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Analysis of Gradient Projection Anti-windup Scheme

Justin Teo and Jonathan P. How

Abstract— The gradient projection anti-windup (GPAW)
scheme was recently proposed as an anti-windup method
for nonlinear multi-input-multi-output systems/controllers, the
solution of which was recognized as a largely open problem
in a recent survey paper. This paper analyzes the properties
of the GPAW scheme applied to an input constrained first
order linear time invariant (LTI) system driven by a first order
LTI controller, where the objective is to regulate the system
state about the origin. We show that the GPAW compensated
system is in fact a projected dynamical system (PDS), and use
results in the PDS literature to assert existence and uniqueness
of its solutions. The main result is that the GPAW scheme
can only maintain/enlarge the exact region of attraction of the
uncompensated system.

I. INTRODUCTION

The gradient projection anti-windup (GPAW) scheme was

proposed in [1] as an anti-windup method for nonlinear

multi-input-multi-output (MIMO) systems/controllers. It was

recognized in a recent survey paper [2] that anti-windup

compensation for nonlinear systems remains largely an open

problem. To this end, [3] and relevant references in [2]

represent some recent advances. The GPAW scheme uses a

continuous-time extension of the gradient projection method

of nonlinear programming [4], [5] to extend the “stop integra-

tion” heuristic outlined in [6] to the case of nonlinear MIMO

systems/controllers. Application of the GPAW scheme to

some nominal controllers results in a hybrid GPAW compen-

sated controller [1], and hence a hybrid closed loop system.

Here, we apply the GPAW scheme to a first order linear

time invariant (LTI) system stabilized by a first order LTI

controller, where the objective is to regulate the system

state about the origin. This case is particularly insightful

because the closed loop system is a planar dynamical system

whose vector field is easily visualized, and is highly tractable

because there is a large body of relevant work, eg. [7,

Chapter 2] [8, Chapter 2] [9, Chapter 2]. Related literature

on constrained planar systems include [10], [11].

After presenting the generalities in Section II, we address

the existence and uniqueness of solutions to the GPAW

compensated system. Due to discontinuities of the gov-

erning vector field of the GPAW compensated system on

the saturation constraint boundaries, classical existence and

uniqueness results based on Lipschitz continuity of vector
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fields [7]–[9] do not apply directly. We show that the GPAW

compensated system is in fact a projected dynamical system

(PDS) [12]–[14] in Section III. Observe that PDS is a

significant line of independent research that has attracted the

attention of economists and mathematicians, among others.

The link to PDS thus enables cross utilization of ideas and

methods, as demonstrated in [15]. Using results from the

PDS literature, existence and uniqueness of solutions to the

GPAW compensated system can thus be easily established,

as shown in Section IV.

It is widely accepted as a rule that the performance

of a control system can be enhanced by trading off its

robustness [16, Section 9.1]. As such, we consider an anti-

windup scheme to be valid only if it can provide performance

enhancements without reducing the system’s region of attrac-

tion (ROA). The first question to be addressed is whether the

GPAW scheme satisfy such a criterion, and is shown to be

affirmative in Section V. Numerical results further illuminate

this property of GPAW compensated systems.

II. PRELIMINARIES

Let the system to be controlled be described by

ẋ = ax + b sat(u), (1)

where the saturation function is defined by

sat(u) = max{min{u, umax}, umin},

and x, u ∈ R are the plant state and control input respec-

tively, a, b, umin, umax ∈ R are constant plant parameters

with umin, umax satisfying umin < 0 < umax. Let the

nominal controller be

ẋc = c̃xc + d̃x, u = ẽxc, (2)

where xc, u ∈ R are the controller state and output respec-

tively, x ∈ R is the measurement of the plant state, and

c̃, d̃, ẽ ∈ R are controller gains chosen to globally stabilize

the unconstrained system, ie. when umax = −umin = ∞.

Remark 1: It is important that the output equation of the

nominal controller, namely u = ẽxc, depends only on the

controller state xc and be independent of measurement x.

That is, if the output equation is u = ẽxc + f̃x, then we

require f̃ = 0. This property ensures that full controller

state-output consistency, ie. sat(u) = u, can be maintained

at “almost all” times (stated more precisely as Fact 1

below) when applying the GPAW scheme. See [17] when

the nominal controller is of more general forms. �

A simple transformation of (2) yields the equivalent con-

troller realization

u̇ = cx + du, (3)
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with c := d̃ẽ, d := c̃. Applying the GPAW scheme [1] to

the preceding transformed nominal controller (3) yields the

GPAW compensated controller [18, Appendix A]

u̇ =











0, if u ≥ umax, cx + du > 0,

0, if u ≤ umin, cx + du < 0,

cx + du, otherwise,

(4)

which is similar to the “conditionally freeze integrator”

method [19]. This similarity is expected since the GPAW

scheme can be viewed as a generalization of this idea to

MIMO nonlinear controllers. Observe that the first order

GPAW compensated controller is independent of the GPAW

tuning parameter Γ introduced in [1], which is true for all

first order controllers. Furthermore, inspection of (4) reveals

the following.

