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Abstract— A new approach to the globally stable tracking
control of multiple integrators with input saturation and
bounded disturbances is proposed. The controller has a hybrid
structure. Specifically, in the inner loop, a nonlinear control law
is designed in continuous-time domain to have an arbitrarily
good disturbance rejection performance at the steady-state
while keeping the tracking errors with respect to on-line
replanned trajectory within certain positive invariant set even in
the presence of input saturation and bounded disturbances, pro-
vided that the replanned trajectory satisfies certain conditions.
In the outer loop, a trajectory replanning unit implemented in
discrete-time domain is constructed to generate a replanned
trajectory satisfying those conditions while minimizing the
converging time of the replanned trajectory to the desired
target. It is theoretically shown that the resulting closed-loop
system is globally stable and can track any feasible desired
trajectory with a guaranteed steady-state tracking accuracy.
Comparative simulation results have been obtained to verify the
superior performance of the proposed controller over various
existing ones in terms of the disturbance rejection capability
and the overall respond speed of the resulting closed-loop
system for a third-order integrator chain.

Index Terms— Integrators; Saturation; Trajectory Planning;
Nonlinear Control

I. INTRODUCTION

Any meaningful control design needs to take various

implementation constraints into account. Input saturation,

due to its universal presence in physical systems caused

by the limited actuator power, has been used as a typi-

cal example of practical constraints. At the same time, to

justify the additional cost needed to implement feedback

controllers in any industrial application, the control design

needs to focus more on the improvement of overall system

performance (e.g., faster responses and better disturbance

attenuation capability) rather than the closed-loop stability

only. It is well known that, even for systems described

by multiple integrators, controllers from traditional linear

feedback control designs could easily become destabilizing

when the control input is saturated [3]. As such, in spite of

the seemingly simple dynamics of multiple integrators, they

have been used as a benchmark example in the control of

systems with input saturations [14], [11], [19], [16], [8], [18],

[10].
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The global stabilization of a chain of integrators with input

saturation was first solved in [19] in which a state coordinate

transformation approach was proposed. Since then, a large

number of publications appeared along the same line of

thought process in dealing with input saturation [16], [8].

As pointed out in [8], [10], this class of algorithms have

the significant drawback that it can not deal with large input

disturbances. The input saturation level has to be greater than

2n−1 times the level of disturbance to ensure stability, where

n is the order of the system. Other feedback approaches

that explicitly deal with the input saturation problem exist

as well such as the anti-windup techniques [18], [9] and

the low-and-high gain approaches [14], [11]. Theses designs

focus on how to enlarge the domain of attraction by properly

designing the linear feedback control laws while meeting cer-

tain performance requirements such as disturbance rejection.

However, the converging times to the desired trajectory are

not guaranteed to be globally optimal because the design is

purely based on the scheduling of feedback gains.

Besides the above approaches which specifically deal with

systems with input saturation, the Model Predictive Control

(MPC), which has been gaining popularity in recent years

[13], [4], [12], can also be used to solve the input saturation

problem while minimizing the converging time due to the

powerfulness of MPC in dealing with hard constraints and its

optimization capability. However, due to the computational

complexity of MPC, the controller has to be implemented

with slow sampling rates. This drawback significantly limits

the usefulness of MPC when high sampling rates are required

to obtain good disturbance rejection capability or to achieve

excellent tracking performance in the presence of model

uncertainties.

As an alternative to MPC in dealing with hard constraints,

a reference governor (RG) approach has also been developed

[1], [6], [15], [7]. RG assumes that a low level stabilizing

controller has already been designed in the inner loop

with good disturbance rejection capabilities when no hard

constraints such as the input saturation occur. A reference

governor using certain constrained optimization algorithms

is then constructed at a higher level to regulate the reference

command sent to the inner stabilizing controller in order

to prevent constraint violations. However, no efforts have

been made to investigate the interaction between the inner

stabilizing controller and the outer reference governor. Thus,

RG is difficult to achieve both fast transient response speed

and good disturbance rejection at steady state simultaneously

as will be seen in the simulation section.

