
that

∇U1(x) · F1(x, z) ≤ z2 + 2δwz − κw2, ∀ (x, z) (8)

and U2 : R → R be a continuously differentiable, positive
definite in some neighborhood N0 of the origin such that

∇U2(y) · F2(y, w) ≤ κw2 − 2δwz − z2, ∀w and y ∈ N0.
(9)

Define U(x, y) := U1(x) + U2(y) and let β be such that

ΩU,β ⊂ Rn ×N0 (10)

and ΩU,β is bounded. Then, the following statements hold:
ΩU,β is an invariant subset under the flow of (3). If one of
the inequalities (8) and (9) is strict (i.e., equality is satisfied
only at (x, z) = (0, 0) and (y, w) = (0, 0) respectively), then
ΩU,β is a subset of the RoA of the origin for (3). C

Proposition 2 constructs RoA certificates for the overall
system (3) based on the certificates for the input-output
properties of the subsystems S1 and S2 established using
the dissipation inequalities in (8) and (9), respectively. The
quadratic function z2 +2δwz−κw2 in (8) is called a supply
rate for S1 (similarly its negative is used as a supply rate
in (9) for S2). One diversion from the classical dissipation
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inequalities literature [17] is that the inequality in (9) is
local, i.e., it is supposed to hold in certain bounded subsets
(for example in certain sublevel sets of associated storage
functions) of the state-space but not necessarily the whole
state space [16]. Using special forms of the inequalities (8)
and (9), we show that for specific ranges of feedback gain ĥ,
we can analytically find a diagonal function U that satisfy
the conditions in Proposition 2 (consequently, ΩU,β is an
invariant subset of the RoA).

A. Region of attraction estimation via a local small-gain type
condition

Consider the case where δ = 0 and κ = 1 in (8) and (9).
That is, we search for a positive definite function U1 : Rn →
R such that

∇U1(x) · F1(x, z) ≤ z2 − w2, ∀ (x, z) (11)

and another function U2 : R → R , U2(y) positive definite
in some neighborhood N0 of the origin such that

∇U2(y) · F2(y, w) < w2 − z2, ∀w and ∀y ∈ N0\{0}.
(12)

Lemma 1: The function U1 : Rn → R

U1(x) :=

n∑
i=1

2

∫ xi

0

gi(ξ)dξ, (13)

is continuously differentiable, positive definite and satisfies
(11). C

Lemma 2: If ĥs < ĥ < ĥr, then there exists a nonempty
neighborhood N0 of the origin such that the function U2 :
R→ R

U2(y) :=
1

2

∫ y

0

(f(ξ) + gy(ξ)) dξ (14)

is continuously differentiable, positive definite in N0 and
satisfies (12). C

Define

Dy :=

{
y : (gy(y)− f(y))

(
f(y) +

1

3
gy(y)

)
≥ 0

}
,

the set of points y for which the graph of f lies between the
graph of gy and − 1

3gy (Fig. 4 (left)). The set N0 in Lemma
2 is constructed as the largest sublevel set of U2 that is a
subset of Dy .

Proposition 3: For ĥs < ĥ < ĥr, let U1 and U2 be given
by (13) and (14), respectively, and N0 be as in Lemma 2.
Let U(x, y) = U1(x) + U2(y). Then, for any β such that
ΩU,β ⊂ Rn×N0 and ΩU,β is bounded, ΩU,β is an invariant
subset of the RoA of the origin for system (3). C
Proposition 3 follows from Proposition 2, Lemmas 1 and 2.

Example 1: Let gi(xi) = kixi, gy(y) = y, γ = 3
2 , q = 1,

and h = 2. Then, ĥ = 6
5 , ĥr = 4

3 , U1(x) = k1x
2
1 + . . . +

knx
2
n, U2(y) = 5

12 log
(
5 + 6y + 3y2

)
+ 1

4y
2− 1

2y−
5
12 log 5,

U(x, y) = U1(x) + U2(y), and N0 = {y | y > −1} (Fig. 4
(left)). The maximum sublevel set β of U that satisfies (10)
is β = 0.3682. Fig. 4 (right) shows a slice of ΩU,β in the
y − xi subspace.
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Fig. 4. Left: N0 can be constructed as the set of points y where the graph
of f lies between gy and − 1

3
gy . Right: The y − xi slice of the invariant

subset of RoA ΩU,β (xj = 0, j 6= i).