Fact 1 (Controller State-Output Consistency): If for

some T ∈ R, the control signal of the GPAW compensated

controller (4) at time T satisfies umin ≤ u(T ) ≤ umax,

then umin ≤ u(t) ≤ umax holds for all t ≥ T . �

That is, the GPAW compensated controller maintains full

controller state-output consistency, sat(u) = u, for all future

times once it has been achieved for any time instant. In

particular, if the controller state is initialized such that

sat(u(0)) = u(0), then sat(u(t)) = u(t) holds for all t ≥ 0.

Remark 2: For nonlinear MIMO controllers whose output

equation depends only on the controller state, the same result

(state-output consistency of GPAW compensated controller)

holds, as shown in [17, Theorem 1]. �

The nominal constrained closed-loop system, Σn, is de-

scribed by (1) and (3), while the GPAW compensated closed-

loop system, Σg , is described by (1) and (4). Each of these

systems can be expressed in the form ż = f(z) with

f : R
2 → R

2. The representing functions (vector fields)

for systems Σn and Σg will be denoted by fn and fg

respectively. The following will be assumed.

Assumption 1: The controller parameters c, d satisfy

a + d < 0, (5)

ad − bc > 0, (6)

and bc 6= 0. �

Conditions (5) and (6) ensure that the origin is a globally

exponentially stable equilibrium point for the nominal un-

constrained system, ie. Σn with umax = −umin = ∞, while

bc 6= 0 ensures that Σn is a feedback system.

We will need the following sets

K = {(x, u) ∈ R
2 | umin < u < umax},

K+ = {(x, u) ∈ R
2 | u > umax},

K− = {(x, u) ∈ R
2 | u < umin},

∂K+ = {(x, u) ∈ R
2 | u = umax},

∂K− = {(x, u) ∈ R
2 | u = umin},

∂K+div = {(x, u) ∈ R
2 | u > umax, cx + du = 0},

K+in = {(x, u) ∈ R
2 | u > umax, cx + du < 0},

K+out = {(x, u) ∈ R
2 | u > umax, cx + du > 0},
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Fig. 1: Closed loop vector fields (fn, fg) of systems Σn, Σg

and the unconstrained system (Σu, fu), associated with an

open loop unstable system (plant and controller parameters:

a = 1, b = 1, c = −3, d = −2, −umin = umax = 1).

∂K−div = {(x, u) ∈ R
2 | u < umin, cx + du = 0},

K−in = {(x, u) ∈ R
2 | u < umin, cx + du > 0},

K−out = {(x, u) ∈ R
2 | u < umin, cx + du < 0},

∂K+in = {(x, u) ∈ R
2 | u = umax, cx + dumax < 0},

∂K+out = {(x, u) ∈ R
2 | u = umax, cx + dumax > 0},

∂K−in = {(x, u) ∈ R
2 | u = umin, cx + dumin > 0},

∂K−out = {(x, u) ∈ R
2 | u = umin, cx + dumin < 0},

K̄ = K ∪ ∂K+ ∪ ∂K−,

and the points

z+ =
(

−d
c
umax, umax

)

, z− =
(

−d
c
umin, umin

)

.

These sets and associated vector fields are illustrated in Fig. 1

for an open-loop unstable plant.

Observe that K+ = K+in ∪ K+div ∪ K+out and ∂K+ =
∂K+in ∪ ∂K+out ∪ {z+}, with analogous counterparts for

K− and ∂K−. Observe further that on ∂K+in and ∂K−in,

vector fields of systems Σn and Σg (fn and fg respectively)

point into K. On ∂K+out, fn points into K+ and fg points

into ∂K+. On ∂K−out, fn points into K− and fg points into

∂K−.

By inspection of the vector fields fn and fg from their

definitions, we have the following.

Fact 2: The vector fields fn and fg coincide in

K ∪ K+in ∪ K−in ∪ ∂K+div ∪ ∂K−div

∪ ∂K+in ∪ ∂K−in ∪ {z+, z−}.

That is, they coincide in R
2 \ (K+out ∪ K−out ∪ ∂K+out ∪

∂K−out). �

Fact 3: Any solution of systems Σn or Σg can pass from

K+ to K if and only if it intersects the line segment ∂K+in,

and analogously with respect to K− and ∂K−in. �

Fact 4: Any solution of system Σn can pass from K to

K+ if and only if it intersects the line segment ∂K+out, and

analogously with respect to K− and ∂K−out. �
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III. GPAW COMPENSATED CLOSED LOOP SYSTEM AS A

PROJECTED DYNAMICAL SYSTEM

Two of the most fundamental properties required for a

meaningful study of dynamic systems is the existence and

uniqueness of their solutions. As evident from the definition

of the GPAW compensated controller (4), the vector field

of the GPAW compensated system, fg , is in general dis-

continuous on the saturation constraint boundaries ∂K+out

(⊂ ∂K+) and ∂K−out (⊂ ∂K−). Classical results on

the existence and uniqueness of solutions [7]–[9] rely on

Lipschitz continuity of the governing vector fields, and hence

do not apply to GPAW compensated systems. We will use

results from the projected dynamical system (PDS) [12]–[14]

literature to assert the existence and uniqueness of solutions

to GPAW compensated systems. First, we show here that the

GPAW compensated system, Σg , is in fact a PDS.

