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Abstract— Oscillatory gene expression is closely connected
to periodic physiological functions. In this paper, we provide
a systematic method to study the oscillation profiles of gene
expression in large-scale cyclic genetic regulatory networks
based on multivariable harmonic balance. In particular, we
here turn our attention to time delay in transcription and
translation process, and analytically derive the relation between
biological parameters and the frequency, phase and amplitude
of the oscillations. Then, the roles of the time delay are revealed.

I. INTRODUCTION

Oscillatory chemical reactions in genetic regulatory net-
works are closely related to rhythmic bodily functions such
as circadian rhythms [1]. In particular, quantitative properties
of the rhythms are mostly connected to the period and the
phase of the oscillations of protein levels [1], which are
robustly regulated by feedback mechanisms in living cells.

Recent studies showed that the period of oscillatory gene
expression ranges widely from minutes to hours depending
on the reactions, and the phase difference between protein
species also plays an important role in producing circadian
clocks (see [1] and references therein). However, the precise
mechanisms regulating such oscillation patterns are still to
be resolved. Hence, this paper aims to develop a theoretic
approach for quantifying the oscillation profiles of gene
expression.

The cyclic network motif, where each gene activates or
represses another gene expression in a cyclic way as shown
in Fig. 1, is one of the fundamental structures that can
exhibit periodic oscillations, and it is embedded in large-scale
gene regulatory networks. During the last few decades, many
works have been devoted to study the dynamical properties
of the cyclic gene regulatory network [2]–[5].

In particular, Repressilator [4], the engineered genetic
oscillator, triggered the several works [5]–[7], which were
concerned with oscillation profile analysis with engineering
tools. In [5], frequency of oscillatory gene expression was
numerically examined. The result was consistent with the
qualitative insight obtained from [8], where a harmonic
balance technique was applied to the Goodwin oscillator
[2]. On the other hand, the phase difference between protein
species was studied in [6] by phase space analysis. Recently,
the authors [9] presented a systematic approach for studying
frequency, phase and amplitude of the oscillations using
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the idea of the multivariable harmonic balance [10]. Then,
relations of biological parameters and the oscillation profiles
were analytically obtained.

In these previous works, however, the inherent time delays
in transcription, translation and translocation process in gene
regulatory networks have been neglected. Such time delays
are essential especially for eukaryotic cells, because mRNA
and protein productions occur at different locations in a cell,
and the transportation of these substances results in sizable
time delays [11]. Thus, the time delay has to be explicitly
considered to gain more general and reliable biological
insight into the regulation mechanisms of the oscillations.

In this paper, we consider the cyclic gene regulatory
networks with time delay. Our goal is to reveal relations
of biochemical parameters and the profiles of oscillations in
an analytic way. Specifically, frequency, phase and amplitude
of oscillations are studied with the harmonic balance method
[12], which is one of classical frequency domain techniques
to examine nonlinear oscillatory behaviors with a certain
approximation of the waveform of the system’s output. Since
the non-delay case was extensively studied in the authors’
previous work [9], we here turn our attention to time delay,
and extend the previous analysis scheme. Then, the potential
roles of the time delay are discussed based on our analytic
results.

This paper is organized as follows. Section II provides
the dynamical model of the cyclic gene regulatory networks.
In Section III, we introduce theoretical framework of the
multivariable harmonic balance. Then, the main results, i.e.,
analytic estimates of oscillation profiles of protein levels,
are presented in Section IV. Section V argues effects of
time delay, and it is confirmed by illustrative numerical
simulations. Finally, Section VI concludes this paper.

II. MODEL AND EXISTENCE OF OSCILLATIONS

A. Dynamical Model of cyclic gene regulatory networks with
time delay

The gene regulatory networks, where each protein acti-
vates or represses another transcription in a cyclic way as
illustrated in Fig. 1, are called cyclic gene regulatory net-
works. The dynamics of mRNA and protein concentrations
in the cyclic gene regulatory networks consisting of N genes
is modeled by the following delay differential equations [11]:

ṙi(t) = −airi(t) + βifi(pi−1(t − τpi−1)),
ṗi(t) = ciri(t − τri) − bipi(t),

(1)

for i = 1, 2, · · · , N , where ri ∈ R+(:= {x ∈ R | x ≥ 0})
and pi ∈ R+ denote the concentrations of the i-th mRNA
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Fig. 1. Gene regulatory networks with negative cyclic feedback. The
symbols → and ⊣ represent activation and repression of transcription,
respectively. (Left) activator-repressor motif, (Center) successive repressor
motif, or Repressilator motif [4], (Right) generic negative cyclic motif
considered in this paper.

and its corresponding protein synthesized by the i-th gene,
respectively. Let the subscript 0 be replaced by N throughout
this paper for the sake of notational simplification. Positive
constants τri and τpi denote time delay in transcription and
translation process, respectively, and the kinetic constants
ai, bi, ci and βi represent the followings: ai and bi denote the
degradation rates of the i-th mRNA and protein, respectively;
ci and βi denote the translation and transcription rates,
respectively. The nonlinear function fi(·) : R+ → R+

stands for the effect of either activation or repression of the
transcription, and it is a single-valued monotone function
satisfying fi(0) = 1 and fi(∞) = 0 for repression and
fi(0) = 0 and fi(∞) = 1 for activation.

Suppose a1 = a2 = · · · = aN (=: a) and b1 = b2 =
· · · = bN (=: b) in (1). Then, the overall dynamics of gene
regulatory network systems defined by (1) can be formulated
by a transfer matrix H(s) and a static vector nonlinearity
function f as shown in Fig. 2 (Left), where

H(s) := diag(h1(s), h2(s), · · · , hN (s)), (2)

f := [R2
1f1(·), R2

2f2(·), · · · , R2
NfN (·)]T (3)

with

hi(s) :=
e−s(τri

+τpi
)

(Tas + 1)(Tbs + 1)
, Ta :=

1
a
, Tb :=

1
b
, (4)

Ri :=
√

ciβi√
ab

. (i = 1, 2, · · · , N). (5)

B. Existence of oscillations

It is known that dynamical behavior of the system (1) is
characterized by

δ :=
(

df1

dp

)
·
(

df2

dp

)
· · ·

(
dfN

dp

)
. (6)

Specifically, the protein concentrations asymptotically con-
verge to one of equilibria when δ > 0, while they exhibit
oscillatory behaviors as well as convergence when δ < 0
[13]. Therefore, the following assumption is imposed to
study the oscillation profiles in this paper.

Assumption 1. For given fi(·) (i = 1, 2, · · · , N ), δ < 0.

This assumption implies that a given cyclic gene regula-
tory network has an odd number of repressive interactions
(dfi/dp < 0) between genes.

+

+
H(s)0

f

p(t)^
+

+
H(s)0

K

Fig. 2. (Left) block diagram of negative cyclic gene regulatory networks,
(Right) linear system H•(s) in (14). The static nonlinearity f is replaced
with the corresponding describing function.

TABLE I
PHYSICAL MEANINGS OF THE CONSTANTS

N The number of genes in gene regulatory network
Q Discrepancy of mRNA and protein degradation

time
Rℓ Ratio of degradation and production rates, which

accounts for equilibrium concentrations
τ̂ Normalized average time delay
ν Hill coefficient, which quantifies the degree of

cooperative binding

Existence conditions of oscillations were analytically ob-
tained in Takada et al. [14] based on the analysis scheme
shown in [15]. In particular, it was shown that five dimen-
sionless quantities are essentially contributed to determine
the existence of oscillations, namely (N,Q,Rℓ, τ̂ , ν) (ℓ =
1, 2, · · · , N), where

Q :=
√

TaTb

(Ta + Tb)/2
, τ̂ :=

τ√
TaTb

, τ :=
∑N

i=1(τri + τpi)
N

, (7)

and ν is the Hill coefficient (see [14] for details), which
determines the degree of the nonlinearity fi(·). Physical
meanings of these constants are summarized in Table I. Note
that 0 < Q ≤ 1 holds from the definition, and Q → 1 as Ta

and Tb tends to a same value.

Remark 1. In [14], τ̃ := τ
(Ta+Tb)/2 , instead of τ̂ , was mainly

used to interpret their result. However, we hereafter use τ̂ ,
which can be easily obtained by Q and τ̃ as τ̂ = τ̃ /Q.