B. Compositional estimation of the RoA using another dis-
sipation inequality

Consider the case κ = 0 in (8) and (9). That is, we search
for a continuously differentiable, positive definite function
U1 : Rn → R such that

∇U1(x) · F1(x, z) ≤ z2 + 2δwz, ∀ (x, z) (15)

and U2 : R→ R , such that U2 is continuously differentiable,
positive definite in some neighborhood N0 of the origin and

∇U2(y) ·F2(y, w) < −z2− 2δwz, ∀w and ∀y ∈ N0\{0}.
(16)

Next we find U1 and U2 satisfying (15) and (16), respectively,
for q < ĥ < ĥd(n) and a specific δ. We first show that a
diagonal function U1 exists for the linearization of (4) and
0 < δ ≤ 1

2θ(n), and then show that it exists for S1. We
treat the special case of the linearization separately since it
outlines a procedure of finding U1 by solving a simple linear
matrix inequality for the case when gi(xi) = kixi (i.e., mass-
action kinetics). The linearization of system (4) is given by

ẋ = A1x+B1z
w = C1x

(17)

where C1 = [0 · · · 0 kn],

A1 =


−k1 0 · · · 0 0
k1 −k2 0 0
... · · ·

...
0 0 −kn−1 0
0 0 · · · kn−1 −kn

 . (18)

Lemma 3: For 0 < δ ≤ 1
2θ(n), there exists a positive,

quadratic function U1 : Rn → R of the form U1(x) =
xTPx, where P is a diagonal matrix satisfying

∇U1(x)(A1x+B1z) ≤ z2 + 2δwz ∀(x, z). (19)

C
Remark 2: Note that the dissipation inequality in (19) can

be equivalently written as a linear matrix inequality.
Lemma 4: For 0 < δ ≤ 1

2θ(n), there exist positive real
numbers d1, . . . , dn such that the function

U1(x) :=

n∑
i=1

di

∫ xi

0

gi(ξ)dξ (20)

satisfies (15). C
The proof of Lemma 4 builds on a result in [12, Corollary

3 and its proof].
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Lemma 5: Let n ≥ 1 be a given integer, δ = θ(n)/2, and
ĥ satisfy q ≤ ĥ ≤ ĥd(n). Then, there exists a nonempty
neighborhood N0 of the origin such that the function U2 :
R→ R

U2(y) := −δ
∫ y

0

f(ξ)dξ (21)

is continuously differentiable, positive definite in N0, and
satisfies (16). C

In Lemma 5, the set N0 can be constructed as the largest
sublevel set of U2 that is a subset of{

y : −f(y)

(
f(y) +

δ

1 + δ
gy(y)

)
≥ 0

}
,

the set of points y for which the graph of f lies in the areas
between the graphs of δ

1+δ gy and the map y 7→ 0.

Proposition 4: Let n ≥ 1 be a given positive integer,
U(x, y) := U1(x) + U2(y), for U1 and U2 as defined in
(20) and (21), δ = 1

2θ(n), and N0 be as constructed above.
Then, for q < ĥ < ĥd(n) and β such that ΩU,β ⊂ Rn ×N0

and ΩU,β is bounded, ΩU,β is an invariant subset of the RoA
of the origin for system (3). C
Proposition 4 is a direct consequence of Proposition 2,
Lemma 4, and Lemma 5.