Observe that the set K̄ is a closed convex set (in fact, a

closed convex polyhedron). The interior and boundary of K̄

are K and ∂K+ ∪ ∂K− respectively. Let P : R
2 → K̄ be

the projection operator [12] defined for all y ∈ R
2 by

P (y) = arg min
z∈K̄

‖y − z‖,

with ‖·‖ as the Euclidean norm. It can be seen that for any

(x, u) ∈ R
2, P ((x, u)) = (x, sat(u)). Next, for any y ∈ K̄,

v ∈ R
2, define the projection of vector v at y by [12], [13]

π(y, v) = lim
δ↓0

P (y + δv) − y

δ
.

Note that the limit is one-sided in the above definition [13].

With fn being the vector field of Σn, written explicitly as

fn(x, u) =

[

ax + bu

cx + du

]

, ∀(x, u) ∈ K̄,

we have the following, the corollary of which is the desired

result.

Claim 1 ( [18, Claim 1]): For all (x, u) ∈ K̄, the vector

field fg of the GPAW compensated closed loop system Σg

satisfy fg(x, u) = π((x, u), fn(x, u)).
Proof: If (x, u) ∈ K, the result follows from [13,

Lemma 2.1(i)] and Fact 2. Next, consider a boundary point,

(x, u) ∈ ∂K+in∪{z+}. On this segment, we have u = umax

and cx+dumax ≤ 0 from definition of the set ∂K+in∪{z+}.

Since sat(umax + δβ) = umax + δβ for β ≤ 0 and a

sufficiently small δ > 0, we have

P ((x, u) + δfn(x, u)) =

[

x + δ(ax + bu)
sat(u + δ(cx + du))

]

,

=

[

x + δ(ax + bu)
u + δ(cx + du)

]

,

so that

π((x, u), fn(x, u)) = lim
δ↓0

P ((x, u) + δfn(x, u)) − (x, u)

δ
,

=

[

ax + bu

cx + du

]

= fn(x, u) = fg(x, u),

for all (x, u) ∈ ∂K+in ∪ {z+}, where the final equality

follows from Fact 2.

Finally, consider a boundary point (x, u) ∈ ∂K+out. On

this segment, we have u = umax and cx + dumax > 0 from

the definition of ∂K+out. Since sat(umax +δβ) = umax for

β > 0 and a sufficiently small δ > 0, we have

P ((x, u) + δfn(x, u)) =

[

x + δ(ax + bu)
sat(u + δ(cx + du))

]

,

=

[

x + δ(ax + bu)
u

]

,

so that

π((x, u), fn(x, u)) = lim
δ↓0

P ((x, u) + δfn(x, u)) − (x, u)

δ
,

=

[

ax + bu

0

]

= fg(x, u),

for all (x, u) ∈ ∂K+out. The above established the claim

for all points on K̄ \∂K−. The verification on the boundary

∂K− is similar to that for ∂K+.

Corollary 1 ( [18, Corollary 1]): The GPAW compen-

sated system Σg is a projected dynamical system [12]

governed by

ż = fg(z) = π(z, fn(z)), (7)

where z = (x, u).
Corollary 1 will be used in the next section to assert

the existence and uniqueness of solutions to system Σg .

See [12]–[14] for a detailed development of PDS, and [15]

for known relations to other system descriptions.

IV. EXISTENCE AND UNIQUENESS OF SOLUTIONS

As shown in [18, Claim 2], existence and uniqueness of

solutions to Σn holds on R
2, and the vector field fn is

globally Lipschitz, satisfying

‖fn(z) − fn(z̃)‖ ≤ (‖A‖ + |b|)‖z − z̃‖, ∀z, z̃ ∈ R
2, (8)

where A = [ a 0
c d ]. The following is the main result of this

section.

Proposition 1 ( [18, Proposition 1]): The GPAW com-

pensated system Σg has a unique solution for all initial

conditions (x(t0), u(t0)) ∈ R
2 and all t ≥ t0.

Proof: By Corollary 1, Σg is a PDS governed by (7).

Since fn : R
2 → R

2 is globally Lipschitz, it is Lipschitz in

K̄ ⊂ R
2. It follows from [12, Theorem 2] (see [18, Claim 3]

and remark following [12, Assumption 1]) that Σg has a

unique solution defined for all t ≥ t0 whenever the initial

condition satisfies (x(t0), u(t0)) ∈ K̄ (also recall Fact 1). To

assert the existence and uniqueness of solutions for all initial

conditions (x(t0), u(t0)) ∈ R
2, it is sufficient to establish

this outside K̄, and if the solution enters K̄, there will be

a unique continuation in K̄ for all future times from this

result.

