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Encoder and Decoder Design for Signal Estimation

Erik Johannesson, Anders Rantzer, Bo Bernhardsson and Andrey Ghulchak

Abstract—In this paper, we study the joint design
of optimal linear encoders and decoders for filtering
and transmission of a signal over an additive Gaussian
noise channel subject to a real-time constraint. The
objective is to minimize the variance of the estimation
error at the receiving end. The design problem is
nonconvex, but it is shown that a global optimum can
be found by solving a related two-stage problem. The
first stage consists of a mixed H2 and H1 norm min-
imization problem, where the H2 norm corresponds
to the error variance in a corresponding Wiener-
Kolmogorov filtering problem and the H1 norm is in-
duced by the channel noise. The second stage consists
of a spectral factorization. The results are illustrated
by a numerical example.

I. INTRODUCTION

Classical control theory assumes that information

is perfectly communicated between different systems.

This assumption is, however, invalid in many situa-

tions, for example when the systems are geographically

scattered. Limitations in the communication links may

constitute a factor that has to be dealt with somehow,

otherwise the result may be poor control performance

or instability. Therefore, a lot of research efforts in the

control community have lately been aimed at problems

related to communication limitations. An overview of

the research on networked control systems and control

with data rate constraints, as well as a thorough list

of references, can be found in [4] and [11] respectively.
Communication channel requirements for stability

of feedback systems was given in [18], [13] and [2],
among others. Fundamental limitations originating

from channel constraints have been found in [9] for
feedback systems and in [10] for disturbance attenua-
tion using side information. The problem of controller

and/or encoder-decoder design was treated in [1], [5]
and [15] for various architectures and channel models.
A significant problem source when using

information-theoretic tools and concepts for control

purposes is the fact that classical communication

theory does not have a delay constraint [14]. Since
time delays often have a significant negative impact

on control loops, block coding may not be feasible

(although this may not always be necessary, see [3]).
However, there are also communication problems

with real-time constraints and the problem of

real-time coding has been studied with increasing
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interest, see [8] for an overview. We believe that
developments in this area could prove to be significant

for communication-limited control.

A. General Problem Description

The block diagram in Figure 1 gives a schematic rep-

resentation of the problem investigated in this paper. A

signal is measured, together with some additive noise,

at one location. An encoder is able to filter and encode

information about the measurements and send it over

a noisy communication channel to a another location,

where a decoder then forms an estimate of the signal.

The estimation has to occur in real-time, as dictated

by the transfer function P. Besides containing a fixed

time delay, P may include general dynamics that the

signal passes through before it is to be estimated. The

task is to design the encoder and the decoder such that

the estimation error becomes as small as possible.

This setup can alternatively be interpreted as the

problem of designing a feed-forward compensator with

access to remote and noisy measurements of the

disturbance that is to be counteracted. In this con-

text, the encoder filters the measurements and trans-

mits information about the disturbance to the de-

coder/controller, which in turn can compensate. Now,
P describes the propagation of the disturbance from

the remote location to the point where the controller

can compensate.

Signal

Noise
Encoder Decoder

P

Channel

Error

Fig. 1. Schematic illustration of the problem under consideration.
The encoder and the decoder are designed to minimize the error. In
the nominal case P represents a fixed time delay but more general
dynamics are allowed.

B. Relations to Earlier Work

The problem setup is inspired by the work in [10],
where information-theoretic tools were used to find a

lower bound on the reduction of entropy rate made

possible by side information communicated through a

channel with given capacity. Under stationarity as-

sumptions, this was used to derive a lower bound,

which is a generalization of Bode’s integral equation,
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on a sensitivity-like function. Even though the problem

architecture is similar in this paper, there are some

important differences: The main difference is that [10]
gives performance bounds for a general communica-

tion channel while this paper treats synthesis for a

specific channel model. Furthermore, there are differ-

ences in the employed performance metrics: Here, the

variance of the error is minimized. In [10], a lower
bound is achieved on the integral of the logarithm

of a sensitivity-like function. Also, in [10], a feedback
controller is placed at the receiving end. The setup is

generalized in this paper with the inclusion of mea-

surement noise at the sensor, which gives an incentive

to filter, as well as the possibility of general dynamics

in P.

It can be noted that in the case where P is a pure

time delay and the communication channel is perfect,

then this problem is equivalent to the classical situa-

tion treated by Wiener-Kolmogorov filtering theory [6].
On the other hand, when there is no measurement

noise and the channel is noisy, a finite time delay

in P gives a real-time coding problem. The difficulty

of the present problem comes from the fact that it

is necessary to both filter and encode the measured

signal at the same time, under a finite time constraint,

in order to remove noise from measurements and

channel respectively.