Proposition 1 and the secant condition establish bounds
ĥr and ĥd(n) on ĥ that guarantee stability of the pathway
for arbitrary rates (and, in the case of ĥr, number) of inter-
mediate reactions. Propositions 3 and 4 imply that systems
with gains that obey those bounds are simple to analyze,
i.e., estimates of RoA for such systems can be constructed
through compositional analysis based on local dissipation
inequalities. On the other hand, they do not provide any
guarantees on how large these estimates are. In general the
size of these subsets will depend on the properties of f and
gy. Given U as constructed above, one can search for its
largest sublevel set that is contained in the set where U is
decreasing along the vector field of (3). Another approach is
to combine invariant subsets of the RoA, since if ΩU,β1 and
ΩW,β2

are invariant subsets of RoA of the fixed point, then
so is ΩU,β1

⋃
ΩW,β2

. For example, if q ≤ ĥ ≤ hr, then we
can use ΩU,β and the Lyapunov functions that we get from
Proposition 3 and 4 to improve the estimate.

C. Existence of block diagonal Lyapunov functions

The decomposition of (3) into S1 and S2 provides a
convenient way of searching for block diagonal Lyapunov
functions, i.e we search for U(x, y) = U1(x) + U2(y), x ∈
Rn, y ∈ R. The next proposition examines the linearizations
of S1 and S2 and shows that, if there is such a Lyapunov
function for the linearization of system (3), then we can
construct it by finding U1 and U2 satisfying (11) and (12),
respectively. The linearization of system (4) is given by (17),
and let the linearization of S2 be written as

ẏ = a2y + 2w
z = −σy (22)

where σ = −∂f∂y |y=0 = ry(ĥ−q), a2 = −ky+σ. We rewrite
the linearization of (3) as[

ẋ
ẏ

]
= J

[
x
y

]
=

[
A1 −σB1

2C1 a2

] [
x
y

]
. (23)

Proposition 5: If there exist positive definite matrices
P1 ∈ Rn×n and p2 ∈ R such that JTP + PJ is negative
definite, where

P :=

[
P1 0
0 p2

]
,

then the quadratic functions U1(x) := − σ2

2a2p2
xTP1x,

U2(y) := p2y
2, are continuously differentiable, positive

definite and along with the constant δ := σ
ky−σ satisfy

∇U1(x) · (A1x+B1z) < z2 + 2δwz, ∀x, z
∇U2(y) · (a2y + 2w) ≤ −z2 − 2δwz, ∀y, w.

C
Next, we state a partial converse result.

Proposition 6: For g1, . . . , gn such that ∂
∂xi

gi(xi)|0 = k,
for i = 1, . . . , n, and for ĥ > ĥd(n) there is no quadratic
block diagonal Lyapunov function of the form U(x, y) =
U1(x) + U2(y) for the linearized dynamics in (23). C
Proposition 6 demonstrates a limitation of the analysis based
on the simple decomposition of (3) given in (4) and (5).
We next investigate how such limitations may be partially
alleviated using more general decompositions of (3) .

V. GENERAL DECOMPOSITION

Consider that the system in (3) is decomposed into two
input-output (sub)systems S1 and S2 with n1 and n2 states,
respectively, as in Fig. 3, where n1 + n2 = n + 1. Let S1

and S2, respectively, be governed by

ζ̇ = F̃1(ζ) + B̃1z

w = G̃1(ζ) = gn(xn),
(24)

ψ̇ = F̃2(ψ) + B̃2w

z = G̃2(ψ) = gn2−1(xn2−1),
(25)

where B̃1 = [1 0 · · · 0]
T
, B̃2 = [2 0 · · · 0]

T
, and the

correspondence between the original states x1, . . . , xn, y
and the new state variables (in (24) and (25))) is ψ =
(y, x1, . . . , xn2−1) and ζ = (xn2 , . . . , xn). We call any
such feedback interconnection of subsystems with n1 and n2

states a (n1, n2)-decomposition of (3) (with the convention
that the decomposition in (4) and (5) being a (n, 1) decompo-
sition). Fig. 5 illustrates the (n1, n2) decomposition where
S1 corresponds to part of the pathway as marked and S2

represents the dynamics of the rest of the pathway.
Similarly to the previous decomposition, we search for a

neighborhood N2 ⊂ Rn2 of the origin, and a continuously
differentiable, positive definite function U1 : Rn1 → R in
Rn1 and another continuously differentiable, positive definite
function U2 : Rn2 → R in N2 such that

∇U1(ζ) · ζ̇ ≤ ρ(w, z), ∀ (ζ, z) ∈ Rn1 × R (26)
∇U2(ψ) · ψ̇ ≤ −ρ(w, z), ∀ (ψ,w) ∈ N2 × R. (27)
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x1 xn xn 

y 

2 

xn -1 2 

S1 

Fig. 5. Illustration of the (n1, n2) decomposition of the autocatalytic
pathway model in Fig. 1.

where ρ : R2 → R is a supply rate parametrized by δ and κ

ρ(w, z) := z2 + 2δwz − κw2.