Having known the merits and limitations of traditional
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approaches, a novel hybrid control structure shown in Fig 1

is proposed to solve the problem in a holistic way to si-

multaneously achieve all three control objectives for systems

described by a chain of integrators with input disturbances:

1) global stability of the closed loop system; 2) fast overall

system response speed for any initial conditions; 3) good

disturbance rejection capability at steady state. The overall

design philosophy of the proposed holistic approach is out-

lined below:

• Unlike RG which assumes the use of any inner stabi-

lizing controller and completely ignores the interaction

between the design of inner stabilizing controller and

the constrained optimization carried out in the outer

loop, the proposed approach emphasizes on the seamless

integration of the low level trajectory tracking controller

and the high level task planning. As such, the proposed

approach first seeks for the trajectory tracking controller

that explicitly takes into account the input saturation

limits to achieve a guaranteed output tracking perfor-

mance for a class of feasible trajectories even in the

presence of disturbances. Specifically, as long as the

states of the tracking error dynamics with respect to

the replanned trajectory yr(t) are within a pre-specified

region Ω at certain time instance, with the replanned

trajectory satisfying certain conditions, the tracking er-

ror dynamics will stay inside Ω thereafter in spite of the

disturbances assumed in (3) and exponentially converge

to zero when the disturbances disappear, as illustrated

in Fig 2. The inner trajectory tracking controller having

this property with a guaranteed tracking performance in-

side Ω is detailed later and implemented in continuous-

time domain.

• In the outer loop, the trajectory yr(t) fed into the inner

trajectory tracking controller is replanned such that the

initial states of the tracking error dynamics with respect

to such a replanned reference trajectory are always

within Ω, and the replanned trajectory satisfies all the

conditions required by the inner trajectory tracking

controller. Specific trajectory replanning algorithms are

developed to make yr(t) converges to yd(t) as quickly

as possible while satisfying those constraints. This tra-

jectory replanning unit is implemented in discrete-time

domain using relatively low sampling rate of 1/Ts in

order to online compute the optimal reference trajectory

which accomplishes the above objectives. Low sampling

rate is acceptable here because unlike MPC, the trajec-

tory replanning unit in our case does not have to deal

with input disturbances directly.

II. PROBLEM FORMULATION

For simplicity, we consider the following linear system

with input disturbances and constraints:

ẋ1 = x2

· · ·
ẋn = S(u)+∆(t),
y = x1

(1)

Fig. 1. Closed-loop system structure using the proposed control law

Fig. 2. Illustration of the proposed trajectory replanning approach

where x = [x1, · · · , xn]
T represents the state vector which

is measurable, y is the output, u is the control input to the

system, S(u) is the input saturation function given by

S(u) =

{

u, if |u| ≤ uM

uMsign(u), if |u|> uM,
(2)

where uM is the input saturation limit, and ∆(t) represents

the bounded lumped model uncertainties including input

disturbances satisfying the following assumption:

Assumption 1: ∆(t) is bounded within a known value less

than the input saturation level, i.e.,

|∆(t)| ≤ d < uM (3)

Trajectory tracking is considered in this paper. For the

desired trajectory to be tracked perfectly in the ideal scenario,

it has to satisfy (1) and (2). Thus, it is assumed that the

desired trajectory yd(t) is n-th order differentiable and, due to

the input saturation limit and the degree of the uncertainties

considered in (3), its n-th derivative is bounded with a known

bound y
(n)
dM satisfies the following assumption:

Assumption 2:

sup
t≥0

|y
(n)
d (t)|= y

(n)
dM < uM −d (4)

The objective is to achieve global stability and the output

tracking error ey = y − yd(t) converges to zero as fast as

possible even in presence of the bounded uncertainties ∆
and the input saturation limit uM .