C. Main Result and Organization

The main result of this paper is that the joint

design of an optimal linear encoder-decoder pair for a

Gaussian channel can be formulated as a convex opti-

mization problem followed by a spectral factorization.

Specifically, it takes the form of a mixed H2 and H1
norm minimization problem, with the relative weight

of the two norms determined by the channel capacity.

The rest of this paper is organized as follows: After

some comments on notation, the problem formulation

is given in Section II. The solution is presented in

Section III and examples are found in Section IV. Some

extensions to the problem are discussed in Section

V. Concluding remarks are given in Section VI. We

use two theorems from complex analysis, which are

included in the appendix as a convenience to the

reader.

D. Notation

For 1 < p ≤ ∞, we define the Lebesgue spaces
Lp and the Hardy spaces Hp, over the unit circle, as

well as their corresponding norms pp ⋅ ppp in the usual
manner. For more details, consult a standard textbook

such as [12].
To shorten notation, we omit the argument eiω of

transfer functions when it is clear from the context.

II. PROBLEM DESCRIPTION

The structure of the problem is shown in Figure 2.

The input signals w1,w2,w3 are mutually independent

scalar white noise sequences with zero mean and

unit variance. Every block in the figure represents a

linear, time-invariant, single-input, single-output sys-

tem described by a transfer function. We assume that

F,G, P ∈ H∞ and that C,D ∈ H2. These transfer
functions may be rational or not. Furthermore, we

assume that F and G have no common zeros on the

unit circle and that the whole system is in stationarity.

F

G C D

P
e

rt

w1

w2

w3

Fig. 2. Structure of the system. With F, G and P given, the objective
is to design C and D such that E(e2) is minimized.

The transfer functions F and G are shaping filters

for the signal and the measurement noise respectively.

P represents the dynamics that the signal undergoes

between the points where it is measured and where it

is to be estimated. Typically, P consists of a fixed time

delay, but may contain more general dynamics. The

encoder C and the decoder D are the design variables.

The communication channel is modeled as an addi-

tive white Gaussian noise (AWGN) channel.1 That is,

r(k) = t(k) +w3(k),

where t(k) is the transmitted variable, r(k) is the
received variable, and w3(k) is the channel noise at
time k. The power of the transmission is limited by a

constant σ 2, that is:

E(t(k)2) ≤ σ 2 for k ∈ Z.

The Shannon Capacity of this channel is

CG =
1

2
log2(1+σ 2).

The objective is to minimize E(e2), the variance of
the estimation error. This objective, as well as the

channel input constraint, can be expressed in the

frequency domain as

E(e2) =
1

2π

∫ π

−π

p(P− DC)Fp2+pDCGp2+pDp2 dω (1)

and

E(t2) =
1

2π

∫ π

−π

pCp2
(

pFp2 + pGp2
)

dω ≤ σ 2. (2)

The problem is to find C,D ∈ H2 that minimizes (1)
subject to the channel constraint (2). The search is
restricted to H2 since we are only interested in stable

and causal solutions. We expect to find the optimal

linear C,D, but make no claim that linear solutions

are optimal per se.

1For the purposes of this paper, it actually doesn’t matter if w3 is
Gaussian or not.
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III. SOLUTION

Due to the product DC in the integrand, the objec-

tive function (1) is clearly not convex. Also, there may
be multiple minimizing solutions even for simple con-

figurations for which the minimum can be calculated

analytically (for an example, see section IV). However,
we will show that it is possible to make this problem

convex by solving it in two stages.

The idea is to consider the product DC as given and

then to find the optimal factorization. It is shown that

this problem can be solved by a spectral factorization.

The solution gives a cost in terms of the product, which

may then be optimized. Given the optimal product, the

factorization can be applied to find optimal C and D.

The solution to the encoder-decoder factorization

problem is given in Lemma 1. To understand the

meaning of this lemma, note that if B = DC is

assumed to be fixed, the two first terms in (1) are
constant. It is therefore sufficient to consider the third

term. The channel input constraint is rewritten using

a function H, which will be defined later.

Lemma 1: Consider σ > 0, B ∈ H1 and H ∈ H∞
with H−1 ∈ H∞. Then the minimum

min
C,D∈H2

1

2π

∫ π

−π

pDp2dω (3)

subject to the constraints

B = DC,
1

2π

∫ π

−π

pCHp2dω ≤ σ 2 (4)

is attained. The minimum value is

1

σ 2

(

1

2π

∫ π

−π

pBHpdω

)2

. (5)

Moreover, if B = 0, then the minimum is achieved
by D = 0 and any function C ∈ H2 that satisfies (4).
Otherwise, C and D are optimal if and only if C ∈ H2,
D = BC−1 ∈ H2 and

pCp2 = λ−1pBH−1p (6)

almost everywhere on the unit circle, with λ given by

λ =
1

2πσ 2

∫ π

−π

pBHp dω .

