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Abstract— How can one system “mimic” a motion generated
by another? To address this question we introduce an
optimal tracking problem which additionally optimizes over
functions which deform or “warp” the time axis and the
output space. Parametric and nonparametric versions of the
time-warped tracking problem are introduced and reduced
to standard Bolza problems. The output warping problem
is treated for piecewise affine output warping functions.

I. INTRODUCTION

How can a system be controlled to execute a motion that

is “like” a desired motion? Although this may seem to be

a rather ill-posed question, it is exactly what robots are

asked to do in some areas of human-robot interactions,

particularly in Programming by Demonstration (for exam-

ple, [1]). Our particular goal is for systems (e.g. robotic

marionettes) to produce motions which are recognizably

and aesthetically “the same” as recorded human motions,

even when the systems which are being controlled are

unable to track those reference trajectories in a traditional

(e.g., L2) sense.

In [2], this problem was partially addressed via super-

vised learning, and very little structure was assumed; the

concept of “similarity” was learned from scratch. In this

paper, we instead fix a particular definition for similarity

a priori: Namely, we treat mimicking as a special optimal

tracking problem with additional degrees of freedom.

Specifically, we allow for both the time axis and the

output space to be deformed elastically, and optimize over

the homeomorphisms defining these warpings.

The first portion of this paper is concerned with the

deformation of the time axis, and is motivated by the

recognition that the controlled system either simply may

This work was supported by the U.S. National Science Foundation
through grant number 0820004. We would also like to acknowledge
Amy LaViers’ help in producing the data used in the dancing puppet
experiment.

not be able to move as quickly as a human, or may

have natural modes of oscillation (imagine a marionette

swinging from its strings) which can be exploited by

interpreting time liberally. It differs from existing work

in time warping (e.g. [3], [4], [5], [6]) in that the control

problem and the “warping” problems are inextricably

coupled; and from work on time reparametrization (e.g.,

[7]) and path following (e.g., [8],[9],[10]) in that we

are interested in approximate tracking for finite-duration

moves, rather than in exact or asymptotic tracking.

Of the previous work, that which is most similar in

approach to our own appears in [11], the primary concern

of which is the comparison of motions for computer

vision purposes. Key differences include that in [11] time

warping is applied to the input to the systems rather

than the output as in our case, and in [11] the control

effort required to effect the motion is not penalized in the

optimization problem. These differences follow naturally

from the different goals of the two papers.

The second portion of this paper is concerned with

“warping” the output space. For motivation, consider

a marionette which cannot lift its arm above shoulder

level but which is asked to mimic a human who waves

above her head; although this motion cannot be tracked

well in e.g. an L2 sense, the puppet can nevertheless

perform a recognizably equivalent motion lower in space

and scaled. Output warping is inspired in large part by

work in image and video processing (e.g. [12], [13], [14],

[15], [16]), but as we will be “warping” not images but

output trajectories, there are however very few technical

similarities to this work (besides the use of simplicial

complexes to define warping functions in [16]).

II. TIME WARPING

A time warping function is a continuously-differentiable

function w : [0, T ] → R, T ∈ R+, w(0) = 0 which
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is strictly increasing. Such a function is a bijection, and

moreover a homeomorphism. We will denote the set of

all time warping functions (those satisfying the above

conditions) by Ω, and the set of derivatives of time

warping functions by Ω′; i.e., Ω′ is the set of continuous

non-negative functions which are zero at at most a finite

number of points.

Given a reference signal r : [0, T ] → R
p, T ∈ R+,

and another signal y : R → R
p, the usual goal of time

warping is to find a function w ∈ Ω that minimizes the

functional J : Ω → R+ ∪ {0} defined,

J(w) =

∫ T

0

||r(τ) − (y ◦ w)(τ)||2Qdτ ∀w ∈ Ω (1)

in some norm || · ||Q ,
√

(·)T Q(·).1

However, we can also use the time warping idea to for-

mulate a “time-warped” output-tracking problem as well,

and it is this which will be the focus of the first half of this

paper. We will do this in two ways: First, we will solve

the problem when any time warping function is allowed;

we call this the nonparametric time warping problem. We

follow this with a look at techniques which fix a particular

parametrized form for the time warping function – we

address linear functions and, more generally, polynomials

– and which optimize over those parameters.