Consider the region K+ = K+in ∪K+out ∪ ∂K+div . The

proof for the region K− is similar. For any z1, z2 ∈ K+,

there are three possible cases. Firstly, in the region K̂+out :=
K+out∪∂K+div , we get from the definition of fg and K̂+out,

that fg(z) = fg(x, u) = (ax + bumax, 0). Clearly, for any

z1, z2 ∈ K̂+out, we have ‖fg(z1) − fg(z2)‖ ≤ Lout‖z1 −
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z2‖ where Lout = |a| < ∞. Secondly, from Fact 2, fg

and fn coincide in K̂+in := K+in ∪ ∂K+div , so that fg is

also Lipschitz in K̂+in. For any z1, z2 ∈ K̂+in, we have

‖fg(z1) − fg(z2)‖ ≤ Lin‖z1 − z2‖ where Lin = ‖A‖ +
|b| < ∞ (see (8)). The last case corresponds to z1 and z2

being in different regions, K̂+in and K̂+out. Without loss of

generality, let z1 ∈ K̂+in and z2 ∈ K̂+out. The straight line

in R
2 connecting z1 and z2 then contains a point z̃ ∈ ∂K+div

with the property that z̃ ∈ K̂+in ∩ K̂+out, ‖z1 − z̃‖ ≤ ‖z1 −
z2‖, and ‖z2 − z̃‖ ≤ ‖z1 − z2‖. Then we have

‖fg(z1) − fg(z2)‖ = ‖fg(z1) − fg(z̃) + fg(z̃) − fg(z2)‖,

≤ ‖fg(z1) − fg(z̃)‖ + ‖fg(z2) − fg(z̃)‖,

≤ Lin‖z1 − z̃‖ + Lout‖z2 − z̃‖,

≤ (Lin + Lout)‖z1 − z2‖,

which, together with the first two cases, shows that fg is

Lipschitz in K+. By [9, Theorem 3.1, pp. 18 – 19], Σg has a

unique solution contained in K+ whenever (x(t0), u(t0)) ∈
K+. If the solution stays in K+ for all t ≥ 0, the claim

holds. Otherwise, by [9, Theorem 2.1, pp. 17], the solution

can be continued to the boundary of K+, ∂K+ ⊂ K̄. In this

case, the first part of the proof shows that there is a unique

continuation in K̄ for all t ≥ 0.

Remark 3: Care is due when interpreting the existence

and uniqueness results of Proposition 1. Let φn(t, z0) be the

unique solution of system Σn starting from z0 ∈ R
2 at time

t = 0. For system Σn, existence and uniqueness of solution

implies that no two different paths intersect [9, pp. 38], and

φn(−t, φn(t, z0)) = z0, ∀t ∈ R,∀z0 ∈ R
2.

That is, proceeding forwards and then backwards in time

by the same amount, the solution always reaches its starting

point. This is not true for system Σg whenever the solution

intersects ∂K+out or ∂K−out. Inspection of the vector field

fg reveals that in this case, all forward solutions either stay

in ∂K+out or ∂K−out for all future times, or they eventually

reach the points z+ or z−. Furthermore, traversing backwards

in time from any point of ∂K+out or ∂K−out, the solution

stays on these segments indefinitely. That is, ∂K+out and

∂K−out are negative invariant sets [9, pp. 47] for system Σg .

If a forward solution of Σg intersects ∂K+out or ∂K−out

starting from some interior point z0 ∈ K, then traversing

backwards in time, the solution will never reach z0.

Existence and uniqueness of solutions of system Σg means

that if two distinct trajectories, φg(t, z1), φg(t, z2), intersect

at some time, then they will be identical for all future times,

ie. if φg(T1, z1) = φg(T2, z2) for some T1, T2 ∈ R, then

φg(t + T1, z1) = φg(t + T2, z2) for all t ≥ 0. Specifically,

they can never diverge into two distinct trajectories. �

V. REGION OF ATTRACTION

The purpose of anti-windup schemes is to provide per-

formance improvements only in the presence of control

saturation. It is widely accepted as a rule that the perfor-

mance of a control system can be enhanced by trading off

its robustness [16, Section 9.1]. To distinguish anti-windup

schemes from conventional control methods, we consider

an anti-windup scheme to be valid only if it can provide

performance enhancements without reducing the system’s

region of attraction (ROA). We show in this section that

GPAW compensation can only maintain/enlarge the ROA of

the nominal system Σn. In other words, the ROA of system

Σn is contained within the ROA of Σg .

It was shown in [18, Claims 4, 5 and 6] that when

either the open loop system (1) or nominal controller (3)

is unstable, both systems Σn and Σg admits additional

equilibria apart from the origin. Here, we are primarily

interested in the ROA of the equilibrium point at the origin,

zeq0 := (0, 0) ∈ R
2. A distinguishing feature is that the

results herein refers to the exact ROA in contrast to ROA

estimates that is found in a significant portion of the literature

on anti-windup compensation. We prove part of the main

result (Proposition 2) using a series of intermediate claims,

the proofs wherever not presented, are available in [18]. The

main result is simply stated, whose proof is also in [18].