III. PROPOSED CONTROLLER DESIGN

A. Design of inner trajectory tracking controller

Let α0 = yr(t), where yr(t) is the replanned trajectory to be

synthesized in the next subsection. Define the virtual control
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effort and the tracking error in i-th step (i < n) as

zi = xi −αi−1(z1, · · · ,zi−1, t) (5)

αi(z1, · · · ,zi, t) = y
(i)
r (t)+

i

∑
j=1









(−1)i+ j−1 ∑
m1,··· ,m j≥0

m1+···+m j=i− j+1

(km1
1 · · ·k

m j

j )z j









(6)

where ki > 0, ∀i < n. In the last step (step n), let

zn = xn −αn−1(z1, · · · ,zn−1, t) (7)

u = ua +us, (8)

ua =
n−1

∑
j=1









(−1)n+ j−1 ∑
m1,··· ,m j≥0

m1+···+m j=n− j+1

(km1
1 · · ·k

m j

j )z j









(9)

−(
n−1

∑
j=1

k j)zn + y
(n)
r (t) (10)

us = −σ(zn). (11)

in which the function σ(zn) is defined as follows:

σ(zn)=







knzn, if |zn| ≤ ln1

sign(zn)[knln1 + k′n(|zn|− ln1)], if ln1 < |zn| ≤ ln
sign(zn)[knln1 + k′n(ln − ln1)], else

(12)

where k′n ≥ kn. When |zn|= ln, σ(zn) = knln1+k′n(ln− ln1)
∆
=

M.

With (6) and (5), the error dynamics can be obtained as:

ż1 = z2 − k1z1

· · ·
żi = zi+1 − kizi

· · ·

żn = S(ua +us)+
n−1

∑
j=1






(−1)n+ j ∑

m1,··· ,m j≥0

m1+···+m j=n− j+1

(km1
1 · · ·k

m j

j )z j







+(
n−1

∑
j=1

k j)zn − y
(n)
r (t)+∆(t)

(13)

We are interested in finding the positive invariant set of

the tracking error z. Specifically, once the tracking errors are

within this positive invariant set, they will not go out of this

set any more. And the control effort needed to confine the

error z within the positive invariant set is always within the

saturation limits so that no saturation would occur. Such a

set is given below:

Theorem 1: With the control law (8), the set Ω= {z : |zi| ≤
li} is a positive invariant set and |u(z, t)|< uM , ∀z ∈ Ω if the

following conditions are satisfied:

kili > li+1, ∀i < n

M > d

n−1

∑
j=1





 ∑
m1,··· ,m j≥0

m1+···+m j=n− j+1

(km1
1 · · ·k

m j

j )l j






+(

n−1

∑
j=1

k j)ln +M

< uM −|y
(n)
r |

(14)

Proof: First, comparing (8)-(11) with the last inequality

of (14), we can easily show that |u(z, t)|< uM , ∀z ∈ Ω. Thus,

inside Ω, the dynamics of z can be simplified into:

ż1 = z2 − k1z1

· · ·
żi = zi+1 − kizi

· · ·
żn = −σ(zn)+∆(t)

(15)

To prove that Ω is a positive invariant set is the same as to

check that the vector field ż given by (15) for any z on the

boundary of Ω (denoted as ∂Ω) always points inside or along

the tangent plane of the boundary. This is shown below.

Suppose that z = [z1, z2, · · · , zn]
T ∈ ∂Ω. Then, some

elements zi must hit their boundaries li or −li while others

are still within their limits. Let zr1
, zr2

, ..., zrR
denote the

elements that hit their upper bounds, i.e., zr j
= lr j

. Let zp1
,

zp2
, ..., zpP

denote the elements that hit their lower bounds,

i.e., zp j
=−lp j

. Let zq1
, zq2

, ..., zqQ
denote the elements that

are within their limits, i.e., −lq j
< zq j

< lq j
. Then it is easy

to see that, the vector ż always points inward if the following

conditions are satisfied: żr j
< 0, ∀ j = 1, · · · ,R and żp j

> 0,

∀ j = 1, · · · ,P. These conditions are verified as follows.

If r j = n, żr j
= żn =−M+∆(t)≤−M+d < 0.

If r j = i, i < n, żr j
= żi = zi+1 − kili ≤ li+1 − kili < 0.

If p j = n, żp j
= żn = M+∆(t)≥ M−d > 0.

If p j = i, i < n, żp j
= żi = zi+1 + kili ≥−li+1 + kili > 0.

The proof that Ω is a positive invariant set is now

complete.

Theorem 2: Inside Ω, the steady-state output tracking

error z1 is bounded above by |z1(∞)|< d/∏n
i=1 ki.