A. Tracking with Nonparametric Time Warping

Given a (possibly) nonlinear system of the form,

dxt

dt
(t) = f(xt(t), ut(t), t) (2)

yt(t) = h(xt(t))

(with xt(t) ∈ R
n, ut(t) ∈ R

m, yt(t) ∈ R
p, and

compatible dimensions for the domain and codomain of

f and h)2 we consider the optimal control problem of

minimizing

Jt(ut, w) =

[

∫ T

0

||yt(w(τ)) − r(τ)||2Qdτ+

∫ w(T )

0

||ut(t)||
2
Ru

dt +

∫ T

0

Rv(w
′(τ) − 1)2dτ

]

where r : [0, T ] → R
p is a reference signal. The first term

penalizes tracking error, but differs from the usual L2

tracking problem by the introduction of the time warping

1In (1) and elsewhere, we denote || · ||2
M

, (·)T M(·) and assume

M = MT ≻ 0, for whichever matrix M is used in the subscript.
2Note that the subscript t is simply part of the function names xt,

yt, etc, and is used to distinguish these functions from others to be
introduced later.

function w : [0, T ] → [0,∞), and also in that we integrate

tracking error over reference time (τ time) instead of

system time (t time). The second term penalizes control

effort as usual. The third term penalizes large deviations

of w′(τ) from one, both to regularize the problem and to

capture the intuition that signals which must be “warped”

by a great deal are more dissimilar than those which do

not need to be warped as much.

Augmenting the state with the time t = w(τ), defining

v , w′ as the derivative of w, x , xt ◦ w, u ,

ut ◦ w, and y , yt ◦ w, this problem can be restated as

the following standard (Bolza) optimal control problem:

Given the system,

d

dτ

[

x
t

]

(τ) =

[

v(τ)f(x(τ), u(τ), t(τ))
v(τ)

]

(3)

y(τ) = h(x(τ))

with known initial conditions (x, t)(0) = (x0, 0), mini-

mize the cost functional

J : L2([0, T ], Rm) × Ω′ → R

J(u, v) = Jtrack(u, v) + Jtimewarp(v) =
∫ T

0

[

||y(τ) − r(τ)||2Q + v(τ)||u(τ)||2Ru

+ Rv(v(τ) − 1)2
]

dτ . (4)

over the functions u and v (these functions can be viewed

as control inputs to the system).

The small but important insight here is that time warping

can be viewed as modifying the dynamics of the system in

an appropriate time coordinate. The example that follows

clarifies this point.

Example 2.1: Consider the underdamped simple har-

monic oscillator described by transfer function h(s) =
1/(s2 + 2ζω0s + ω2

0) (with ζ ∈ (0, 1) ⊂ R, ω0 ∈ R+),

and compatible state-space realization (At, Bt, Ct). Next

suppose that we would like to solve the infinite-time

problem (a modified version of (4)),

min
u,w

lim
T→∞

∫ T

0

[

1

T
||(yt ◦ w)(τ) − r(τ)||2Q+

1

w(T )
w′(τ)||(ut ◦ w)(τ)||2Ru

]

dτ (5)

where the reference signal to be tracked is the sinusoid,

r(t) = cos(ωrt) ∀t ∈ [0,∞) . (6)

with ωr ∈ R+. Moreover for clarity of exposition we

will limit our attention to time warping functions of the

form w(τ) ≡ ξτ for some ξ ∈ R+ (Such parametric time
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warping functions are discussed in more detail in section

II-B).

We note that the presence of frequencies other than ωr in

ut ◦w (and hence in yt ◦w) increases both terms of (5),3

so ut◦w and yt◦w must approach sinusoids with angular

frequency ωr as t → ∞; without loss of generality4 we

will assume that they are in fact sinusoids. Also observing

that the phase of ut◦w has no effect on the second term of

(5), it must be that y ◦w = a cos(ωrt) for some a ∈ R+,

and

ut(t) = Re

(

a

h(iωr/ξ)
ei

ωr
ξ

t

)

. (7)

It follows that the minimization problem (5) then reduces

to,

min
a,ξ

[

Q

2
(a − 1)2 +

Ru

2

∣

∣

∣

∣

a

h(iωr/ξ)

∣

∣

∣

∣

2
]

. (8)

For any fixed a, this is minimized with respect to ξ when

the magnitude of the transfer function |h(iωr/ξ)| is max-

imized. This occurs when ξ = ξ∗ , ωr/(ω0

√

1 − ζ2) –

that is, when ξ is chosen so that the resonant frequency

of the system with system matrix ξAt coincides with the

frequency of the reference signal.