Some numerical examples will illustrate typical ROAs and

show that the said ROA containment can hold strictly for

some systems. In the sequel, we will state and prove results

only for one side of the state space, namely with respect to

K+∪∂K+. The analogous results with respect to K−∪∂K−

can be readily extended, and will not be expressly stated.

Let φn(t, z0) and φg(t, z0) be the unique solutions of

systems Σn and Σg respectively, both starting at initial state

z0 at time t = 0. The ROA of the origin zeq0 for systems

Σn and Σg are then defined by [8, pp. 314]

Rn = {z ∈ R
2 | φn(t, z) → zeq0 as t → ∞},

Rg = {z ∈ R
2 | φg(t, z) → zeq0 as t → ∞},

respectively. We recall the notion of ω limit sets.

Definition 1 ( [7, Definition 2.11, pp. 44]): A point z ∈
R

2 is said to be an ω limit point of a trajectory φ(t, z0) if

there exists a sequence of times tn, n ∈ {1, 2, . . . ,∞} such

that tn ↑ ∞ as n → ∞ for which limn→∞ φ(tn, z0) = z.

The set of all ω limit points of a trajectory is called the ω

limit set of the trajectory. �

For convenience, let the straight line connecting two points

α, β ∈ R
2 be denoted by l(α, β) (= l(β, α)), and defined by

l(α, β) = {z ∈ R
2 | z = θα + (1 − θ)β,∀θ ∈ (0, 1)}.

What follows is a series of intermediate claims to arrive at

part of the main result, Proposition 2. Let the straight lines

connecting the origin to the points z+ and z− be

σ+ = l(zeq0, z+) ∪ {z+}, σ− = l(zeq0, z−) ∪ {z−},

respectively. Consider a point z0 ∈ ∂K+in with the property

that z0 ∈ Rn and φn(t, z0) 6∈ K+ for all t ≥ 0. In other

words, z0 is in the ROA of system Σn and its solution stays

in K̄ ∪ K− for all t ≥ 0. As a consequence of Fact 4,

φn(t, z0) can never intersect ∂K+out for all t ≥ 0. Let

tint = inf{t ∈ (0,∞) | φn(t, z0) ∈ σ+}.
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Fig. 2: Closed path η(z0) encloses region D(z0) ⊂ K̄∪K−.

A case where the solution enters K− and also intersects σ+

is shown on the left, while a case where the solution never

enters K− and never intersects σ+ is shown on the right.

That is, tint is the first time instant that the solution starting

from z0 at t = 0 intersects σ+, or ∞ if it does not intersect

σ+. If tint < ∞, the path

ηint(z0) = {z ∈ R
2 | z = φn(t, z0),∀t ∈ [0, tint]}

∪ l(φn(tint, z0), z+) ∪ {z+} ∪ l(z0, z+),

is well defined. Otherwise, the path

η0(z0) = {z ∈ R
2 | z = φn(t, z0),∀t ≥ 0}

∪ {zeq0} ∪ σ+ ∪ l(z0, z+),

is well defined. Now, define the path η(z0) ∈ R
2 by

η(z0) =

{

ηint(z0), if tint < ∞,

η0(z0), otherwise,

which can be verified to be closed and connected. Let the

open, bounded region enclosed by η(z0) be D(z0), and its

closure be D̄(z0). The region D(z0) is illustrated in Fig. 2.

The following result states that D̄(z0) is a positive invari-

ant set [9, pp. 47], and it must contain the origin zeq0.

Claim 2 ( [18, Claim 7]): If there exists a point z0 ∈
∂K+in such that z0 ∈ Rn and φn(t, z0) ∈ K̄ ∪ K− for

all t ≥ 0, then D̄(z0) ⊂ K̄ ∪ K− is a positive invariant set

for system Σn, and it must contain zeq0, ie. zeq0 ∈ D̄(z0).
Remark 4: The claim states specifically that under the

assumptions, it is not possible for φn(t, z0) to intersect σ+

without having η(z0) enclose zeq0, a case not illustrated in

Fig. 2. �

Claim 3 ( [18, Claim 8]): If there exists a point z0 ∈
∂K+in such that z0 ∈ Rn and φn(t, z0) ∈ K̄ for all t ≥ 0,

then all points in D̄(z0) ⊂ K̄ also lie in the ROA of system

Σn, ie. D̄(z0) ⊂ Rn.

