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Abstract— We address the anti-windup augmentation prob- in [23] and later characterized in several additional paper
lem for plants with saturations on the magnitude, rate and where solutions were given to different control problems

curvature of the control input. To this aim, given an uncon- ing th rchi r he r n r
strained closed-loop, we generate a slightly modified strictly using that arc tecutg (see, e.g., the recent papers1g], [
and references therein).

proper controller for which the derivatives of the control signal - e ) .
are available and we solve the anti-windup problem for this While the anti-windup approach has been historically

modified control scheme (namely, an almost anti-windup for associated with magnitude only saturation, since the late
the original closed-loop). Based on this “almost” approach, we 1990s quite a bit of attention has been devoted to extending
revisit an existing Model Recovery anti-windup solution for rate the available results to the case where the plant input is not

and magnitude saturated plants and then we extend the results | biect t itude but also t t turati Thi
to the case of rate, magnitude and curvature saturation, by only subject to magnitude but also 1o rate saturation. IS

providing a Model Recovery solution to this additional problem. ~ context is especially relevant in a number of applications,
Several examples are used to illustrate the peculiarities and the including flight control, control of Tokamak plasmas with

effectiveness of the proposed solutions. superconducting coils and many others where the request
to the actuators is not allowed to change too fast (see,
. INTRODUCTION e.g, [4], [5], [26], [18], [19]). Anti-windup approaches for

Plant input saturation in otherwise linear control system&agnitude+rate saturated plants have been given in [27] and
has been long studied since the 1950's. In particular the sB25] Where a plant-order and a static compensation scheme,
called anti-windup approach arose in those early years ggspectively, are proposed and in [9] (further extende@]) [

a possible response to the need of not sacrificing the sm#ihere a static solution is given. A non-constructive plant-
signal behavior to obtain a satisfactory large signal bielmav order solution to the problem was also given in [1], but key
[15]. An important peculiarity of the saturation phenomeno stabilizing feedbacks need to be designed for the speeiat pl

is that for small enough signals its effects are invisibleynder consideration in that scheme. These feedbacks are not
so if that is the only nonlinearity in an otherwise linearalways easy to determine. Finally, the so-called reference
control scheme, small signal responses are fully linear ar@Pvernor (or command-governor) approaches which rely on
controllers can be conveniently designed using linearstooreceding horizon optimal control ideas (see, e.g., [2]],[12
to guarantee desirable and well characterized performan®]) can be formulated by incorporating rate saturation
properties of the closed-loop. Inevitably, those perfatoea in the control design problem. Recently, in [7], we have
guarantees will only be valid for signals small enough to ngtharacterized two Model Recovery Anti-windup solutions fo
activate the saturation effects, therefore it is naturagek Plants with rate and magnitude saturations, building upen t
for control modifications that leave that small signal behawreliminary results of [22] (for the first approach) and [28]
ior unchanged and induce modifications to the closed-lodfor the second one).

aimed at guaranteeing stability and/or performance of the In this paper we tackle a generalized problem as compared
nonlinear closed-loop arising when looking at medium#argto the magniude and rate case by not only imposing that
signal responses. the zero (magnitude) and first (rate) order time derivative

Several different anti-windup approaches have been pr6f the plant input needs to be bounded, but also imposing
posed already since the 1960's [6], initially with a Verythat its second order derivative (that we call curvature) is
industrially oriented flavor and later on with a more for-bounded by suitable constants. This requirement genesaliz
mal analysis and synthesis approach relying on linear afleé magnitude+rate saturation requirement in imposing a
nonlinear tools (see [14] for a survey of some early antiPlant control input that is very regular because it doesn't
windup methods and [21], [10] for a recent survey and allow for spikes of any kind on the plant input after com-
recent tutoria' on th|s t0p|c) Among the many So|ution§)ensati0n. Whlle on one hand thIS requirement seems quite
addressing anti-windup by relying on nonlinear tools, fatural as a generalization of the previous rate+magnitude
relevant one is the so-calledodel Recovery Anti-Windup saturation context, its mathematical formalization reggli

paradigm, originally named (% anti-windup”, introduced quite a bit of attention because special care has to be taken t
guarantee that none of the three constraints (on magnitude,
Work supported in part by ENEA-Euratom and MIUR under PRINrate and curvature) are exceeded by the plant input at any
projects. . - . , _ time, in addition to guaranteeing that whenever the coleirol
All the authors are with the Dipartimento di Informatica, Sisf . e . o g
e Produzione, University of Rome, Tor Vergata, 00133 Romely Ita output remains within those limits, it is not modified by the

forni | gal eani | zack@li sp. uni roma2. it anti-windup solution. In particular, there are cases winen t



controller output needs to be modified in anticipation of anake very few assumptions on the structure of the controller

future saturation which will be unavoidable otherwise Isut iC, that can be described by the following linear dynamic

not evident at the current time (see Remark 5 in Section IVgquations:
The anti-windup architecture that we adopt to tackle the

magnitg@e+rate+gurvature satura?ton prgblgm requires th Ye = Cozo+ Dustic + Dyor (2

availability of the first and second time derivatives of tioa< ] o )

troller output. This parallels the solutions given in [7] evh Where_xg is the controller stateug_ is its measurement input

the first time derivative was required. While in [7] strict2nd7 is an external reference signal. _

properness of the controller allowed for that requirement, 10 guarantee existence and uniqueness of solutions, we

here it is unreasonable that the relative degree of the cofisSume that closed-loop between plant (1) and controljer (2

troller is two and we discuss a possible approach to modifyi§ Well behaved in the absence of saturation, namely with

linear control system to induce an arbitrarily small chaimge the following “unconstrained” interconnection:

its transfer function and make those derivatives available Uz =y, U= Y. (3)

the modified controller. A similar approach can be adopted

in the case of a nonlinear controller, whereas linearityhef t ~ ASsumption 1.The closed-loop betwen plant (1) and con-

plant is a key property for our construction to apply. Thent’roller (2)_ via the interconnection (3) is well posed and

the scheme proposed to generate the modified controller capymptotically stable.