The key point demonstrated by this example is that

the steady-state effect of time warping is to scale the

frequency axis (by the Fourier Dilation Theorem) so that

passbands of the system coincide with concentrations of

energy in the reference signal.

1) Optimality Conditions:

Theorem 2.1: The first order necessary optimality condi-

tions for the minimization of (4) are

2v(τ)uT (τ)Ru+

v(τ)λT (τ)
∂f

∂u
(x(τ), u(τ), t(τ)) = 0

T

||u(τ)||2Ru
+ 2Rv(v(τ − 1)+

λT (τ)f(x(τ), u(τ), t(τ)) + µ(τ) = 0 (9)

3These arguments can be made rigorous using Plancherel’s identity
for Fourier series and considering a sequence of values for T that are
multiples of 2π

ωr
; we have omitted this lengthier development for the

purposes of our informal discussion.
4This is explained in more detail in [17].

for all τ ∈ [0, T ], where

−
dλ

dτ
(τ) = 2h′(x)T Q(h(x) − r(τ)) +

v(τ)
∂f

∂x

T

(x(τ), u(τ), t(τ))λ(τ)

−
dµ

dτ
(τ) = v(τ)

∂f

∂t

T

(x(τ), u(τ), t(τ))λ(τ) (10)

with (λ, µ)(T ) = 0.

Proof : See [17].

Note that when f is not time-varying, ∂f
∂t

= 0, which

gives the simplification that µ(τ) = 0 ∀τ ∈ [0, T ].

In fact, these equations (9) can be given the stronger

interpretation of stating that the gradient of the functional

(4) in the functional space of which (u, v) is an element

must be zero; we will leverage this interpretation in the

later section II-B.2 which describes an algorithm for

computing the optimal (u, v).

B. Tracking with Parametric Time Warping

In some situations, we may be interested only in time

warping functions with a particular parametric form. One

example is linear time-warping functions, which are of

special interest since they represent a uniform scaling

of the time axis. Another motive for investigating time

warping functions with given parametric forms is the

discretization of the problem for numerical solution.

To express these ideas, we introduce a parameter vector

ξ in some parameter set Ξ ⊂ R
q , and a parametrization

function φv : Ξ → Ω′ which, given a parameter vector,

returns the derivative of a time warping function. Then,

we are in fact considering the problem,

min
ξ,u

J(u, φv(ξ)) . (11)

In the following subsections, we will first consider

parametrization functions that return polynomial time

warping functions – whose structure allow them to be

treated nicely under the Bolza framework – (with linear

time warping functions as a special case), and then give

a more general view of the problem.

1) Polynomial Time Warping: Polynomial time warping

functions are of the form,

w(τ) = φv(ξ)(τ) =

Nv
∑

i=1

ξiτ
i (12)

for some integer N ≥ 1, and with discrete parameter vec-

tor ξ = [ξ1, . . . , xiN ] ∈ R
Nv (Note that the requirement
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that w(0) = 0 implies that there is no constant term in

the polynomial).

Theorem 2.2: The FONCs for the polynomial time warp-

ing problem are given by (9) and

∂J

∂ξ

T

(ξ) = diag(1, 1
2 , 1

3! , ...,
1

Nv ! )ν(0) = 0 (13)

where (and dropping time arguments to x, λ, µ, u, ν),

−
dν

dτ
=









2Rv + λT f(x, u, t) + µ
ν1

. . .
νNv−1









= 0 (14)

for all τ ∈ [0, T ], and with ν(T ) = 0.

Proof : See [17]

2) The Chain Rule for Parametrization Functions: We

note briefly that if the Fréchet derivatives of both the

parametrization function φv and the cost J [defined in

(4)] exist, then we may in fact apply the solution given

in section II-A directly to the discretized problem (11)

through a simple application of the chain rule. This

hinges on the interpretation that the partial derivative of

the Hamiltonian with respect to the control input (as a

function of time) is the gradient of J with respect to the

control input (projected onto the dynamical constraint);

this is discussed more in [17]. Here, we will simply

introduce a second parametrization function φu : Σ →
L2([0, T ], Rm) for some Nu ∈ N and parameter space

Σ ⊂ R
Nu which, given some finite-dimensional σ ∈ Σ,

returns a control input function u ∈ L2([0, T ], Rm); this

yields a problem which is now fully discretized both in

u and v.