Remark 5: Specifically, the conclusion implies z+ ∈
D̄(z0) ⊂ Rn. �

Proof: Since K̄ ⊂ (K̄∪K−), the hypotheses of Claim 2

are satisfied. Claim 2 then shows that D̄(z0) is a positive

invariant set. The condition φn(t, z0) ∈ K̄ for all t ≥ 0
implies D̄(z0) ⊂ K̄. It was shown in [20, Section 6.2,

pp. 353 – 363], [9, Theorem 1.3, pp. 55] that for planar

dynamic systems with only a countable number of equilibria

and with unique solutions, the ω limit set of any trajectory

contained in any bounded region can only be of three types:

equilibrium points, closed orbits, or heteroclinic/homoclinic

orbits [21, pp. 45], which are unions of saddle points and the

trajectories connecting them. It follows from [18, Claims 4

and 5] that the origin zeq0 is the only equilibrium point of Σn

in K̄, which must be a stable node or stable focus. Hence

the ω limit set of any trajectory contained in D̄(z0) ⊂ K̄

cannot be heteroclinic/homoclinic orbits. By Bendixson’s

Criterion [8, Lemma 2.2, pp. 67] and (5), region D̄(z0)
contains no closed orbits. As a result, the ω limit sets must

consist of equilibrium points only, and it must be zeq0 since

it is the only equilibrium point in K̄. The conclusion follows

by observing that D̄(z0) is a positive invariant set, and any

trajectory starting in it must converge to the ω limit set

{zeq0} due to [8, Lemma 4.1, pp. 127].

Claim 4 ( [18, Claim 11]): If there exists a z0 ∈
∂K+out ∩ Rn, then for every z ∈ l(z0, z+) ∪ {z0}, there

exists a T (z) ∈ (0,∞) such that the solution of system Σg

satisfies φg(T (z), z) = z+ and φg(t, z) ∈ ∂K+out for all

t ∈ [0, T (z)).
Remark 6: Observe that under the assumptions, the so-

lution of the GPAW compensated system φg(t, z0) slides

along the line segment ∂K+out to reach z+. Note that Fact 1

corroborates this observation. �

The next result shows that a solution of Σn converging to

the origin can intersect ∂K+out or ∂K−out only in a specific

way, namely that subsequent intersection points, if any, must

steadily approach z+ or z−.

Claim 5 ( [18, Claim 12]): If z0 ∈ ∂K+out ∩ Rn and

there exists a T ∈ (0,∞) such that φn(T, z0) ∈ ∂K+out,

then φn(T, z0) ∈ l(z0, z+).
The following is part of the main result. The proof

amounts to using the solution of Σn to bound the solution

of Σg .

Proposition 2 ( [18, Proposition 2]): The part of the

ROA of the origin of system Σn contained in K̄, is itself

contained within the ROA of the origin of system Σg , ie.

(Rn ∩ K̄) ⊂ Rg .

Remark 7: The distinction between the solutions of sys-

tems Σn and Σg , namely φn(t, z) and φg(t, z), and their

ROAs, Rn and Rg , should be kept clear when examining

the proof below. �

Proof: The following argument will be used repeatedly

in the present proof. If for some z ∈ K̄, we have φn(t, z) ∈
K̄ for all t ≥ 0, then Fact 4 implies that φn(t, z) cannot

intersect ∂K+out or ∂K−out, ie. φn(t, z) ∈ K̄ \ (∂K+out ∪
∂K−out) for all t ≥ 0. Fact 2 shows that fn and fg coincide

in K̄\(∂K+out∪∂K−out), which implies φg(t, z) = φn(t, z)
for all t ≥ 0. If in addition, we have limt→∞ φn(t, z) =
zeq0, then limt→∞ φg(t, z) = limt→∞ φn(t, z) = zeq0. In

summary, if φn(t, z) ∈ K̄ for all t ≥ 0 and z ∈ Rn, then

z ∈ Rg . For ease of reference, we call this the coincidence

argument.

We need to show that if z0 ∈ Rn ∩ K̄, then z0 ∈ Rg . Let

z0 ∈ Rn ∩ K̄, so that φn(0, z0) = z0 ∈ K̄, and φn(t, z0) →
zeq0 as t → ∞. Consider the case where φn(t, z0) stays in

K̄ for all t ≥ 0. It follows from the coincidence argument

that z0 ∈ Rg .

Now, we let the solution φn(t, z0) enter K+ and consider

all possible continuations. Due to Fact 4, φn(t, z0) must
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intersect ∂K+out at least once. If φn(t, z0) intersects ∂K+out

multiple times, it can only intersect it for finitely many

times. Otherwise, there is an infinite sequence of times

tm, m ∈ {1, 2, . . . ,∞} such that tm ↑ ∞ as m → ∞ for

which φn(tm, z0) ∈ ∂K+out. Since z0 ∈ Rn, it follows that

φn(tm, z0) ∈ ∂K+out ∩ Rn for every m. As a consequence

of Claim 5, we have limm→∞ φn(tm, z0) = z+, which

shows that z+ is an ω limit point of φn(t, z0). But this

is impossible because limt→∞ φn(t, z0) = zeq0 6= z+.

Similarly, if φn(t, z0) intersects ∂K−out multiple times, it

can only intersect it for finitely many times.