Proof: Define Vn = z2
n/2. From the last inequality of

(13), with the condition k′n > kn, the derivative of Vn is given

by

V̇n = znżn ≤ |zn|(d − kn|zn|)≤− kn
2

z2
n +d|zn|−

kn
2

z2
n

≤− kn
2
(|zn|−

d
kn
)2 + d2

2kn
− kn

2
z2

n ≤
d2

2kn
− kn

2
z2

n ≤−knVn +
d2

2kn
,

(16)

which leads to Vn(t)≤ e−kntVn(0)+
d2

2k2
n
[1−e−knt ]. Then, the

steady-state value of zn is bounded by |zn(∞)| ≤ d/kn. Noting

the first n − 1 equations of (15), the steady-state output

tracking error z1 is bounded by |z1(∞)| < d/∏n
i=1 ki, which

completes the proof.

Note that within Ω, by choosing ki large enough, the

exponential converging rate of all states zi to their steady-

state values can be arbitrarily fast and the steady-state output

tracking error given by Theorem 2 can be arbitrarily small.

The control parameter selection procedure can be as follows:

• Step 1: Choose k1, k2, · · · ,kn > 0 large enough such

that the transient response speed to disturbance is fast

enough and the steady-state output tracking performance

is met according to Theorem 2.

• Step 2: Set M = d + ε , where the margin ε can be any

positive value such that ε < uM −d − y
(n)
dM .

• Step 3: Set l1 = L, l2 = γ1k1L, ..., ln = ∏n−1
i=1 (γiki)L,

where γi can be any value between 0 and 1, i.e., 0 <
γi < 1.
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• Step 4: Solve for L:

L =
ε1

n−1

∑
j=1











∑
m1,··· ,m j≥0

m1+···+m j=n− j+1

(k
m1
1 ···k

m j
j )∏

j−1
r=1(γrkr)











+(
n−1

∑
j=1

k j)∏n−1
i=1 (γiki)

(17)

where ε1 is any value such that ε1 < uM − d − y
(n)
dM −

ε . With this L, all li are determined according to the

formula in Step 3.

• Step 5: If M/ln > kn, choose ln1 to be any positive value

less than ln, and k′n = (M− knln1)/(ln − ln1). Otherwise

reset ln to be M/kn, so that σ(zn) becomes a pure linear

function inside Ω.

It is trivial to verify that, if y
(n)
r is chosen such that

|y
(n)
r (t)| ≤ uM −d − ε − ε1, (18)

then the above design procedure guarantees that all the

inequalities in (14) are satisfied, which provides a clean

design interface between the inner-loop tracking controller

and the outer-loop trajectory replanning unit.

B. Trajectory Replanning

After designing the inner stabilizing controller in

continuous-time domain, the next step is to synthesize the

replanned trajectory yr(t) to prevent saturation and guarantee

global stability, and drive the state of the system to the

desired trajectory in a finite time.

Let tracking error zd = [z1d , · · · ,znd ]
T with respect to the

desired trajectory be recursively defined as follows:

α0 = yd

zdi = xi −αi−1(zd1, · · · ,zdi−1, t)

αi =
i

∑
j=1









(−1)i+ j−1 ∑
m1,··· ,m j≥0

m1+···+m j=i− j+1

(km1
1 · · ·k

m j

j )zd j









+ y
(i)
d

When zd(0) ∈ Ω, the initial states are close enough to their

desired values for perfect tracking of the desired trajectory

yd(t). In this case, let the control law u be (8)-(11), where

yr(t) = yd(t). Then, (18) is always true and with the design

procedure in previous subsection, Theorem 1 guarantees that

zd(t)∈Ω,∀t. So from Theorem 2, the trajectory tracking will

be achieved with a guaranteed accuracy.

When zd(0) /∈ Ω, the initial states are too far away from

their desired values and the trajectory replanning must be

done to prevent control input saturation. Specifically, let the

control law be (8)-(11), but with yr(t) = yd(t)+ ya(t) where

ya(t) is the ’trajectory modification’ satisfying the following

conditions:

(i) ya(t) is n-th order piecewise continuously differen-

tiable.