In the following, we assume the existence of oscillations,
and consider the relation of the above constants and the
oscillation profiles of protein levels in large-scale cyclic
gene regulatory networks. In particular, we mainly turn our
attention to the effect of the time delay, since the non-delay
case was already studied in the authors’ previous work [9].
The problem can be summarized as follows.

Problem. Consider the cyclic gene regulatory networks with
time delay modeled by (1). Predict the oscillation profiles,
i.e., the frequency, phase and amplitude, of the oscillatory
protein concentrations pi(t) (i = 1, 2, · · · , N) in an analytic
way. Then, find biological insight into the relation between
the biochemical parameters and the oscillation profiles.
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III. FRAMEWORK OF OSCILLATION PROFILE ANALYSIS

In this section, we provide a framework of oscillation pro-
file analysis. We first derive quasi-linear systems associated
with (1) by approximating the oscillatory waveform of pro-
tein levels pi(t) and the nonlinearity fi(·) (i = 1, 2, · · · , N)
of the system. Then, we show the theoretical foundation of
the oscillation profile analysis based on the approximation.

Let the waveform of pi(t) be approximated by

pi(t) ≃ xi + yi sin(ϖt + φi) (i = 1, 2, · · · , N), (8)

where xi > 0 and yi > 0 denote the bias and the amplitude
of the first order harmonic components of the i-th protein
pi(t), respectively, and ϖ and φi are the frequency and
the relative phase between proteins, respectively. Then, the
nonlinear function fi(pi−1(t)) can be approximated by its
describing functions [12]:

ηi(xi−1, yi−1) :=
R2

i

2πxi−1

Z π

−π

fi (xi−1+yi−1 sin(t)) dt. (9)

ξi(xi−1, yi−1) :=
R2

i

πyi−1

Z π

−π

fi (xi−1+yi−1 sin(t)) sin(t)dt (10)

The describing functions ηi(xi−1, yi−1) and ξi(xi−1, yi−1)
represent the gains of R2

i fi(·) for the bias and harmonic com-
ponents, respectively, when the input is the biased sinusoidal
xi−1+yi−1 sin(ϖt). Note that the describing functions are
independent of ϖ when fi(·) is a single-valued function.

Consequently, the closed loop equations that x and y are
expected to satisfy for the quasi-linear system are obtained
as

(I − H(0)K0(x, |y|))x = 0,
(I − H(jϖ)K1(x, |y|))y = 0,

(11)

where K0(x, |y|) := cyc(η1, η2, · · · , ηN ) and K1(x, |y|):=
cyc(ξ1, ξ2, · · · , ξN ) with

cyc(z1, z2, z3, · · · , zN ) :=



0 0 0 · · · z1

z2 0 0
. . . 0

0 z3 0
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0 zN 0

 .

The symbols x and y are defined as x := [x1, x2, · · · , xN ]T

∈ RN
+ and y := [y1e

jφ̂1 , y2e
jφ̂2 , · · · , yNejφ̂N ]T ∈ CN with

φ̂i := φi − ϖτpi , (12)

and |y| stands for elementwise absolute values, i.e., |y| =
[y1, y2, · · · , yN ]T ∈ RN

+ . It should be noted that p̂ :=
[p̂1(t), p̂2(t), · · · p̂N (t)]T in Fig. 2 (Left) can be written as

p̂i(t) = pi(t − τpi) ≃ xi + yi sin(ϖt + φ̂i) (13)

for i = 1, 2, · · · , N . Therefore, the oscillation profile
analysis reduces to the problem of finding 3N variables
(ϖ,x1, x2, · · · , xN , y1, y2, · · · , yN , φ2, φ3, · · · , φN ) satis-
fying (11), which is equivalent to finding a solution (ϖ, x, y)
of (11). Note that φ1 can be taken arbitrarily without loss of

generality. We designate the first and the second equations in
(11) as bias and harmonic balance equations, respectively.