also be used to address anti-windup for magnitude-+rate orfjpte that Assumption 1 implies that plant (1) is stabilizabl

Saturation with nonstrict'y proper Controners app'y"'fwt from u. In the fO”OWing,W will denOte theoriginal Closed

approach of [7] to the modified closed-loop system. In alloop systenof (1), (2) interconnected by (3) having transfer

cases, the anti-windup problem that we address can be séBatrix W.

as an “almost” anti-windup solution for the original cortro

Tz = Agxz+ Bysue + Brer

system, indeed the modified closed-loop that we introduce r — y
will be almostthe same as the original one up to a certain Wl e Ye I
frequency of operation. [

The paper is organized as follows. In Section Il we discuss
how to modify an unconstrained closed-loop to obtain in .
explicit form N derivatives of the plant input. In Section I L pea 4| Yy
we illustrate the almost anti-windup solution on plantshwit - ¢ Ve LI
rate and magnitude saturation and in Section IV we apply
it to plants with curvature, rate and magnitude saturation.

Several examples are given within the paper to illustrage thrig. 1. The original (upper block diagram) and the modified @owilock
proposed approaches. diagram) closed loops.

II. MODIFIED CLOSED-LOOPS FOR ACHIEVING STRICTLY

PROPER CONTROLLERS . .
B. The modified closed loog/.

The purpose of this section (see Fig. 1) is to show how, _ N i -
given a plant-controller pair (possibly, both non strictly fl?hordert:) a:::hlevetthei avallab|llt)t/ (t)f the f;ers:\[Evanv_es_ |
proper) and a positive intege¥, it is possible to replace 0 te"cogrk;) er output, \tNe”Wgn h_ohr(_ap ace t_e”ontg?]ma
the controller by a strictly proper one such that the originaCon rofierc by a new controflet- which 1s essentially the

ascade of and a filterF (used to compute the approximate

and the modified closed loop are arbitrarily “close” to eact; . i  th trol si ith t f tri
other (in a sense to be specified later), and moreover thgrlva ives of the control signak) with transfer matrix

output of the modified controller i&V times differentiable Fo(s) I
and its N derivatives can be made available as additional Fi(s) 1 sl
outputs of the modified controller. F(s) = : = m | 4)
A. The original closed loopV Fn(s) sNIT
Consider the following linear plar® wherer > 0 is sufficiently small and the coefficientsy,

..., ay are obtained by writing(s) = sV + ay_1sV "t +

& = Azv+ Byu+ Bad -4 ags+ag with p(s) = (s+7- 1), itis easy to see that
y = Cya+Dyu+ Dyad @D asr - 0, the output ofF gets closer and closer to the input
z = Cyr+ D,u+ D,qd,

of F and to its firstN derivatives. While intuition suggests
where x € R™ is the plant statex, € R™ is the plant that, provided that > 0 is sufficiently small, the modified
control input,y € R? is the measurement output,is the closed loop will remain stable and the closed loop response
performance output and is a disturbance input. with C replaced byC will be arbitrarily close to the original

Following the standard anti-windup approach, we assunmane, it will be shown that for our plan to work it is necessary
that a controller has been already designed for plant (1). We exercise some additional cares.



,,,,,,,,,,,,,,,,,,,,,,,,,,,,

: C | Yed
r: :
5 Ye Je
Uz + C Y F Yoo
+

Fig. 2. The structure of the modified controller.

Let filter 7 be described by

S'Uf = Afxf + Bfo
yor = Coprs
(5)
yn-vf = Cwv-nypty
yny = Cnsz+ Dnyuy
where
0 I 0 0
A = .
! : . 0 ’
0 0 I
7040] OqI 7041\/,2] 7C¥N71[
(6a)
By =[0 o 1], (6b)
Cop=7"N[I 0 0 0], (6¢c)
Con—nyy=7"[0 0 0 1], (6d)
CNf = TﬁN [O[()I a1 Ckal.[} s (66)
Dny=17"NI (6f)
and defineC by imposing the interconnection (see Fig. 2)
up = Yo, Ue = Ue + DyuYe — Dyutior, Ye = vor- (7)

From (2), (5), (6) and (7) the controll€ris described by

Te = AC(EC + Bucuc + B”‘CT
Ye = Cexe 8
yg) Cicmca i:]'?""N_]" ( )
U£N) = COnexe + Dyyette + Dnyers

where yﬁi), 1 = 1,...,N is the i—th derivative of the
main controller outpug,.. We will denote byy. 4 the vector
w7, By defining M = (I — D,,D,:)"* and
M = (I = DueDyu)” "y Ag, Bue, Bre, Ce, Dy, Dy can be
characterized as follows.

A Az + ByeM Dy, Cs —BueM Dy, Coy
c 0 Cf
BuEM BTEM
[ Buc ‘ Brc ] - |: BfDuEM BfDrEM :l

9)

and (note thatC,. = Cy.)
Cie=1[0 Ci], i=0,...,N—1,
Cne = [DnyMC; Cny— DynygMDy:D,yyCoy)
[ DNuc | Dnre | = [ DNyMDys ‘ DyyMD,: | (11)

(10)

_The modified closed loop systeny, with transfer matrix
W, is given by (1), (2) and (5) interconnected by (7) and

(12)

equivalently,W is given by (1), (8) interconnected by (12).
Looking at the definition ofi; in (7) (see also Fig. 2), it is
clear thatC is not just the cascade 6fand.F, but contains
two direct feedthrough termd,, acting with opposing
signs. The aim of such terms (which are abserdjf, = 0,
i.e. if the plant has no direct feedthrough franto y) can be
better understood looking at Fig. 3: essentially, g, at
the output ofF, (the subsystem aof having transfer matrix
Fy(s)) has the role of “removing” the direct feedthrough
term from P, so thatF, perceives that it is connected to a
strictly proper system. Then, th@,,, at the output o€ has
the role of guaranteeing that the original closed loop (teefo
the insertion ofF;) is not modified. The motivation for this
double transformation is given in the following remark.