(ii) [ya(0), · · · ,y
(n−1)
a (0)]T = [x1(0) − yd(0), · · · ,xn(0) −

y
(n−1)
d (0)]T .

(iii) [ya(t), · · · ,y
(n−1)
a (t)]T = 0n×1, ∀t ≥ t f , where t f is

some nonnegative finite value.

(iv) y
(n)
a (t) ∈

[

−uM +d + ε + ε1 − y
(n)
d (t) ,

uM −d − ε − ε1 − y
(n)
d (t)

]

, ∀t ∈ [0, t f ].

The existence and specific procedure to construct the

above trajectory modification will be detailed later.

C. Main Result (Global Stabilization and Final Tracking

Accuracy)

The following theorem is a direct corollary from the results

in the previous sections.

Theorem 3: Consider the inner trajectory tracking control

law (8)-(11) with all the controller parameters chosen by

Steps 1 to 5. When the replanned reference trajectory is

generated by yr(t) = yd(t)+ ya(t) where

• ya(t) satisfies conditions (i)-(iv) if zd(0) /∈ Ω,

• ya(t) = 0, ∀t ≥ 0 if zd(0) ∈ Ω,

then, no matter where the initial states x(0) are, the

tracking error zd with respect to the desired trajectory will

always enter Ω in a finite time and will remain in Ω
thereafter. The steady-state output tracking error zd1(∞) is

bounded above by |zd1(∞)|< d/∏n
i=1 ki.

D. Specific trajectory replanning algorithms

The trajectory modification ya(t) satisfying conditions

(i),(iii), and (iv) with its initial conditions chosen according

to condition (ii) is not unique. This freedom in choosing

ya(t) can be used to meet various objectives in implemen-

tation. For example, the freedom can be used to minimize

the convergence time t f for fast convergence of the states

to the desired trajectory. In this subsection, three specific

online trajectory re-planning algorithms will be presented to

illustrate how various objectives can be accomplished.

Analytical solution:

The existence of the trajectory modification ya(t) satisfying

all the four conditions stated above can be shown via the

simple analytical solution given below. Should simplicity of

the overall controller be the objective, such an analytical

solution can be used as well since it does not need any

online optimization algorithm. Specifically, choose ε and ε1

small enough such that Ma = uM −d− ε − ε1 − y
(n)
dM > 0 and

analytically generate ya(t) as follows:

Step 1: Let T1 = |y
(n−1)
a (0)|

Ma
and y

(n)
a (t) = −Masign

(

y
(n−1)
a (0)

)

,

∀ 0 ≤ t < T1. Analytically generate ya(t) and y
(i)
a (t), i =

1, . . . ,n− 1 by integration using the initial conditions

according to condition (ii). By doing so, y
(n−1)
a (t) is

driven to zero at the end of the time period (0,T1], i.e.,

y
(n−1)
a (T1) = 0.

Step i: For 2 ≤ i ≤ n, assuming that y
(n−i+ j)
a (t), j = 1, . . . , i−

1 have been driven to zero at the end of the

time period (∑i−2
j=1 Tj,∑

i−1
j=1 Tj], the step i is to

drive y
(n−i+ j)
a (t), j = 1, . . . , i to zero at the end

of the time period (∑i−1
j=1 Tj,∑

i
j=1 Tj] as follows.

Choose Ti = 2i−1

[

|y
(n−i)
a (∑i−1

j=1 Tj)|

2
(i−2)(i−1)

2 Ma

]1/i

. Let y
(n)
a (t) =
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−MaU(t)sign(y
(n−i)
a (0)), ∀∑i−1

j=1 Tj ≤ t <∑i
j=1 Tj, where

U(t) is recursively defined as follows:

U(t) = 1, ∀∑i−1
j=1 Tj ≤ t < ∑i−1

j=1 Tj +
1

2i−1 Ti

U(t) =−1, ∀∑i−1
j=1 Tj +

1
2i−1 Ti ≤ t < ∑i−1

j=1 Tj +
2

2i−1 Ti

U(t) =U(t − (2r+1−2 f l(log2r)+1)
2i−1 Ti),

∀∑i−1
j=1 Tj +

r
2i−1 Ti ≤ t < ∑i−1

j=1 Tj +
r+1
2i−1 Ti,

(19)

in which f l(a) denotes the largest integer less than or

equal to a and r = 2, . . . ,2i−1−1, ∀i> 2. Then, compute

ya(t) to y
(n−1)
a (t) by integrating y

(n)
a (t) analytically. At

time ∑i−1
j=1 Tj +Ti, y

(n−1)
a ,y

(n−2)
a , · · · ,y

(n−i)
a = 0.