Let x∗ and y∗ denote the constant vectors that satisfy
the bias and the harmonic balance equations simultaneously.
Define the linear systems H0(s) and H1(s) as

H•(s) := (I − H(s)K•)−1 (• = 0, 1), (14)

where K• is the constant matrices defined by K• :=
K•(x∗, |y∗|) (• = 0, 1). The systems H•(s) (• = 0, 1) are
obtained by replacing the nonlinearity fi(·) with the constant
gain computed from the describing functions. (see Fig. 2
(Right)) Thus, the associated linear system H•(s) contains
some information on the oscillations of the original nonlinear
system. Following the idea in Iwasaki [10], we suppose the
predicted oscillation (ϖ, x∗,y∗) is orbitally stable if both
H0(s) and H1(s) are marginally stable with the poles of
s = 0 and s = ±jϖ on the imaginary axis, and the rest
in the open left half plane, respectively. Consequently, the
problem of oscillation profile analysis addressed in Section
II-B can be summed up in the following proposition.

Proposition 1. Consider the gene regulatory networks with
time delay modeled by (1). Suppose there exist (ϖ, x, y)
satisfying (11). Then, the oscillatory protein concentrations
pi(t) are expected at frequency ϖ, with phase φi, bias xi

and amplitude yi, i.e.

pi(t) ≃ xi + yi sin(ϖt + φi) (15)

for i = 1, 2, · · · , N , where ϖ,φi, xi and yi satisfy both of
the following conditions: (i) The equation (11) holds, and
(ii) H•(s) (• = 0, 1) are marginally stable.

Major differences from the non-delay case [9] are that the
diagonal entries of H(s) is no longer homogeneous due to
the heterogeneous time delays, and y depends not only on
φi but also on ϖ. Thus, the analysis is not as straightforward
as the non-delay case [9].

The existence of the solution (ϖ, x, y) of (11) is probable
when the waveform of the oscillations is sufficiently similar
to the biased sinusoidal of (15). Hence, we hereafter assume
the existence of a solution in the bias and the harmonic
balance equations, and concentrate on the oscillation profile
analysis.

IV. MAIN RESULT

In this section, we analytically derive profiles of the
oscillatory protein concentrations in terms of the biological
parameters by solving the bias and the harmonic balance
equations. It is assumed in this section that the system (1)
has an oscillatory solution, and the bias and the harmonic
balance equations have the solution (ϖ, x, y) that satisfies
both (i) and (ii) in Proposition 1.

A. Preliminaries

We here show that the solution of the bias and harmonic
balance equations is associated with eigenvalues and eigen-
vectors of certain matrices, which becomes the foundation
of our analysis.
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Fig. 3. Graphical interpretation of the harmonic balance equation. The red
points satisfy the bias and the harmonic balance equations, but does not
satisfy the marginal stability condition.

Let N × N transfer matrix U(s) be defined by

U(s) := diag(e−s(τ−τ1), e−s(τ−τ2), · · · , e−s(τ−τN )), (16)

where τi := τri + τpi (i = 1, 2, · · · , N). Then, H(s)U(s) =
h(s)e−sτI holds, where

h(s) :=
1

(Tas + 1)(Tbs + 1)
, ϕ(s) :=

1
h(s)

. (17)

Dividing (11) by h(s)e−sτ yields another expression of the
bias and the harmonic balance equations:

(ϕ(0)I −K0(x, |y|))x = 0,
(ϕ(jϖ)ejϖτI − U−1(jϖ)K1(x, |y|))y=0.

(18)

In (18), ϕ(0) and ϕ(jϖ)ejϖτ correspond to eigenvalues
of the matrix K0(= K0(x∗, |y∗|)) and U−1(jϖ)K1(=
U−1(jϖ)K1(x∗, |y∗|)), respectively, while x∗ and y∗ be-
come the corresponding eigenvectors. Hence, the solution of
the bias and the harmonic balance equations is associated
with the eigenvalues and eigenvectors of the matrices K0

and U−1(jϖ)K1.
In what follows, we predict the oscillation profiles using

the property of the equations shown above.

B. Estimation of frequency

It follows from (18) that the expected frequency ϖ satisfies
the eigenvalue equation U−1(jϖ)K1y

∗ = ϕ(jϖ)ejϖτy∗.
Our goal in this section is to obtain ϖ that satisfies the
equation.

Although ϖ appears in both sides of the eigenvalue
equation, the following lemma shows that the eigenvalues of
U−1(jϖ)K1 do not depend on ϖ (see [16] for the proof).