Proof: If B = 0 the proof is trivial, so assume that
B is not identically zero. Then C is not identically zero

and D = BC−1. Cauchy-Schwarz’s inequality gives
(
∫ π

−π

pBHpdω

)2

≤

∫ π

−π

pBC−1p2dω

∫ π

−π

pCHp2dω

≤ 2πσ 2
∫ π

−π

pBC−1p2dω .

In particular, (5) is a lower bound on (3). Equality
holds if and only if pBC−1p and pCHp are proportional
almost everywhere on the unit circle and

∫ π

−π

pCHp2dω = 2πσ 2. (7)

Thus, the minimum value (5) is achieved if and only
if C ∈ H2, D = BC−1 ∈ H2 and (6) holds almost
everywhere on the unit circle.

It remains to show existence of such C and D.

Note that BH−1 ∈ H1 is not identically zero. Hence,
by Theorem 2 (in appendix), log pBH−1p ∈ L1. It

follows by Theorem 3 (in appendix) that there exists
a function C ∈ H2, with C(z) ,= 0 for pzp > 1, that
satisfies (6) almost everywhere on the unit circle. Now,

1

2π

∫ π

−π

pBC−1p2dω =
λ2

2π

∫ π

−π

pCHp2dω = λ2σ 2 < ∞

so BC−1 ∈ L2. Since B ∈ H1 and C is analytic and
nonzero for all pzp > 1 it follows that BC−1 ∈ H2.
If the product of an encoder and a decoder is given,

Lemma 1 shows how to factorize that product so that

the third term in (1) is minimized. Inserting the
minimum cost (5), the objective (1) becomes convex
in the product and the problem described in Section

II can be solved using convex optimization techniques.

This result is shown in the following theorem, which

is the main result of this paper.

Theorem 1: Assume that σ 2 > 0, that F,G, P ∈ H∞,
where F and P are not identically zero, and that

0 < ε ≤ pF(eiω )p2 + pG(eiω )p2, ∀ω ∈ [−π ,π ). (8)

The minimum

min
C,D∈H2

1

2π

∫ π

−π

p(P− DC)Fp2 + pDCGp2 + pDp2 dω (9)

subject to

1

2π

∫ π

−π

pCp2
(

pFp2 + pGp2
)

dω ≤ σ 2 (10)

is attained and is equal to the minimum of the convex

optimization problem

min
B∈H2

1

2π

∫ π

−π

p(P− B)Fp2 + pBGp2 dω

+
1

σ 2

(

1

2π

∫ π

−π

pBp
√

pFp2 + pGp2dω

)2

,

(11)

which is attained by a unique minimizer.

Further, suppose B ∈ H2 minimizes (11). If B = 0,
then (9) subject to (10) is minimized by D = 0 and any
function C ∈ H2 that satisfies (10). Otherwise, C and
D minimize (9) subject to (10) if and only if C ∈ H2,
D = BC−1 ∈ H2 and

pCp2 =
pBp

λ
√

pFp2 + pGp2
(12)

almost everywhere on the unit circle, with λ given by

λ =
1

2πσ 2

∫ π

−π

pBp
√

pFp2 + pGp2 dω . (13)

Proof: We start by rewriting the the channel input

constraint (10). By (8) and Theorem 3 (in appendix),
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there exists a function H ∈ H2 that satisfies H(z) ,= 0
for pzp > 1 and

pHp2 = pFp2 + pGp2 (14)

almost everywhere on the unit circle. Since F,G ∈ H∞
it follows that H ∈ H∞. Moreover, it follows from (8)
that H−1 ∈ H∞. With this H, (10) is equivalent to

1

2π

∫ π

−π

pCHp2 dω ≤ σ 2. (15)

Now, define the sets

Θ = {(C,D) : C,D ∈ H2, (15)}

ΘB = {(C,D) : C,D ∈ H2, (15), B = DC}

and the functional

ϕ (C,D) = pp(P− DC)Fpp22 + ppDCGpp
2
2 + ppDpp

2
2.

The infimum of (9) subject to (10) can be written

inf
C,D∈Θ

ϕ (C,D) = inf
B∈H1

inf
C,D∈ΘB

ϕ (C,D)

= inf
B∈H1

(

pp(P− B)Fpp22 + ppBGpp
2
2 + inf

C,D∈ΘB
ppDpp22

)

= inf
B∈H1

pp(P− B)Fpp22 + ppBGpp
2
2 +

1

σ 2
ppBHpp21

= inf
B∈H1

ψ (B) (16)

The first equality comes from the fact that a product of

two functions in H2 is in H1, and that any function in

H1 can be written as a product of two functions in H2.