It is clear that after n steps, at time t f = ∑n
j=1 Tj, all the

derivatives of ya(t) and ya(t) itself will be zero. Thus, the

conditions (i)-(iv) are satisfied with t f = ∑n
j=1 Tj.

Numerical time-optimal solution:

The above analytical solution is obviously not the most time-

optimal one. A general time-optimal solution that satisfies

all the conditions can be obtained by solving a time-optimal

control problem online. This can be done by adding a trajec-

tory replanning unit in the outer loop which is dedicated to

solving the high-level online optimization problem. Suppose

that the computation time for solving high-level time-optimal

trajectory planning problem is Ts. Then, if zd(0) /∈ Ω, ya(t)
for all t > 0 is replanned as follows:

1. When t ∈ [0, Ts], the optimal trajectory is not available

yet as it is supposed to take the whole period of Ts to execute

any trajectory replanning algorithm in the outer loop. During

this ’idle period’, ya(t) can be arbitrarily specified as long

as the condition (i) and (iv) are satisfied. For example, let

y
(n)
a (t) = 0, ∀t ∈ [0, Ts]. Then

ya(t) = ya(0)+ ẏa(0)t + · · ·+ 1
(n−1)! y

(n−1)
a (0)tn−1

ẏa(t) = ẏa(0)+ ÿa(0)t + · · ·+ 1
(n−2)! y

(n−1)
a (0)tn−2

· · ·

y
(n−1)
a (t) = y

(n−1)
a (0)

(20)

At the same time, the high-level trajectory planner is solving

a disturbance-free time-optimal control problem by treating

y
(n)
a (t) as the control input, i.e.,

min
ya(t), t∈[Ts, t f ]

t f subject to

[

ya(Ts), · · · ,y
(n−1)
a (Ts)

]T

= [yas1, · · · ,yasn]
T

[

ya(t f ), · · · ,y
(n−1)
a (t f )

]T

= 0n×1

y
(n)
a ∈

[

−uM +d + ε + ε1 − y
(n)
d , uM −d − ε − ε1 − y

(n)
d

]

(21)

where yasi is obtained by substituting t = Ts into each

equation of (20) and computing each ya(Ts).
2. When t ∈ [Ts, t f ], in which t f is the optimal end

time obtained above, the computed time-optimal ya(t) is

fed into the low-level tracking controller as the trajectory

modification.

3. When y > t f , ya(t) = 0.

Note that although this method is implemented in discrete-

time domain, it only needs to be done for one sampling

interval [0, Ts], because the trajectory modification ya(t) for

t ∈ [Ts, ∞) can be completely determined by solving the

above time optimal trajectory planning problem only once.

It is clearly seen that, t f here is finite because it has to be less

than the converging time of the analytical solution presented

above which is also finite. Thus, ya(t) generated from the

above algorithm strictly satisfy conditions (i)-(iv).

Problem (21) is a disturbance-free time-optimal control

problem with input constraint that has been well studied in

the past few decades. By applying the maximum principle

[17], it can be easily shown that the time-optimal solution

y
(n)
a (t) for problem (21) is a bang-bang control law that has at

most n−1 switchings between its positive upper limit uM −

d−ε−ε1−y
(n)
d (t) and its negative lower limit −uM +d+ε+

ε1 − y
(n)
d (t) [5]. Thus, a simple numerical algorithm can be

worked out for (21) to calculate the switching time series T1,

T2, ..., Tn by first expressing y
(m)
a (t), m= 0, · · · ,n−1 in terms

of T1, T2, ..., Tn and then solving a set of n× n equations

corresponding to the end condition (condition (iii)). After

obtaining the switching time series, y
(m)
a (t), m = 0, · · · ,n−1

and t < t f can be analytically expressed as a function of t.