Lemma 1. For any given (ϖ, x, y), the eigenvalues λi (i =
1, 2, · · · , N) of the matrix U−1(jϖ)K1(x, |y|) are given by

λi :=

∣∣∣∣∣
N∏

k=1

ξk(xk−1, yk−1)

∣∣∣∣∣
1
N

ej 2i−1
N π. (19)

We see that the eigenvalues of U−1(jϖ)K1 coincide with
the eigenvalues of K1. Therefore, the solution of (18) can
be obtained by solving ϕ(jϖ)ejϖτ = λi (i = 1, 2, · · · , N).

This observation leads to the following graphical interpre-
tation. The solution of (ϖ, x∗,y∗) of (18) is given by the
intersection of the vector locus C := {ϕ(jω)ejωτ | ω ∈ R}
and λi. In particular, Lemma 1 implies that the eigenvalues
λi (i = 1, 2, · · · , N) are located on a circle, and the angular
position of λi depends on neither x nor y. Thus, all possible
solutions of (18) are given by the intersections of the N

straight lines {rej
(2k−1)π

N | r ≥ 0, k = 1, 2, · · · , N} and the
vector locus C (see Fig. 3).

Note that orbitally unstable solutions are ruled out by
the marginal stability condition in Proposition 1 among
the intersections. The following lemma relates the marginal
stability of H•(s) and the above graphical interpretation (see
[16] for the proof).

Lemma 2. The system H•(s) (• = 0, 1) defined by (14)
has at least one pole on the imaginary axis and the rest in the
open left half plane, if and only if at least one eigenvalue
of K• lies on the curve C = {ϕ(jω)ejωτ | ω ∈ R} and
the rest lies inside the open set Ωc

+, where Ωc
+ := {γ ∈

C | ϕ(s)esτ ̸= γ for ∀ s ∈ C+}.

This lemma provides a graphical criterion for marginal stabil-
ity of H•(s). In particular, the gain and phase monotonicity
of ϕ(s)esτ allows us to show that the frequency ϖ that
satisfies both of the conditions (i) and (ii) in Proposition
1 is uniquely determined as follows.

Proposition 2. The frequency ϖ that satisfies both (i) and
(ii) in Proposition 1 is unique. In particular, ϖ is given by
the minimum positive solution of ϕ(jϖ)ejϖτ = λ1.

The proof can be found in [16]. This proposition means that
ϖ is given by the intersection at π/N that is the closest to the
origin as illustrated in Fig. 3. Thus, geometric consideration
allows us to analytically derive the frequency of oscillations
in terms of the biological parameters (see [16] for the proof).

Theorem 1. Consider the cyclic gene regulatory network
with time delay modeled by (1). Then, the frequency ϖ of
the oscillatory protein concentrations is expected to be the
minimum positive solution of

ϖ=

−
cot( π

N − ϖτ)
Q

+

√
cot2( π

N − ϖτ)
Q2

+ 1

 1
TG

, (20)

where TG :=
√

TaTb.

The frequency of oscillations is analytically predicted in this
theorem. Thus, we can easily interpret the relation between
the parameters and the frequency, since (20) is written only
in terms of the given biochemical constants, namely N,Q, τ
and TG. Biological meanings of the above result will be seen
in Section V-A, .

Remark 2. The minimum positive solution of (20) can be
efficiently computed by the bisection search for ϖ ∈ [0, π

Nτ ],
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because it is easily seen that the right-hand side of (20)
monotonically decreases with respect to ϖ ∈ [0, π

Nτ ], and
the minimum positive solution of (20) exists in this region.

C. Estimation of phase

The phase of the oscillations is given as the corresponding
eigenvector to the eigenvalue ϕ(jϖ)ejϖτ of U−1(jϖ)K1.
Thus, the goal of this section is to compute the eigenvector
y in (18), and predict the phase of the oscillations. It should
be noted that U(jϖ) becomes a complex valued constant
matrix once ϖ is determined by (20). Thus, we hereafter
write U(jϖ) as U .