Define
U(ζ, ψ) := U1(ζ) + U2(ψ), (28)

and β be such that

ΩU,β ⊂ Rn1 ×N0

and ΩU,β is bounded.
Proposition 7: Let U and β be defined as above. Then,

ΩU,β is invariant under the flow of (3), and if one of the
inequalities (8) and (9) is strict, then ΩU,β is a subset of the
RoA of the origin of (3). C

We now focus on a special case where ∂
∂xi

gi(xi)|0 = k
for i = 1, . . . , n. For this case, we showed, in the previous
section, that for ĥs < ĥ < ĥd(n), we can find block diagonal
Lyapunov functions that give an estimate of RoA. On the
other hand, Proposition 6 establishes that, for ĥ > ĥd(n),
the (n, 1)−decomposition cannot produce a (quadratic) block
diagonal Lyapunov function of the form U(x, y) = U1(x) +
U2(y) for the linearization of (3). The following example
demonstrates that Lyapunov functions for systems with ĥ >
ĥd(n) can be constructed by increasing the number of states
of S2.

Example 2: Consider the (1, 2)-decomposition of a path-
way with n = 2 and gi(xi) = kxi. For κ > 0, δ = κ−1

2 ,
and U1(x1) = 1

2 (1 + κ)x2
1, it follows that ∇U1(x1) · (z −

kx1) − z2 − (κ− 1)wz + κw2 = − (z − kx1)
2 ≤ 0 for

all (x, z). The inequality in (27) boils down to ∇U2(ψ) ·
(F̃2(ζ)+B̃2w) ≤ κw2−(κ− 1)wz−z2. Fig. 6 shows the set
of parameters for which this decomposition yields a block-
diagonal Lyapunov function for q = 1 and ∂

∂y gy(y)|0 = 1.
Similar analysis is repeated for a pathway with n = 6 and
the effect of increasing values of n2 in these decompositions
is shown in Fig. 7.

Fig. 8 shows that, as the size of the pathway increases,
the size of the stability region (in the parameter space)
decreases and range of feedback gains becomes limited.
For a fixed pathway size, as feedback gains increase the
corresponding systems approach the stability boundary (in
the parameter space) and we need to use decompositions
with larger number of states in S2.

In the case g1, . . . , gn, gy are polynomial (e.g. mass-action
kinetics) and f is rational, the search for the polynomials U1

and U2 that satisfy the conditions in Proposition 7 can be
formulated as a sum-of-squares (SOS) programming problem
[18]. Under these assumptions, the SOS relaxation for (26)
leads to a (relatively) low degree polynomial in n1 + 1
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Full Block
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Fig. 6. Stability diagram for the three-state system with gi(xi) = kxi,
i = 1, 2, q = 1, ∂

∂y
gy(y)|0 = 1. The (2, 1)-decomposition can only

be used to construct Lyapunov functions for the parameter sets labeled
Diagonal Lyapunov and Small Gain. In addition to these sets, the (1, 2)-
decomposition can be used to construct Lyapunov functions for the set in
blue also.
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Fig. 7. For longer pathways different (n1, n2)-decompositions are used to
produce Lyapunov functions that verify subsets of RoA of the origin. For a
fixed k as the feedback gain ĥ approaches the stability boundary, it requires
larger systems S2 (increase in n2), i.e., the computational complexity of
finding a Lyapunov function increases. Figure shows the seven-state system
(n = 6) with q = 1, ∂

∂y
gy(y)|0 = 1, gi(xi) = kxi, i = 1, . . . , 6.