The detail is omitted here due to the page limit.

Remark 1: The above solution algorithm enforces the

constraint (iii) all the time to ensure the control input

saturation will never happen, which may not be necessary

at the beginning of the run. Intuitively, at the beginning of

the run, if the initial states are too far away from the desired

trajectory, the most time-optimal control strategy would be to

use the maximum available control effort to drive the system

state close enough to the desired trajectory first until it has to

take action to decelerate to stop. For the numerical optimal

solution given above, since a portion of the allowable control

effort (i.e., d+ε +ε1) is reserved for disturbance rejection at

the steady-state, the overall control input may not be close to

the maximum allowable level when the actual magnitude of

input disturbances is much smaller than the assumed bound

of d. In this sense, the solution presented above may still be

a bit too cautious overall.

Realizing that the proposed control design always works

as long as the states of the tracking error dynamics are within

Ω at some finite time, one can by-pass this conservativeness

relatively easily by not enforcing the constraint (iii) at the

beginning. Namely, at the beginning, directly use the desired

trajectory yd(t) instead of the replanned trajectory yr(t) to

calculate the control input u(z, t) given by (8)-(11). If the

resulting u(z, t) leads to a saturated control input, then simply

use this saturated control input until an unsaturated control

input is result. At that time, the proposed on-line trajectory

replanning will be used instead.

IV. SIMULATION

Consider the following third-order system

ẋ1 = x2, ẋ2 = x3, ẋ3 = S(u)+∆, y = x1. (22)
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The saturation level is assumed to be uM = 8. The dis-

turbance term is assumed to be bounded by d = 4. The

desired trajectory is taken to be yd(t) =
1

4π3 sin(2πt). Then,

max(y
(3)
d (t)) = 2, which satisfies assumption 2. The initial

states are taken to be x(0) = [0.5 0.2 0.5]T . The disturbance

is ∆ = 2.5+1.5sin(2π ×5t).

In the following methods will be compared:

• Coordinate transformation approach by Teel (C1) [19];

• Low and high gain design (C2) [14], [11];

• Model Predictive Control (C3) [2];

• The approach proposed in this paper with closed-loop

poles at −25 for the inner-loop controller and with the

numerical trajectory replanning in Section III-D (C4);

• The approach proposed in this paper with the modifica-

tion in Remark 1 to further speed up the overall system

response (C5).

• Reference Governor I with closed-loop poles at −25

(C6): RG approach in [7].

• Reference Governor II with closed-loop poles at −10

(C7);

The sampling rates of C3, C6, C7 are taken to be 0.02sec

while the sampling rates of C4 and C5 (proposed approaches)

are taken to be 0.08sec to account for potentially heavier

computational burden than MPC and RG. The details of the

calculations of other controller parameters are omitted due

to page limit.

A. Simulation results and discussion

The output tracking errors and inputs for all controllers

are plotted in Fig 3. As shown, due to the inability of C1

to handle large disturbances, the coordinate transformation

approach leads to an unstable closed-loop system. The

proposed holistic control strategy (C4, C5) achieve fastest

converging rate as well as the smallest steady-state tracking

error. Between them, C5 converges slightly faster than C4

because C5 uses maximum input voltage (-8V) in the first

few sampling periods after the idle period. The converging

rate of MPC (C3) is almost at the same level as C4 and C5,

but the steady-state tracking error is very large due to the

poor ability of MPC to handle disturbances. For the low and

high gain control law C2, the steady-state tracking error is

acceptable but the response oscillates and converges slowly.

For RG approaches, C7 gives good converging speed but

poor steady-state tracking accuracy (at the level of 10−3). C6

improves the feedback gain of the inner-loop controller. The

steady-state tracking accuracy improves but the converging

speed becomes much slower. The reason is that the higher

gains used in the inner stabilizing controller make the control

input during the inter-sampling periods more prone to input

saturation effect, which is completely ignored in the outer-

loop RG design. This clearly shows that the design of inner

stabilizing controller does have significant effect on the

achievable performance of the outer loop RG design and the

designs of both loops should not be arbitrarily separated.
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Fig. 3. Output tracking errors and inputs for C1-C7 with disturbance
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