Let D := diag(d1, d2, · · · , dN ) ∈ CN×N be defined by

di :=



(−1)i−1

∏i
k=1 ξ∗kejϖ(τ−τk)∣∣∣∏N

k=1 ξ∗k

∣∣∣ i−1
N

(if N is odd)

∏i
k=1 ξ∗kejϖ(τ−τk)∣∣∣∏N

k=1 ξ∗k

∣∣∣ i−1
N

e−j i
N π (if N is even)

(21)

with ξ∗i := ξi(x∗
i−1, y

∗
i−1). It can be seen that D−1(U−1K)D

becomes the circulant matrix V , where

V :=

{
|
∏N

k=1 ξ∗k|
1
N cyc(−1,−1, · · · ,−1) (if N is odd)

|
∏N

k=1 ξ∗k|
1
N cyc(e

jπ
N , e

jπ
N , · · · , e

jπ
N ) (if N is even).

Then, it follows that the eigenvector v of V associ-
ated with the eigenvalue ϕ(jϖ)ejϖτ is given as v :=
[v1, v2, · · · , vN ]T with

vi :=

{
(−1)ie−j i−1

N π (if N is odd)
1 (if N is even).

(22)

Therefore, y is obtained by y = Dv. Finally, computing
φi = φ̂i + ϖτpi (i = 1, 2, · · · , N) yields the following
analytic estimate of the phase.

Theorem 2. Consider the cyclic gene regulatory network
with time delay modeled by (1). The phase shift (φi+1 −φi)
between the (i + 1)-th and the i-th protein is expected as

φi+1 − φi =
(

Z − 1
N

)
π − ϖ∆τi. (23)

for i = 1, 2, · · · , N , where

∆τi := (τri+1 + τpi) − τ, (24)

Z :=

{
1 if fi+1(·) is a decreasing function
0 if fi+1(·) is an increasing function

, (25)

and ϖ is given by Theorem 1.

This theorem predicts the phase difference between protein
species. A difference from the non-delay case [9] is that
the phase depends on the frequency ϖ, and thus it also
depends on Q,TG and τ . It should be noted that ∆τi is
the displacement of the time delay in the i-th gene from the
average delay τ .

The bias x and the amplitude |y| of the oscillations
can also be derived from the bias and harmonic balanced
equations. The details are presented in [16].

V. INTERPRETATION OF THE MAIN RESULT

In this section, we provide some insights on how the
time delay in transcription and translation process affects
the oscillation profiles based on the theorems derived in
the previous section. Illustrative numerical simulations are
conducted to confirm the insights.

A. Effects of the time delay

We first consider the relation between the frequency and
the time delay. Let ϖ̂ denote a normalized frequency ϖ̂ :=
ϖTG with TG in Theorem 1. Then, (20) can be written as

ϖ̂=

−
cot( π

N − ϖ̂τ̂)
Q

+

√
cot2( π

N − ϖ̂τ̂)
Q2

+ 1

 , (26)

where τ̂ is the dimensionless parameter defined by (7). This
implies that time can be normalized by TG = 1 without
loss of generality, and the frequency of the oscillations
is essentially determined by (26). Thus, the dimensionless
quantity ϖ̂ essentially captures the quantitative relation of
the frequency and the biological parameters.

We see from (26) that the frequency depends only on τ̂ ,
N and Q (see Table I for biological meanings). In particular,
(A) the average time delay over all genes, τ̂ , is a domi-

nant factor to determine the frequency rather than the
individual time delay of each gene.

Moreover, we see that the frequency ϖ becomes large as
(i) the average time delay of transcription and translation
process (τ ) decreases, and (ii) the number of genes (N )
decreases, and (iii) the mRNA and protein degradation time
gets close to each other. In addition, we see that the frequency
is bounded from above by ϖ ≤ 1/TG, since 0 < ϖ̂ ≤ 1
holds, and ϖ = 1/TG is achieved when N = 2 and τ̂ = 0.

Next, we focus on the phase of the oscillations. The effect
of the time delay appears in the last term of (23), ϖ∆τi.
Note that (23) exactly coincides with Theorem 2 in [9] when
∆τi = 0 (i = 1, 2, · · · , N).

Let ∆τ̂i be defined by ∆τ̂i := (τ̂ri+1 + τ̂pi)− τ̂ (i =
1, 2, · · · , N) with τ̂ri :=τri/TG and τ̂ri :=τri/TG. It follows
that φi+1−φi =(Z−1/N)π−ϖ̂∆τ̂i. This means that
(B) the difference of the individual time delay from the

average τ̂ affects the phase of oscillations.