Ue =Y, U=Yc;

(]

Fig. 3. Loop modification to ensure th&, sees a strictly proper system.

Remark 1:Control folklore says that “introducing a suf-
ficiently small time constant in a stable closed loop does not
impair stability”. However, it may be useful to recall that
such a statement is true under the assumptiontitieatiosed
loop where the time constant is inserted does not contain an
algebraic loop[13, Sec. 4.7]; hence, our interest in ensuring
the conditionD,,, = 0.

The following example can be useful in order to clarify
this point. Consider a static plaf® with D,, = 2 and a
static controllerC with D,z = 1, which constitute a well-
posed, stable closed loop. Introducing the fill&f(s) =
ﬁ the closed loop poles are the roots of the polynomial
(1+7s)? —2 = 72524+ 275 — 1, which has one positive root
for any choice ofr > 0. Though in the above example both
P andC are static, it is easy to produce similar examples
where eitherP or C (or both) have a nontrivial state.

Notice also that, ifD,, # 0, the folklore statement
can still hold, but the additional assumption that,, is
sufficiently small is needed (this fact can be proven, even
for nonlinear systems, by a straightforward modification of
the proof of [13, Proposition 4.7.2]).

Remark 2: The stability part of the following proposition
can be generalized to nonlinear controllers. In particyls,

o



Proposition 4.7.2, Sec. 4.7] can be used to show that undeus stabilizer. For this example, the modified closed loop
the assumption thab,,, = 0 and for sufficiently smalt- >  system (1), (2), (5), (7) corresponds to

0, the (local) asymptotic stability of the closed loop system 02 -02] 1
is preserved (and, in the linear case, this would be enough to { A | By } _ 1 0 0
deduce also global exponential stability). The same pranf c Cy | Dyu 04 =09 ‘ ~05 (14)

be slightly modified to show that the same result still holds
provided that the feedthrough term (possibly depending on [ Ae | Bye } - [ 0 ‘ 1 }
x) is uniformly bounded by a sufficiently small constant. Ce | Due 2 ‘ 2
On the other hand, generalizing the performance part aind the filterF has transfer function
the proposition is much less straightforward. ) 1
The following Proposition 1 compares the closed loop Fo(s) = 7252 4 215 + 1 (15)

responses ofV andW, by showing that it is always possible Figure 5 summarizes the differences among the modified

to choose the filter7 such that the differenc&w :=  ¢losed loop system, for several valuesrofand the original
W — W betweenW and W is arbitrarily small up to an ¢josed loop system. Although the step responses of the
arbitrary large frequency. B modified closed loop system are quite similar to the step
Proposition 1: Let A:kssumptmn 1 hold. For aH*> 0,& € response of the original closed loop system, Bode diagrams
(0, +00) there exists™ > 0 such that ifr € (0,7%) then of figure 5 characterize the differences between themo
1) W is well posed and asymptotically stable;
2) 5’(Aw(jw)) < g, for all w € [0, (D): step response bode diagrams
3) moreoverg(Aw (jw)) < € for all w € [0, o) if 1 ‘ ‘ 20
D.yDr. =0, DzuDuchd = 0. (13) A —~ 0 A
I | & ESNE
: g N
2 720 AN
2 \
g
° = 40
é -60
n < 225
04 Original cl ﬁ o
Modified cl, 1=0.04 §
Fig. 4. Relation amongV, Q, Fo andA; W reduces taV whenA = 0. 0.2 mog@?eg C:v ng-gi T g 185
odined cl, T=0.
. Modified cl, 7=0.002
Proof: See Appendix I. | s i > - 90 -
Remark 3:The calculations in the proof of the theorem Time (sec) i éroequency (rad/sec)

show that, in general, a mismatch will always be introducelgig 5. Example 1: step response and bode diagrams of the alrosed
by filter Fo; however, they also clarify that, due to thej,o, and of the modified closed loop, for several
relation (37) and the property expressed by (31), it is afvay
possible to guarantee that such degradation will be smaller
than an arbitray small amount up to an arbitrary higt!l- ALMOST ANTI-WINDUP WITH MAGNITUDE AND RATE
frequency, provided that > 0 is chosen sufficiently small. SATURATION

However, the same calculations show that, unless We address in this section the problems arising when

D.y[Dy. Dyu.Dyq] = 0, the performance output will be wanting to ensure that the plant input never exceeds

deteriorated by the presence of the filter at sufficientlgome prescribed magnitude boundlf = (Mi,..., M,,)
high frequencies, wherd\y, (yw) ~ D,,[D,. D,.D,q] and rate bounds® = (Ri,...,R,,). In other words the
independently from the filter parameter o control specification is that the plant inputs differentiable

Remark 4:In this paper we select the filteF in (4) in almost everywhere and that its value is bounded between
such a way thatF, (the upper block) has relative degree+M (componentwise) while its derivative (which is defined
N, so that the output derivatives up to ordar can be almost everywhere) is limited betweeAR (component-
computed. We also make the most natural selection for thvéise). To simplify the exposition, defingat,/(-) as the
filter dynamics. However, many alternative choices could bdecentralized symmetric saturation function with bounds
made for the dynamics idf. One such example which is +M andsatg(-) as the decentralized symmetric saturation
quite relevant is the so-called high-gain estimator (seg, e function with boundstR.