III. OUTPUT WARPING

It is not just the dynamics of the mimicking system that

may differ from those of the system that generated the

reference motion, but also spatial constraints and scales

– a problem evident even in the prototypical example of

a large industrial robot arm asked to imitate a human

operator. To treat this problem of spatial correspondence,

we will assume that the reference signal r that we have

been considering so far is in fact the composition of two

functions: the “actual” reference signal r̄ : [0, T ] → R
p,

and an “output warping function” s : R
p → R

p of our

choosing which transforms values of r̄ before they are

compared to those of the output signal y. In other words,

r = s ◦ r̄. More precisely, an output warping function s :

R
p → R

p is a continuous bijective map with continuous

inverse (That is, s is a homeomorphism from R
p to R

p).

We will denote the set of all such functions by S.

We will additionally assume that s has a particular para-

metric form. This is expressed by saying that s is returned

by a parametrization function φs : C → S, where C is

some finite-dimensional parameter space. Specifically, C
is a space diffeomorphic to R

Ns for some Ns ∈ N.

With these definitions, we can extend the original cost

functional (4) to obtain the new cost functional to be

minimized,

J̄ : L2([0, T ], Rm) × Ω′ × C → R

J̄(u, v, c) = J̄track(u, v, c) + J̄timewarp(v) + J̄outwarp(c)

=

∫ T

0

[

||y(τ) − (φs(c) ◦ r̄)(τ)||2Q+

||u(τ)||2Ru
+ Rv(v(τ) − 1)2

]

dτ +

J̄outwarp(c) (15)

where J̄outwarp is some cost used to penalize large output

warpings, regularize the problem, and in certain cases

enforce constraints; its form will be determined by the

choice of φs and is discussed in more detail later.

A. Piecewise Affine Output Warping

The essential idea of piecewise affine output warping will

be that we divide the space R into some number of p-

simplices, and use an affine warping function within each

of these, chosen in such a way that the resulting piecewise

function is continuous. In order to enforce that s remain a

bijection, this will require both that the individual affine

warping functions be full rank, and that the images of

their domains remain disjoint.

To begin, let S (the “input simplices”) be a finite pure

simplicial p-complex covering R, and R (“the output

simplices”) be another finite pure simplicial p-complex,

which is isomorphic to S.5 Basically, we will optimize

over the positions of vertices in R, and use the in-

duced simplicial map (which interpolates vertex positions

barycentrically) as our output warping function.

In more detail: We denote the p-simplices contained

in S by S1, . . . , S|S|, and those contained in R by

R1, . . . , R|S|; that is, the p-simplices in S and R are

indexed. We also denote the vertices (0-simplices) of S

5Pure means that the only simplices of dimension less than p are the
faces of higher-dimensional simplices. p-complex means that the highest
dimensional simplices are p-simplices. Isomorphic means that there is
a bijection between elements of R and S that preserves topology.
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and R by V R
1 , V R

2 , . . . and V S
1 , V S

2 , . . ., respectively, and

the vertices of a given simplex Ri by Ri
1, . . . , R

i
p. Then,

we define the output warping function by,

s(r̄) =

p
∑

i=1

R
πS(r̄)
i βi(r̄, S

πS(r̄)) (16)

where πS(r) : R → N is the function that, given a point

r̄ ∈ R, returns the index of the p-simplex in S containing

r̄, and β : R × S → R
p+1 is the function that, given a

point r̄ ∈ R and a simplex Si ∈ S, returns the barycentric

coordinates of r in Si if r ∈ Si and 0 otherwise. The

map s is called the simplicial map induced by the vertex

map from S to R.

Input simplices, S Output simplices, R

Fig. 1. Given the set S of input simplices, the output warping function
s is determined by the positions of the vertices of the corresponding
output simplices R. This example uses a Coxeter-Kuhn-Freudenthal
tessellation of a regular grid of cubes in R

2.