(indeterminate) variables while the SOS relaxation for (27)
leads to a (relatively) high degree polynomial in n2+1 (inde-
terminate) variables. By solving the resulting SOS program,
instead of the SOS programs used in [3] for “direct” RoA
computations for (3), we obtain a significant reduction in
computational complexity. This reduction stems from the fact
that we replace the original SOS program in n+1 = n1 +n2

variables by another with two constraints (in addition to other
smaller constraints): one in low number of (indeterminate)
variables (n2+1) and the other in comparable (to the original
SOS program) number of (indeterminate) variables (n1 + 1)
but lower degree of polynomials. It should also be noted that
for increasing values of n2, the computational complexity of
the SOS program for the conditions in Proposition 7 will be
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Fig. 8. As the size of the pathway increases, the size of the stability region
(in the parameter space) decreases. Figure shows the stability bounds for
the feedback gain ĥ as a function of k, for n-state systems with q =
1, ∂

∂y
gy(y)|0 = 1, gi(xi) = kxi,∀i.
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mainly determined by that of the SOS constraints for (27).
Consequently, the decomposition in (24) and (25) and the
compositional analysis strategy in Proposition 7 lead to two
conflicting trends: increasing values of n2 (the state dimen-
sion of S2) render the analysis potentially less conservative
at an expense of higher computational complexity.

VI. SUMMARY

Many autocatalytic metabolic networks, such as the glu-
colytic pathway, have the topology of Fig. 1. In this paper
we explicitly account for the intermediate reactions in the
model given by (2) and demonstrate the effect of the pathway
size n on the stability of the pathway and computational
complexity of verifying RoA properties around nominal
operating conditions (i.e., fixed points). A direct application
of a secant condition [9], [10], [12] gives an upper bound
ĥd(n) on the feedback gains ĥ, that result in stable pathways
of fixed size n and arbitrary (fixed) intermediate reaction
rates. We also establish lower and upper bounds, respectively
ĥs and ĥr, on feedback gains that result in arbitrarily large,
stable pathways. These bounds depend on the stoichiometry
and strength of autocatalysis, and the demand of the pathway
product, but not on the other parameters. They are tight in the
sense that unstable pathways can be constructed for gains that
lie outside the ranges established by them. The bound ĥd(n)
yields that the range of possible stable gains gets smaller as
the pathway size (n) increases.

A simple representation of the system (2), as the feedback
interconnection of a n-state system S1 given by (4) and a
single state system S2 given by (5), allows us to analytically
construct diagonal Lyapunov functions via the use of local
dissipation or small-gain type inequalities for systems with
feedback gain less than ĥd(n). This simple decomposition
allows us to construct block diagonal Lyapunov functions
(i.e., functions of the type U(x, y) = U1(x) + U2(y), x ∈
Rn, y ∈ R) for (2). However this decomposition is not as
useful for gains larger than ĥd(n). In fact, we show that no
quadratic block-diagonal Lyapunov function exists for the
linearization of (2) if ĥ > ĥd and the intermediate reaction
rates are identical.

To construct Lyapunov functions for gain ĥ > ĥd, we use
a more general (n1, n2)-decomposition scheme where the
system in (2) is represented as a feedback interconnection
of an n1-state system S1 given by (24) and an n2-state
system S2 given by (25), with generally n1 (much) bigger
than n2. If the vector field of system (2) is rational, we
can construct Lyapunov functions by using local dissipation
inequalities and solving the corresponding SOS programs. As
the size n2 of system S2 increases, so does the computational
complexity of these optimization problems. On the other
hand, (n1, n2)-decomposition with larger n2 can be used
to construct Lyapunov functions for (2) with higher gains.
This reinforces the notion that realizations that are more
(computationally) “complex” are those with high feedback
gains (i.e., gains that are close to the stability boundary, and
therefore fragile to perturbations in the parameter space).
This framework also shows that, from the computational

point of view, the increase in pathway size has two adverse
effects: it increases the computational cost of constructing
Lyapunov functions and limits the range of feedback gains
that lead to stable pathways ( therefore requires (n1, n2)-
decomposition with large n2.)
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