[17], [24] where this observer is used to estimate the joint In [7], two model recovery anti-windup solutions have
speed in industrial robots). o  been proposed for this problem.

Example 1:Consider the example in [16], consisting in  We revisit here the second solution presented there, which
an exponentially stable plant controlled by an integralomct assumed the availability of the controller output derivati



and consisted in the insertion of a filter consisting in a copwherey, = y — y.., and wherez,,, = z — z, quantifies
of the plant plusn, extra states. In [7] that solution wasthe mismatch between the actual performance outpaf
given for strictly proper controllers so that the derivatiof  the anti-windup closed-loop system (1), (8), (16), (17) and
the controller output was available in explicit form. Witiet the desirable performance output of the modified closeg@-loo
modified closed-loop of Section I, this is always possiblesystem (1), (8), (12), which has been shown in the previous
In particular, to tackle the rate+magnitude saturatioree@s section to be close (in a suitable sense) to the performance
use a second order filter in (5), so that its two outputg) output of the original closed-loop (1), (2), (3).
andy{" () correspond to the modified controller output and For the anti-windup closed-loop (1), (8), (16), (17), based
its derivative, respectively, at time Then the anti-windup on the results in [7] and on the change of coordinates in (19),
solution consists in augmenting the modified plant-cofgrol it possible to prove the following statement, which illats
pair (1), (8) with the following filter: the desirable properties induced by the anti-windup smtuti

. Theorem 1:Given the anti-windup closed-loop (1), (8),

Taw = ATow TDB“(” = Ye) (16), (17), if 244, (0) = 0 and ,(0) = y.(0), then the plant
do = satp(ye +v1) (16) input u never exceeds the rate and magnitude saturation
Yaw = CyZaw + Dyulu—ye) bounds. Moreover, if the selection (18) of the signal
Zaw = CoZaw + Daul(u —ye), guarantees local (respectively, global) asymptotic Btaluf
wherewv; is a stabilizing signal further discussed below andhe subsystem (19b), then the following holds:
where the following interconnection is used: 1) Given any response of the modified closed-loop (1),
Ve =y~ Y = satar(do). a7y (©)(12) such thab(1) = saia(uc(r)) and (1) =
satp(ye ' (t)) for all ¢, thenz(t) — z¢(t) = 0, for all
A block diagram representation of the corresponding anti- t, namely the response of the anti-windup closed-loop
windup solution (1), (8), (16), (17) is represented in Feg6r coincides with the response of the modified closed-
and will be calledanti-windup closed loopthrough this loop;
section. 2) The origin of the anti-windup closed-loop is locally

(respectively, globally) asymptotically stable.

d
Rate, Magnitude .
Satutation Saturation } Proof: Sinceu = saty;(dp) anddy = sat R(ygl) +v1),
b - P

Y then the magnitude and rate bounds are never exceeded by
u. Iltem 1 follows from the fact that ifr,,,(0) = 0 and
, 0aw(0) = 00(0) — y.(0) = 0, whenevery.(t) = satar(y.(t))
Vr A andy'" (t) = satp(yl" (t)) for all ¢, the second subsystem
s (19b), whose origin is stable by assumption, stays at zero.
Therefore its outputz,,,, which coincides withz — z, is
identically zero. As for item 2, this trivially follows from

When interconnecting the anti-windup compensator (162“9 cascade representation (19), forward completeness and

(17) to the modified plant-controller pair (1), (8), the @ds he stabilizing assumption or. .
loop appears into a useful cascade form which can be Note that not much is conveyed by Theorem 1 about the
appreciated in the coordinatés, z., Taw, daw) = ( — domain of attraction of the system in the case whermnly

Taws Tes Taws 00 — ye). In particular, if one makes the fol- !ocally stabilizes the dynami_qs (19b_). A qualitative stagat
lowing linear selectiort of v;: is that the larger the stability region of (19b), the larger
references and disturbances will still ensure convergeiice
v = Kou [ Taw ] , (18) the anti-windup closed-loop. In [7] some recipes for the
%0 = Ye design ofK,,, in (18) were given, in addition to additional
after some derivations, the following structure is obtdine L, properties of this scheme. In this paper, in light of the
— generalization carried out in the next section, we focus on
iy = Azy + Byye + Bad . . .
the different aspects listed in Theorem 1 and we rely on the
Ye = Cyxe + DyuYe + Dyad fact that anyK,,, stabilizing the dynamics

20 =C,x¢+ D;yyc + D.ad (19a) i A B 0 .
o = Ao + Bugtic + Brer { o } _ ([ 4 B, } + [ I ]Kaw> { 5 } (20)

Ye = Cee + Dyctic + Dyer

Fig. 6. Model recovery anti-windup with rate and magnitudeuisgion.

induces local asymptotic stability of (19b). Indeed (20)

Taw = ATaw + Bu(satar (daw + Ye) — Ye) corresponds to (19b) wheg,, yt" andv; are sufficiently

$o = satp (Kaw [E} +y£1)) _ygn (19b) small not to activate _the saturation nonlineqtities. Based
o on the above result, in our examples we will use LQR

Zaw = C:Taw + Dau(saty (Saw + Ye) — Ye), gains forv; designed based on the linear dynamics (20).