In the third equality, Lemma 1 was applied to perform

the inner minimization.

We will now show that the minimum in (16) is
attained by a unique B ∈ H2. To this end, perform
a completion of squares:

ψ (B) = pp(P− B)Fpp22 + ppBGpp
2
2 +

1

σ 2
ppBHpp21

= ppBH − H−∗F∗FPpp22 +
1

σ 2
ppBHpp21 + const.

Let X = BH ∈ H1 and R = H−∗F∗FP ∈ L∞.
Minmizing ψ (B) is then equivalent to minimizing

ρ(X ) = ppR − X pp22 +
1

σ 2
ppX pp21

over X ∈ H1. However, since we want to minimize ρ
it is enough to consider X with ρ(X ) ≤ ρ(0) = ppRpp22.
Hence,

ppX pp2 ≤ ppR − X pp2 + ppRpp2

≤
√

ρ(X ) + ppRpp2 ≤ 2ppRpp2 = r.

Now, in the weak topology, ρ(X ) is lower semi-
continuous on L2 and the set {X : ppX pp2 ≤ r} is com-
pact. This proves the existence of a minimum. More-

over, ρ(X ) is strictly convex, and thus the minimum
is unique.

Moreover, since ppX pp2 ≤ r, we can restrict the search
to X ∈ H2 without loss of generality. From H

−1 ∈ H∞

it follows that B = H−1X ∈ H2 and that (16) is equal
to (11).

Since the minimum is attained in (16), this is also
true for the minimum (9) subject to (10), since they are
equal. The optimality condition (12) follows from the
application of Lemma 1, using that pHp =

√

pFp2 + pGp2

almost everywhere on the unit circle.

Theorem 1 shows that it is possible to solve the

problem described in section II by the following pro-

cedure: First, minimize (11). In practice, this is done
approximately using a finite basis representation of

B and sum approximations of the integrals. This

minimization can then be cast a quadratic program

with second-order cone constraints. Then calculate λ
according to (13) and perform a spectral factorization
to find H ∈ H∞ with H

−1 ∈ H∞ that satisfies

(14). Finally, apply another spectral factorization to
determine C ∈ H2 with C(z) ,= 0 for pzp > 1 such that

pCp2 = λ−1pBH−1p

holds almost everywhere on the unit circle, and set

D = BC−1.

The cost function (11) consists of two terms, which
can be given the following interpretations: The first is

equal to the cost in the situation where the channel is

noise-free and has unlimited capacity. Hence, this is

the error variance in the Wiener-Kolmogorov filtering

problem [6]. The second term is the error induced by
the channel noise. It is interesting to note that the

first term is a 2-norm function of the decision variable

B, while the second term is a weighted 1-norm of B.

Thus, the problem is a mixed norm minimization pro-

gram with the parameter σ 2 determining the relative
importance of the two terms.

Rewriting the weight in terms of the channel’s Shan-

non Capacity CG , the problem becomes

min
B∈H2

ppR − BHpp22 +
1

22CG − 1
ppBHpp21

with R = H−∗F∗FP ∈ L∞. It is noted that the problem
approaches the Wiener-Kolmogorov filtering problem

as CG →∞. On the other hand, as CG → 0, the weight
grows large and the optimal B approaches 0. This is

because the channel noise dominates the transmitted

signal.

It was noted earlier that the solution is not unique.

To clarify, the optimal B is unique but there are

multiple factorizations of B into C and D that achieve

the optimal value. For example, a second solution is

trivially found by changing the sign of both C and D.

Moreover, in the proof of Lemma 1, C is always chosen

to be nonzero for every pzp > 1. However, if B has time
delays or zeroes outside the unit circle, it is possible

to put these in either C or D.
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IV. EXAMPLES

A. Static Case

Suppose P = z−d, F = σ F > 0, G = σG > 0.
This simple case can be solved analytically. Optimal

solutions are given by

C(z) = (−1)k

√

σ 2

σ 2F +σ 2G
z−m

D(z) = (−1)k
σ 2F

σ 2 + 1

√

σ 2

σ 2F +σ 2G
z−n

where k ∈ {0, 1}, m,n ∈ Z and m + n = d. The
minimum value is

σ 2F
σ 2 + 1

+
σ 2σ 2Fσ 2G

(σ 2 + 1)(σ 2F +σ 2G)
.