Therefore, we see from the above observations (A) and
(B) that the time delay allows the gene regulatory network
to tune the phase of the oscillations without changing the
frequency, which would be impossible when there is no time
delay. In other words, the frequency and the phase can be
somewhat independently regulated by the time delay. This
will be confirmed in the following numerical examples.

B. Numerical examples

Consider the gene regulatory network, where N = 6 genes
are involved as depicted in Fig. 4 (Left). Suppose the rate
constants are given by a1 = a2 = · · · = a6 = 3.0, b1 = b2 =
· · · = b6 = 1.0, c1 = c3 = c4 = c6 = 3.2, c2 = 2.8, c5 =
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Fig. 4. Numerical simulation result in Section V-B. (Left) schematic
diagram of the cyclic gene regulatory network with N = 6. (Right)
oscillatory protein concentrations in Example 2.

3.7, β1 = β4 = β5 = 2.1, β2 = β3 = 2.9, β6 = 3.1. The
nonlinear functions are set as Hill functions, i.e., f1(·) =
f4(·) = f6(·) = FR(·) and f2(·) = f3(·) = f5(·) = FA(·),
where FR(p) := 1/(1+ pν) and FA(p) := pν/(1+ pν) with
the Hill coefficient ν = 2.8. Then, the constants Q and TG

can be obtained as Q = 0.866 and TG = 0.577.
We compare the two networks both of which have the

same parameters shown above, but different time delays. We
then confirm the insight obtained in Section V-A.
Example 1. Let τr = [3.5, 3.5, 3.5, 3.5, 3.5, 3.5]T and τp =
[1.5, 1.5, 1.5, 1.5, 1.5, 1.5]T , where the i-th entries of τr and
τp correspond to τri and τpi , respectively. It is obvious that

τ = 5.0, ∆τ = [0, 0, 0, 0, 0, 0]T , (27)

where the i-th entry of ∆τ represents ∆τi. Using Theorem
1 and 2, we obtain the estimation of the oscillation profiles
as follows.

Estimated frequency ϖ [rad/s] 8.27 × 10−2

Actual frequency (simulation)[rad/s] 8.87 × 10−2

Protein p2 p3 p4 p5 p6

Estimated [deg] 330.0 120.0 90.0 240.0 30.0
Actual [deg] 331.2 117.3 88.4 239.7 30.1

Note that the phase of p1(t) is set to zero, i.e., φ1 = 0.
We see that the estimated values approximate the actual one
obtained by a numerical simulation of (1). More detailed
description of this example can be found in [16].
Example 2. Let the time delays be defined as τr =
[0.5, 8.0, 6.0, 2.0, 0.5, 0.5]T and τp = [2.0, 4.0, 3.0, 1.0,
1.0, 1.5]T . Then,

τ = 5.0, ∆τ = [5.0, 5.0, 0.0,−3.5,−3.5,−3.0]T . (28)

Note that the average time delay τ is equal to that in Example
1, but ∆τ is different. Therefore, it is expected from the
observations (A) and (B) in the previous section that the
phase pattern of the oscillations is different from Example
1, while the frequency is almost the same. This statement
can be verified from the table shown below.

Estimated frequency ϖ [rad/s] 8.27 ×10−2

Actual frequency (simulation)[rad/s] 8.46 ×10−2

Protein p2 p3 p4 p5 p6

Estimated [deg] 306.3 72.6 42.6 209.2 15.8
Actual [deg] 318.1 86.0 53.5 216.9 20.6

The numerical simulation result of the protein time course
is shown in Fig. 4 (Right).

The accuracy of the estimation depends on how much the
actual oscillations satisfy the assumption (15). Some remarks
on the estimation error is presented in [16].

VI. CONCLUSION

In this paper, we have considered oscillation profiles of
protein levels in cyclic gene regulatory networks with time
delay. Based on the harmonic balance method, frequency and
phase of oscillations have been analytically obtained in terms
of the biological parameters. Then, we have interpreted the
analytic results and showed that the time delay plays a key
role to tune the phase of oscillations without changing the
frequency. These insights were confirmed with illustrative
numerical simulations.
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