1 . . - Lo Nevertheless different selections féf,,, in (18), and of
The selection (18) is linear for simplicity of exposition biatgeneral

nonlinear selections could lead to improved stability regiand/or perfor- 1 IN general, aimed at inducing Ia_rge Sta_b'“ty feg'_ons and
mance. extreme performance from a nonlinear viewpoint in (19b)



constitute a very interesting problem to tackle and we égar V. ALMOST ANTI-WINDUP WITH MAGNITUDE, RATE
it as future work. AND CURVATURE SATURATION

In [7, Remark 5], a fix with no guarantees of effectiveness | thjs section, the solution given in Section Ill for the eas
was given to address the case where the controller was Rigth magnitude and rate is extended to the more general
strictly proper. In this fix, for which no stability guaraete problem arising when in addition to requiring plant inputs
were given, the control output was approximately different (hat are bounded in magnitude and rate by, respectively,
ated by a filter of the typg"—, with a sufficiently smallr. 1 ys and +£R, boundedness of their curvature by another
In light of the discussion of the previous section, this finca get of poundsC = (Cy,...,Cy) is also required. More
be inapplicable if there is an algebraic loop between pladt a specifically, the requirement on the plant input is extended
controller, while an effective solution can be always oié@l  here to the fact that the plant input is twice differentiable
by constructing the modified closed-loop of Section II-B. Ingjmost everywhere and that its value is betweeh/, its
the following example, the anti-windup solution discussegst derivative is betweer-R and its second derivative is
here is illustrated on the same case study used in [7].  petween+C at all times. Similar to the previous section

Example 2:The short-period longitudinal dynamics of thedefinesat (-) as the decentralized symmetric saturation with
VISTA/MATV F-16 at Mach 0.2 and altitude10000 feet bounds+C.

(corresponding to a dynamic pressure valuel@8 psf) at Generalizing the approach of Section Il for
a trim angle of attack o28 degrees is described locally by rate+magnitude saturation, we start from an original
a second order plant as in (1) with two states correspondirgosed-loop system (1), (2), (3) and construct the modified
to the angle of attack and the pitch rate, respectively, anflosed-loop system (1), (8), (12), where the filtét is
two inputs corresponding to the deviations of the elevatafelected with two internal states so that, in addition to
deflection and of the pitch thrust vectoring from the trimhe controller outputy,, its first derivative yf}) and its
condition (see [22] for details). As in [22], the controllersecond derivative” are also available at the output of the
is nonlinear and corresponds to a daisy chained allocati®gntroller (8). Then the following anti-windup compensato

of the inputs, driven by a reference signal for the angle g designed to augment the modified plant-controller pair
attack. The same example study was used in [7] to iIIustra(g), (8)

the proposed approach.

i’aw - Axaw + Bu(u - yc) (21a)
Angle of attack 01 = satc (y((:2) +v1) (21b)
‘ ‘ : R(s
) ] Jo = sat g5 (81) (21c)
0.005,0.009 = _
05 }0.018,0.017% i Yaw = CyTaw + Dyu (v = ye) (21d)
{0.021,0.035} P—— ; . — Y
. 0.0630.105 || Zaw CoTaw + Dy (u yc), B (216)
:}g;ggg?;g where, givena,a € R™, the functionsat3(-) in (21c)
-05; - . s : - . denotes the non-symmetric decentralized saturation ifamct
o . with upper componentwise bounds and lower component-
0.0 First input 002 Second input wise boundsy, and, givens = [s; ... s,,]7, the boundsR(")
0.01 and R(-) are defined as
0.01 ’ _
0 000 min (Rl,\/201(M1 —Sa.t]w1 (81)))
001 o
-0.01 -0.02 R(s) =
-0.03 : : .

0% T 2 3 4 s o 1 2 3 4 5 L i (Rm’ \/2Cm(Mm B SatM’"(Sm)))

Fig. 7. Example 2: step response of the modified closed loop with max (_R17 _\/ch(Ml + satas (51)))
antiwindup for several different rate bounde. = [0.3665, 0.8727]. !
R(s) = :

We design the anti-windup compensator by following the max (—Rm, —\/QCm(Mm + SatMm(Sm)))
approach of the previous sections, with as in (18) and - (22)
where K., is an LQR gain for (20) determined using o o
weightsQ = I, R = 1 and state matriX 4 3+] + [ 9] The antiwindup compensator .(21) is interconnected to the
instead of[ 4 2], so that the real part of the eigenvalues ofnodified closed loop as follows:
the closed loop system is forced to be less thdn Ue =Y — Yaw, U=0p. (23)

5.1285 4.5779 —5.9211 —2.2466 Once again, the signal; in (21) is a stabilizing signal
7.1367 6.4045 —2.2466 -—T7.4624 to be defined later. A block diagram representation of this
Figure 7 shows the step responses of the anti-windup closeafiti-windup solution is represented in Figure 8.

loop for several different rate bounds. o When interconnecting the anti-windup compensator (21),

Kaw =



Fig. 8.
saturation.

Model recovery anti-windup with curvature, rate andgnitude

(23) to the modified plant-controller pair (1), (8), the @ds

loop appears again into a useful cascade form, pare{

1) Given any response of the modified closed-loop (1),
(8), (12) such thay,(t) = satas(y.(t)) andyM () =
satp(yt? (1)) and yP(t) = sate(yt? (¢)) for all ¢,
then z(t) — z,(t) = 0, for all ¢, namely the response
of the anti-windup closed-loop coincides with the
response of the modified closed-loop;

2) The origin of the anti-windup closed-loop is locally
(respectively, globally) asymptotically stable.