Defining for each simplicial complex K ∈ {S,R} a graph

GK whose vertices are the 0-simplices in K, and in which

an edge exists between two vertices iff they are both

contained within the same 1-simplex, then a cost which

tends to maintain the bijectivity of s is given by,

J̄outwarp(c) = 1
2

∑
(

||V R
i − V R

j ||K − ||V S
i − V S

j ||K
)2

(V R
i

, V R
j

) ∈ edges(GR)

.

(17)

The idea here is that GR is a rigid graph, and that by

maintaining edge distances we ensure that simplices can

neither “collapse” nor “collide.” If GR is visualized as a

network of springs, then (17) gives their overall potential

energy.

The partial gradient of J̄outwarp with respect to each V R
i

is then,
∑

||V R
i −V R

j ||K−||V S
i −V S

j ||K

||V R
j

−V R
i

||K
K(V R

j − V R
i )

V R
j

∈ N
GR (V R

i
)

(18)

where NGR(V R
i ) is the neighborhood of V R

i in GR.

Admittedly, this cost does leave something to be desired,

since simplices can collapse with finite energy. Neverthe-

less, we believe it is useful for its simplicity. One may

wish to also apply (59) in [17] for each simplex in cases

where (17) is not sufficient.

Now, define c =
[

(V R
1 )T . . . (|V R

verts(R)|)
T

]T

. Let-

ting i1(r), . . . ip+1(r) be the indexes into verts(S) cor-

responding to the vertices of the simplex in S containing

r, letting πS(r) be the simplex in S containing r, and

defining the p| verts(S)| × p matrix

Z(r) =







Iα1

...

Iα| verts(S)|






(19)

where αi1(r) = β1(r, πS(r)), . . . , αip+1(r) =
βp+1(r, πS(r)) and αi = 0 ∀i /∈ {i1(r), . . . , ip+1(r)},

then the the partial gradient of (15) without the last term

J̄outwarp is given by,

∇c(J̄ − J̄outwarp)(R) =

−2

∫ T

0

Z(r(τ))Q [y(τ) − (φs(c) ◦ r)(τ)] dτ . (20)

Hence the partial gradient of J̄ with respect to c is simply

the sum of (18) and (20).

We apply piecewise affine output warping together with

linear time warping in a short example below.

Example 3.1: Suppose we would like the state of an

autonomous Van der Pol oscillator to track that of a

damped pendulum driven by a fixed-frequency sinusoid,

allowing for linear time warping and piecewise affine

output warping. That is, the system is given by,

d

dt

[

xt,1

xt,2

]

(t) =

[

xt,2(t)
ζvp(1 − x2

t,1(t))

]

yt(t) = xt(t)

(with in our case ζvp = 0.9) and the reference signal r is

the solution to (dropping time arguments to r1, r2),

d

dτ

[

r1

r2

]

=

[

r2

sin(τ) − ω2
0 sin(r1) − ζpendr2

]

with in our case ω0 = 1, ζpend = 0.5, x(0) = r(0) =
[0.1, 0.1]T , and τ ∈ [0, T ] = [0, 10]. We will use

essentially the same costs introduced earlier, but with

some specially-chosen constants (described in more detail

in [17]). Then, performing gradient descent using the

gradient given by (18) and (20), we obtain the results

shown in figures 2 and 3.

IV. CONCLUSIONS

In order to allow one system to mimic a reference signal,

we have introduced several versions of a modified output
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Fig. 2. Van der Pol oscillator vs. driven pendulum, before warping. We
wish to scale the time axis of the output (top left) and the output space
of the reference (bottom right) to align the two signals.
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Fig. 3. Van der Pol oscillator vs. driven pendulum, after warping. Time
warping matches the first part of the Van der Pol oscillator’s transient to
that of the pendulum (left top, bottom), and output warping rotates and
deforms the reference output space to better match the output (right top,
bottom).

tracking problem that also includes time and output warp-

ing functions as decision variables, and given FONCs

for all of these. The basic motivation has been that this

captures a measure of qualitative similarity which the

usual error metrics used in tracking problems (like the

generalized L2 metric) do not.

The chief limitations of this approach are related to

computational tractability, and are common to many

problems in numerical optimal control: The gradients,

being the solutions to ordinary differential equations, are

fairly expensive to compute; and the nonconvexity of the

problem means that only local optima are guaranteed.

Nevertheless, it is possible to compute local optima

which do give results that achieve our ultimate goal of

qualitative similarity.
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