B. Numerical Example

Suppose P = z−2 + 0.5z−7, F = 1
z−0.5 , G = 1 and

σ = 1. We parameterize X = BH as an FIR filter:

X (z) =

Nx
∑

k=0

xkz
−k

where Nx = 30 seems to be sufficiently large for

this example. The minimization is implemented in

Matlab using Yalmip [7]and SeDuMi [16], with a grid
distance of 0.001 used for numerical computation of

the integrals. Figure 3 shows the resulting impulse

response of B. Note that the two peaks in the impulse

response corresponds to the non-zero coefficients of P.

0 5 10 15 20 25 30
−0.1

0

0.1

0.2

0.3

Time

M
a
g
n
it
u
d
e

Fig. 3. Impulse response of B, the product of the encoder and the
decoder, in the numerical example.

λ is calculated using (13) and a spectral factoriza-
tion is performed to determine H according to (14).
The spectrum of C is parameterized as

pCp2(ω ) = c̃0 +

Nc
∑

k=1

c̃k
(

ekiω + e−kiω
)

where Nc = 30 seems to be enough for this example.
The coefficients are found by solving a least-squares

problem (in the form of an overdetermined equation
system corresponding to (12)). Finally, C is obtained
through spectral factorization and D = BC−1. The

impulse responses of C and D are shown in Figures

4 and 5, respectively. The minimum value for this

problem is 1.00.
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Fig. 4. Impulse response of the encoder C in the numerical example.
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Fig. 5. Impulse response of the decoder D in the numerical
example.

V. EXTENSIONS

Consider the more general problem setup depicted

in Figure 6. The difference from the original problem

is that the channel noise is not assumed to be white

and that the error signal is frequency weighted. The

solution in section III is easily modified to handle these

extensions, as long as it is assumed that N ∈ H∞
and S ∈ H∞ with S

−1 ∈ H∞. Note that S could

represent a frequency weighting of the error or, in

a feed-forward context, the sensitivity function of the

closed-loop system that is affected by the disturbance.

F

G C D

P

N

S
e

r

n

t

w1

w2

w3

Fig. 6. Extended problem setup. The channel noise is shaped by
N and the error is frequency weighted by S.

VI. CONCLUSIONS

In this paper, we have studied the joint design of op-

timal linear encoder and decoder pairs for filtering and

transmitting a signal over a Gaussian additive noise

channel. The objective of the design is to minimize

the variance of the estimation error. The main result

is that this problem can be formulated as a convex

optimization problem. More specifically, it is a mixed

H1 and H2 problem.

The results given in [10] are more general in the
sense that they hold for any communication channel,
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although this paper generalizes the problem setting

to include measurement noise as well as general dy-

namics in P. An important difference between the

two frameworks is the performance metric. Another

difference is the inclusion of feedback in the receiving

end. Using this feedback, the authors of [10] were also
able to construct (and achieve) a lower bound on the
integral of the square of the sensitivity-like function. It

would be interesting to see how the use of feedback in a

similar manner could be used to decrease the variance

further than what was achieved here. Comparing with

the results presented in [10] for the Gaussian channel
(with the feedback not taken into consideration) we
note that the results coincide when G = 0 and F is
constant. When F is not constant, the solutions are

different, due to the different performance metrics.

This work provides many topics for further research,

that we plan to investigate in the future:

• Can the error be further decreased (the distur-
bance be further attenuated) by the use of feed-
back at the receiving end?

• Under what conditions are linear solutions opti-

mal? If they are not, is there a good method of

finding (sub)optimal nonlinear solutions?

• If P, F and G are rational, will the optimal C and

D also be rational?

• Is the method used in this paper applicable to

other structures, such as feedback loops?

APPENDIX

This appendix contains two theorems from complex

analysis. The first consists of one of the results stated

in Theorem 17.17 in [12].
Theorem 2: Suppose 0 < p ≤ ∞, X ∈ Hp, and X is

not identically zero. Define

X̄ (eiω ) = lim
r→1+

X (reiω ).

Then log pX̄ p ∈ L1.
The following theorem is a generalization of the

Fejér-Riesz Theorem and can be found in [17].
Theorem 3 (Szegő): Suppose that f (ω ), defined for

ω ∈ [−π ,π ], is a non-negative function that is inte-
grable in Lebesgue’s sense and that

∫ π

−π

log f (ω ) dω > −∞.

Then there exists X ∈ H2 such that X (z) ,= 0 for
pzp > 1 and for almost all ω ∈ [−π ,π ] it holds that

• X (eiω ) = limr→1+ X (re
iω ) exists

• f (ω ) = pX (eiω )p2.
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