Proof: See Appendix II. [ ]

Remark 5:A key step in the proof of Theorem 2 consists
p showing that a signal,. respecting all the magnitude,

lel to (19), which can be appreciated in the coordinate@t_e and curvature bounds at all times must actually respect

(.f(, TeyTaw, 5aw,07 6aw,1) = (1‘ —Taw)Te; Taw, 60 —Ye, 51 -

yél)). In particular, if one makes the following linear selec-

tion 2 of vy:

Iaw
50 —Ye ,
1
o — y£ )

after some derivations, the following structure is obtdine

v = Kaw (24)

¢ = Azy + Buye + Bad
ye = Cyxy + Dyyye + Dyad
ze=CLxy+ D,yyec + D,gd (25a)
e = Ace + Byucte + Brer
Ye = Cee + Dyctic + Drer
Taw = AZqw + Bubaw,0
b0 = sat (s 1) (Gawr +90) =)
. Taw (25b)
daw,1 = satc (Kaw {gzziﬂ + y£2)> —y®
Zaw = C:%Taw + Dzubaw,0

wherey, = y — yaw and wherez,,, = z — z, quantifies
the mismatch between the actual performance outpaf

stricter bounds on the rate, which are magnitude dependent
and correspond to (22). Hence, in order to solve the prob-
lem with curvature bounds, sometimes it is necessary to
perform an anticipatory action and to modify the controller
output when it is still strictly inside all the three limits
(on magnitude, rate and curvature), because otherwise a
violation would inevitably occur at future times. This feedt

is radically different from what is found in the cases with
just magnitude and/or rate constraints. Note also that if
R; > 2/ M;C; for somes, then themin andmax functions

in (22) will always return the second argument, namely the
rate constraint will never be active. )

Paralleling the discussion after Theorem 1, note that any
K., stabilizing the dynamics

:j:ww A Bu 0 O L aw
5aw,0 = 0 0 Il +10 Kaw 5aw,0 ; (26)
Sawnt 0 0 0 I Saw.1

induces local asymptotic stability of (25b). Indeed (26)-co
responds to (25b) when., vtV {2’ andv, are sufficiently
small not to activate the saturation nonlinearities. Based
on the above result, in our examples we will use LQR
gains forwv; designed based on the linear dynamics (26).

the anti-windup closed-loop system (1), (8), (21), (23) anélevertheless different selections fé¢,,, in (24), and of
the desirable performance output of the modified closeg-loo’1 in general, aimed at inducing large stability regions and
system (1), (8), (12), which has been shown in the previoigxtreme performance from a nonlinear viewpoint in (25b)
section to be close (in a suitable sense) to the performangenstitute an open research problem.

output of the original closed-loop (1), (2), (3).

Example 3:Let us consider the plant in example 2 with

For the anti-windup c_losed-l_oop (1)'_ (®), (2_1)' (23), basegome curvature bounds on both inputs. We design the anti-
on the change of coordinates in (25), it possible to prove ”Windup compensator by following the approach of the pre-

following statement, which illustrates the desirable mmies

vious sections, withy; as in (24) and wheré(,,, is an LQR

induced by the anti-windup solution, and generalizes th&ain for (26) determined using weights= I, R — - I and
- —_10

results in Theorem 1.

Theorem 2:Given the anti-windup closed-loop (1), (8),

(21), (23), if60(0) € [-M, M] then the plant input: never

.[AB,O0 1007 . A B, 0

state matrix| o0 o 7|+ |o070| instead of| o o 7| So that
0,0 04 . OO{ 0 0 l[) .

the real part of the eigenvalues of the closed loop system is

exceeds the curvature, rate and magnitude saturation bounf@rced to be less thar1:

Moreover, if 5o(0) = satas (ye(0)), 61(0) = satz(y"(0)),
T4,(0) = 0 and if the selection (18) of the signah
guarantees local (respectively, global) asymptotic btaluf
the subsystem (19b), then the following holds:

2The selection (24) is linear for simplicity of exposition bnt general
nonlinear selections could lead to improved stability regiand/or perfor-
mance.

w7 19.859 13.673 —13.320 —28.852 —1.781 —9.095

Figure 9 shows the step responses of the anti-windup closed-
loop for several different curvature bounds. Figure 10 show
a comparison among the responses of the (i) unconstrained
(i) magnitude and rate anti-windup and (iii) magnituddera
and curvature anti-windup closed loop systems. o

_ [7.069 9.775 —19.696 —13.333 —7.872 1.781}
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Fig. 9. Example 3: step response of the modified closed loop WitPlS]

antiwindup for several different curvature bounds. = [0.3665, 0.8727],

R = [0.2967,0.7854]. 6]
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Fig. 10. Example 3: Response to the same reference of (i) uncon-

strained (i) magnitude and rate anti-windup and (iii) magdé, rate [25]
and curvature anti-windup closed loop system$. = [0.3665, 0.8727],
R =[0.2967,0.7854], C = [0.5236,0.8727].
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APPENDIX |
PROOF OFPROPOSITIONL.

Before proving the three items in the theorem, some
preliminary definitions and calculations are needed.

First, consider the systen® andC obtained fromP and
C as shown by Fig. 4; the state space descriptior8 ahdC
are given by matrices having the tilded version of the names
of the corresponding matrices & and C (e.g. D,,, and
D,z in place of D,,, and D,;). Note thatC is well-posed
(though it may contain an algebraic loop, is is well defined
since (I — Dy, D,z) is invertible by Assumption 1) an®
is strictly proper (sinc®yu = Dy,

— Dy, = 0).