Hence, let T1 and T2 be the first and last times for which

φn(t, z0) intersects ∂K+out, and let T3 be the (only) time

after T2 that φn(t, z0) intersects ∂K+in. Then we have

0 ≤ T1 ≤ T2 < T3 < ∞ and φn(t, z0) ∈ K+ for

all t ∈ (T2, T3), φn(T1, z0), φn(T2, z0) ∈ ∂K+out, and

φn(T3, z0) ∈ ∂K+in, with behavior after T3 to be specified.

Let z1 = φn(T1, z0) ∈ ∂K+out, z2 = φn(T2, z0) ∈ ∂K+out

and z3 = φn(T3, z0) ∈ ∂K+in. Since z0 ∈ Rn, we

have z1, z2 ∈ ∂K+out ∩ Rn and z3 ∈ ∂K+in ∩ Rn. It

is clear that φg(t, z0) = φn(t, z0) for all t ∈ [0, T1]. By

Claim 4, there exist a T̃1 < ∞ such that φg(T1 + T̃1, z0) =
φg(T̃1, φg(T1, z0)) = φg(T̃1, φn(T1, z0)) = φg(T̃1, z1) =
z+. Because φn(t, z0) cannot intersect ∂K+out for all t >

T2, the only possible continuations from time T3 (> T2)

onwards are

(i) φn(t, z0) stays in K̄ for all t ≥ T3, or

(ii) φn(t, z0) enters K− at some finite time.

Consider case (i), which implies D̄(z3) ⊂ K̄. Claim 3

yields z+ ∈ D̄(z3) ⊂ Rn, and Claim 2 shows that D̄(z3)
is a positive invariant set for system Σn. Then we have

φn(t, z+) ∈ D̄(z3) ⊂ K̄ for all t ≥ 0. It follows from the

coincidence argument that z+ ∈ Rg . Because φg(t, z+) =
φg(t, φg(T1 + T̃1, z0)) for all t ≥ 0, we have z0 ∈ Rg , as

desired.

Now, consider case (ii). Due to Fact 4, φn(t, z0) must

intersect ∂K−out at least once. From the above discussion,

φn(t, z0) can intersect ∂K−out only finitely many times.

Let T4 be the first time (after T3) and T5 be the last time

for which φn(t, z0) intersects ∂K−out, and let T6 be the

(only) time after T5 that φn(t, z0) intersects ∂K−in. Then

T3 < T4 ≤ T5 < T6 < ∞ and φn(t, z0) ∈ K− for

all t ∈ (T5, T6), φn(T4, z0), φn(T5, z0) ∈ ∂K−out, and

φn(T6, z0) ∈ ∂K−in. Let z4 = φn(T4, z0) ∈ ∂K−out,

z5 = φn(T5, z0) ∈ ∂K−out and z6 = φn(T6, z0) ∈ ∂K−in.

Since z0 ∈ Rn, we have z4, z5 ∈ ∂K−out ∩ Rn and

z6 ∈ ∂K−in ∩Rn. Now, the only possible continuation after

T6 is for φn(t, z0) ∈ K̄ for all t ≥ T6. Recall the definition

of η(z) and D̄(z) for some z ∈ ∂K+in ∩ Rn, as illustrated

in Fig. 2. It is clear that z+ ∈ D̄(z3). Claim 2 shows that

D̄(z3) (with a portion in K−) is a positive invariant set

for system Σn, so that φn(t, z+) ∈ D̄(z3) for all t ≥ 0.

Recall also, that φg(T1 + T̃1, z0) = z+ and we want to show

that z+ ∈ Rg . There are two possible ways for the solution

φn(t, z+) to continue. Either φn(t, z+) stays in D̄(z3) ∩ K̄

for all t ≥ 0, or it enters D̄(z3) ∩ K− at some finite time.

If φn(t, z+) ∈ D̄(z3)∩ K̄ for all t ≥ 0, then as in the proof

of Claim 3, Bendixson’s Criterion [8, Lemma 2.2, pp. 67]

and the absence of saddle points in D̄(z3) ∩ K̄ means that

{zeq0} is the ω limit set of φn(t, z+) and hence z+ ∈ Rn.

By the coincidence argument, we have z+ ∈ Rg . It follows

from φg(t, z+) = φg(t, φg(T1 + T̃1, z0)) for all t ≥ 0, that

z0 ∈ Rg . Finally, consider when φn(t, z+) enters D̄(z3)∩K−

at some finite time. By Fact 4, φn(t, z+) must intersect

∂K−out at least once. Let T̃2 < ∞ be such that φn(T̃2, z+) ∈
∂K−out and φn(t, z+) ∈ K for all t ∈ (0, T̃2), and let

z̃2 = φn(T̃2, z+) ∈ ∂K−out. Because the boundary of D̄(z3)
intersects ∂K−out at z4 and z̃2 ∈ D̄(z3)∩ ∂K−out, we have

that z̃2 ∈ l(z4, z−). Since z4 ∈ ∂K−out∩Rn, we have by (the

analogous counterpart to) Claim 4 that there exists a T̃3 < ∞
such that φg(T̃3, z̃2) = z−. Since z6 ∈ ∂K−in ∩ Rn, it