Let P(s) and C(s) be the transfer matrices ¢ andC,
respectively, partitioned as

= [P.a(s) P.u(s)
Pls)= {ﬁyas) ﬁyu<s>]’ (e7a)
C (27b)

C(s) = [Cra(s) Cué(s)] ,
v_\_/heref’(s) has inputs[d’ «']" and outputyz’ y']’, whereas
C(s) has inputgr’ «.]" and outputy.. Define

M(S) = (I - éué(s)l‘syu(S))717 (28&)
5(s):= (1 +7s)" N —1, (28b)
A(s) :=Fo(s) — 1 =46(s)l, (28¢c)

and consider Fig. 4. Note tha reduces td/ for A(s) = 0.
Considering the connection in Fig. 4, it follows that

u=p+y:=p+Crar+ Cuzy
=u+ (57,57‘ + éug(f’ydd + f’yuu)
=pu+Crer + éuéf)ydd + éuéf)yuua
and then
u=(I—CyPyu.) (CucPyad+ Crar + p)
= M(CiPyad + Cror + p).
Expressingy: and z in terms ofu, it is easy to find that
z=P,ud+P,u
=P.4d+ P, ,MC,:P,ud + P ,MC,;r + P, My
=P.,MC,or + (P.q + P.,MC,:Pyq)d + P, My,
Ye=u—H
= MC,&r + MC,:Pyad + MC:P 1,

Letting © = Ayg, the relation between the exogenous signal

n = [’ d']" and the performance outputis given by

= (an + Qz/t(l - AQy}t)ilAQyn)n (29)
where
_ Q= Qzu} _
< [Qyn Q.
_ [f)zulyléré 1iizd + f)zul\/!éuff)yd] fizuM
- [Mcrg MCugPyd] MC,:Py, '
As a last preliminary, note that by (28b) and (28c)
a(A(w)) = [0(w)|, Vw € [0, +00), (30)

As for A(s) = (1 +7s)~N — 1)1 = §(s)1, it follows that
d(A(yw)) = |0(yw)| where|d(yw)]| is strictly increasing in
w and strictly decreasing to 0 in for each fixedw, so that
Ve, > 0,Vw, > 0,371, > 0:
_ (31)
T€(0,7,) = T(A(w)) < €4, Yw € [0,wy),

moreover, sincgd(yw)| is bounded in(0, 1), then also

5(A(w) < A, <1, Vwelo,+o0).  (32)

Proof of item 1. Well-posedness easily follows taking

into account thatf'g(s) = I + A(s) is strictly proper. As

be due to the ternt/ — AQ,,)~', since the other factors
are either parts o) (which is the closed loop between
andC, and then is well-posed and asymptotically stable by
Assumption 1) orA (which has only poles in-7—! by
(28b) and (28c)). The terrtl — AQ,,,)~!, can be seen as
the feedback between the two stable systems characterized
by A and Q,,; hence, the stability of this feedback loop
can be guaranteed by the small gain theorem after showing
that for small enoughr > 0 it holds that

Ja € (0,1) : 6(A(Jw))F(Qyu(iw)) <, Vw >0. (33)
In order to prove (33), note that
lim A(s) =1, (34a)

Tim Quu(s) = Tim (7= Coa(5)Pyu(s)) ™ Cusls)Pyuls)
— (I - DyeDy) " DDy (34b)
and then, considering thdd,,, = 0, there existsy € (0,1)
such that
lim (A(w))a(Qyu(w)) < o,

w—+00

which implies that

F(A(Jw))a(Qyu(jw)) < o, Yw > wy.

Moreover, the stability 0Q,,,(s) implies that
7(Qyu(w)) < [|Quull s » Yo < wr,

and (31) implies that

31> 0:0(w)| < @ ||QuullL s Yw € [0,w1],¥7 € (0,71),

Elwl : (35)

which together imply
7(A(w))7(Qyu(w)) < a, Yw < wy. (36)

Hence, (35) and (36) prove (33); by the small gain theorem,
(33) and the stability ofQ and A imply the stability of
(I—AQy,)~!;inturn, this proves that there are no unstable
poles in (29), and then the stability ®¥.

Proof of item 2. As for performance deterioration, note
that from (29) it is easy to see that the mismatch between
the casesA = 0 and A # 0 (namely, between the transfer
matricesW = Q.,, of W and W of W) is given by

Ay =W -—W = QI - AQyu)ilAQyn' (37)

Measuring the performance deterioration by t#g norm of
Ay, and taking into account that (33) holds for (0, 71),
it follows that, for eachv,

7(Aw (w)) < 7(Qn () (1 — @) "' (A () (Qyy (1))
< 1Qaullo (1= )7 o (A (W) [Qynll, -
Hence, exploiting (31), it is possible to choosee (0, 71)

3Note that even forDy, # 0, relation (35) still holds ifa(Dy.) is
sufficiently small. Since the rest of the proof of item 1 and fineof of
item 2 only require that (35) holds (and not that,,, = 0), these items
still hold in case of inexact cancellation @i, that is if the value oD,

for stability, first note that unstable poles in (29) can onlysed in the definition of does not coincide with the actual value7h



sufficiently small that for any- € (0, 72) it holds that

7(A(w)) < e(lQeull oo 1Quull) ' (1= 0), Vw e [0,],

and then the performance requirementdoe [0, @] is met.
Proof of item 3. Finally, Dyu = 0 implies that

lig_n f)UU(S) = Dvu =0,
lim M(s) = lim (I = Cra(s)Pyu(s) ™" =1,

lim Aw(s) = Dzu[Drg DuéDud]
+o0 :

= Dzu [Drc Duchd]v

so that under the additional condition (13) it holds that, fo

any T € (0,7),
Jws >0:0(Aw(w)) <e, Yw > ws.

By item 2, for the givenw, there exists a* € (0,7;) such
that hence, choosing € (0, ;) sufficiently small that

7(A(w)) < ellQeullog 1Qynll ) ™' (1 = @), Y € [0,wn],

which together with the previous relation implies that the

performance requirement is met for alle [0, 4+00).

APPENDIXII
PROOF OF THEOREM2.

Part a: u never exceeds the saturation bounds

From (21) and (23), let us consider the system
i R(%0)
do = satp s, (01) (38)
01 = satc(n)
where R(dp) and R(5,) are defined in (22), and) is a
signal inR™. We prove that the signdl, never exceeds the
saturation bounds, under the assumptiég(®) € [—M, M|
andé;(0) €
(38) with §p, d; € R. The general case of (38) withy, J; €

R™ is a strightforward generalization of the following proof

to the parallel composition of systems (38) with ¢; € R.
(i) By (22), 6o must stay within the intervel—M,, M ].

For instance, fos; € R anddy > My, &y = satR(g‘)%(él)
sat )(51) < 0. Foré; e R and 0o < =My, 6 =
atR(go)(él) = satRw”)(él) > 0.

(II) By (22), R((S()) S [O,Rl} andE(éO) S [—Rl,O]. It

follows thatd, respects the bounds-R;, R;].
(iii) For the bound on curvature,

%E(&o) if (51 > E(éo)
o = { b if R(8p) < &1 < R(&) (39)
%E(éo) if 61 < R(dp)
and
566{ [mln{él, dt R(do)}, max{(Sl, dtR(50)}] if 91 = R(6o)
[min{dy, & R(d0)}, max{o1, %R (6)}] if 61 :%g()))

We consider three cases.

[— R, R]. For simplicity, we consider the case of

(iiia) For 8, > R(d)
d { 420 (My = 8g)  if 6o > My —
0

if 6o < M — g
(41)

aR((So)

and 2. R(8,) belongs to the interval

[min{0, 5\/201(]\41 —d0)}, maX{O \/201 (M —60)}]

(42)
for 69 = M, — . Note that
d 0 .
2C —0y) = ———
N AT
- R(%0)
= sat 0
201 (M; — 50)83 5(50)( 1)
— _—Clﬁ((go)
QCl(Ml — 50)
9 Ae0n =5
2C (M; — bo)
= _Cl
(43)
wherebatﬁ(go)(dl) = R(d), by 61 > R(dy) of case (iiia),
andR (60) = /2C1 (M, — 60 by the hypothesi§, > M;—
- (also forég > My — ) By (41),(42) and (43), it
foIIows
d
aR(fSo) [—C1,0]. (44)

for 6, > E((so) B )
(iiib) For R(8y) < 01 < R(&), we have thaty = &, =
satc(n). Note also that

51 S [—01,01} (45)
for any givenn and for any giverny;.
(iiic) By a similar argument to (iiia), we have
d
fE((SQ) S [O,Cl] (46)

for 6; < E((S())

By the characterization of, in (39) and (40) and from
the results in (44), (45) and (46), it follows thé&j lies in
[-Cy, C].

(1)

Part b: if y.(t) = sata(y.(t)) and y£1>(t) =satr(ye ' (t))
and y{? (t) = satc (v (¢)), for all ¢, thendo(t) = y.(t),
for all ¢.

For simplicity, we consider only the case 6f,d; €
R. The generalization t@,,d; € R™ is straightforward.
Under the assumptions (i).(¢t) always respects the satu-
ration bounds and (iipp(0) = sata(y.(0)) and §,(0) =
sat (M (0)), Zaw(0) = 0. We show thaw(t) = y.(t) for
all ¢ is a solution; then, since the right hand side of (21b)-
(21c) is Lipschitz, this is the unique solution under theesta
conditions.

By (i) and (ii), 81 (t) = y¢? (¢), for all . Therefores; (¢) =
yﬁl)(t), for all t. For eachd, such thats; € [R(&), R(5)],



the equationyy, = satR(g";(él) can be written ag, = §; By

(i) and (ii), it follows thatdy(t) = yé (t), for all ¢, that is
00(t) = y.(t), for all ¢.

For completing the proof, we have to show that assumption
(i) guaranteeg " (t) € [R(y.(t)), R(y.(t))] for all t. Sup-
poseytM (t1) > R(y.(t1)), for somety, but y"(t) < Ry,
for all £. From (22), we have that

yt (t1) > /201 (M1 — ye(tr))
R? (47)
c(t1) > My — ——
Ye(t1) T
Consider now a signaj. with initial conditions, at timety,

defined byy(l)(tl) andy,(t,), that is

y M (t1) = /201 (My — y.(t1)) + &1
R? (48)
Ye ( ) ]Vfl — f + &9

where ¢; and ¢ are small quantities iR~y and R>,
respectively, and such thgﬁl)(tl) < Ry andy.(t1) < M;.

y. respects the bounds on curvature and has initial conditions
defined in (48), therefore

2
yc(tl + T) > yc(tl) + y(l)(tl)T — le (49)

where the right-hand side of (49) is obtalned by considering
a trajectory with initial conditions iryﬁl)(tl) andy.(t1) and
constant curvature atC. By replacing the right-hand side
of (48) in (49), we have

yc(tl + T) >

R2 7_2
> Ml—f-l-ez-i- <\/R%—\/§5201 +€1)T—012

that has a maximum for* = w. It follows
that
€14/ R% — \58201 5%
Ye(tr +7%) = My + - +% (50)

that is greater than/,, contradicting (i). A similar argument
can be developed for the cagél)(tl) < R(yc(t1)).

Part c: item 1.

Sinceu = satr(dp) and 5o = satco (ye 2 4 vy), item 1
follows from the fact that ifzq,(0) = 0, 04uw,0(0) =
50(0) = %c(0) = 0 and §,,,,1(0) = 51(0) — 5e(0) = 0,
whenevery,(t) = sat (y(t)), yi (t) = satg(y<" (¢)) and
y§2)(t) = satc(y£2)(t)) for all ¢. Therefore, the second
subsystem (25b), whose origin is stable by assumptions stay
at zero and its output,,,, which coincides withz — z, is
identically zero.

Part d: item 2.

As for item 2, this follows from the cascade representation
(25), forward completeness and the stabilizing assumjation
(%