follows from (the analogous counterparts to) Claims 3 and 2

that z− ∈ D̄(z6) ⊂ Rn, D̄(z6) is a positive invariant set,

and φn(t, z−) ∈ D̄(z6) ⊂ K̄ for all t ≥ 0. The coincidence

argument then yields z− ∈ Rg . Since φn(t, z+) ∈ K ∪{z+}
for all t ∈ [0, T̃2), Fact 2 implies that φg(t, z+) = φn(t, z+)
for all t ∈ [0, T̃2]. We can trace back the path to z0 by

observing that φg(t, z−) = φg(t, φg(T̃3, z̃2)) = φg(t +
T̃3, z̃2) = φg(t+T̃3, φn(T̃2, z+)) = φg(t+T̃3, φg(T̃2, z+)) =
φg(t + T̃3 + T̃2, z+) = φg(t + T̃3 + T̃2, φg(T1 + T̃1, z0)) for

all t ≥ 0. Since z− ∈ Rg , we have z0 ∈ Rg , as desired.

In similar manner, it can be shown that if z0 ∈ Rn ∩ K̄

and the solution φn(t, z0) enters K− first, then z0 ∈ Rg .

Observe that the partial result stated in Proposition 2

is practically meaningful because the controller state can

usually be initialized in a manner such that the system state

is in the unsaturated region.

A. Main Result

The following is the main result proved in [18]. It shows

that the GPAW scheme can only maintain/enlarge the ROA

of the uncompensated system, and establishes the GPAW

scheme as a valid anti-windup method for this simple system.

Proposition 3 ( [18, Proposition 4]): The ROA of the

origin of system Σn is contained within the ROA of the

origin of system Σg , ie. Rn ⊂ Rg .

B. Numerical Examples

Here, we show numerical results on the exact ROAs of

systems Σn and Σg . The reader is reminded that in these

figures, the ROAs are to be interpreted as open sets, since

ROAs must be open [8, Lemma 8.1, pp. 314]. Fig. 3a shows

the case where Rn = Rg for an open loop unstable system,

together with two pairs of representative solutions, when the

saturation constraints are symmetric, ie. umax = −umin.

When the same system is subjected to asymmetric saturation

constraints, the ROAs are illustrated in Fig. 3b. Clearly, the

set containment Rn ⊂ Rg is strict. In Fig. 3c, the ROAs are

illustrated for an open loop strictly stable system with the

nominal controller parameter chosen to satisfy d ∈ (0,−a).
Again, the set containment Rn ⊂ Rg is strict.

Remark 8: Observe that the case of asymmetric saturation

constraints arises whenever the objective is to regulate about
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(c) a < 0, d ∈ (0,−a), umax = −umin

Fig. 3: Numerical examples to illustrate the ROAs of systems Σn and Σg , which shows that the ROA containment Rn ⊂ Rg

of Proposition 3 can hold strictly. The vector field fn is shown in the background, light purple regions represent Rn (⊂ Rg),

and light blue regions represent Rg \Rn. In (a), the open loop system is unstable and the saturation limits are symmetrical

(a = 1, b = 1, c = −3, d = −1.2, umax = −umin = 1), resulting in Rn = Rg . The pair of solutions starting at

z0 = (0.85,−4) ∈ Rn ∩Rg converges to the origin, while the pair of solutions starting at z0 = (−0.66, 4) 6∈ Rn ∪Rg failed

to converge to the origin. Cases (b) and (c) shows that Rn ⊂ Rg holds strictly. Case (b) is identical with case (a), except

with asymmetric saturation limits (a = 1, b = 1, c = −3, d = −1.2, umax = 1.5, umin = −1). Two pairs of solutions

starting from z0 = (0.9,−1.9) ∈ Rn ∩ Rg and z0 = (0.37,−4.37) ∈ Rg \ Rn are also included. A case where the open

loop system is stable with an unstable controller is shown in (c) (a = −1, b = 1, c = −1, d = 0.5, umax = −umin = 1),

together with two pairs of solutions starting from z0 = (−3.7,−2.54) ∈ Rn ∩ Rg and z0 = (4, 1.6) ∈ Rg \ Rn.

an equilibrium not lying in {(x, u) ∈ R
2 | u = 0},

and the system state is transformed such that the resulting

equilibrium lies at the origin. �

CONCLUSION

We analyzed the gradient projection anti-windup (GPAW)

scheme when applied to a constrained first order LTI system

driven by a first order LTI controller, where the objective

is to regulate the system state about the origin. Existence

and uniqueness of solutions are assured using results from

the projected dynamical systems literature. The main result

of this paper is that GPAW compensation applied to this

simple system can only maintain/enlarge the system’s region

of attraction, which renders it a valid anti-windup method.

While these results are attractive, their applicability are

severely limited. Extending these results to general MIMO

nonlinear systems/controllers is a topic for future work.
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