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Abstract 

This thesis describes the process of testing and implementing ultrasonic transducers for 

ball position feedback on a ball-and-beam apparatus.  Also included are specifications for 

equipment to allow feedback and command signals to be wireless, not hardwired to the control 

computer.  The author presents various ball-and-beam configurations as well as details about the 

specific configuration used for this work.  These details include choices in sensors, materials, 

hardware, construction, and controller.  After the apparatus has been described, the author 

provides information to support claims about system performance.  The conclusions presented 

specify the necessary hardware to make the system wireless and indicate that acoustic sensors 

can complete a successful ball-on-beam balancing system. 
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CHAPTER 1 - Introduction 

The ball-and-beam setup has been used regularly in controls education to study the 

problem of underactuated mechanical systems.  The purpose of this thesis is to explore the use of 

ultrasonic sensors to determine the position of the ball and specify possible equipment to give the 

system wireless capabilities.  This chapter will present different options for developing a ball-

and-beam apparatus, including the physical construction and the sensor selection. 

Ball-and-Beam Variations 
The basic construction of the apparatus can vary, but the principles remain the same: a 

ball rolls freely on a beam and the angle of the beam can be changed.  There are sensors present 

to determine the location of the ball on the beam and the angle of the beam.  A controller is 

developed to either stabilize the ball at some desired location on the beam or to have the ball 

track a reference trajectory. 

Beam Configurations 
The ball-and-beam can be constructed several different ways as discussed below.  

Regardless of the implementation, the system produces a change in beam angle based on a 

corresponding change in motor angular position. 

Fixed-End Beam Construction 

 
Figure 1-1 Fixed-End Beam 

In the configuration shown in Figure 1-1, one end of the beam is fixed to a rotational joint 

and the other is connected to a motor by a linkage, allowing the pitch of the beam to be 

controlled.  There is a commercial version of this construction available from Quanser (Quanser 

Inc.). 
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Rotational Beam Interface 

 
Figure 1-2 Rotational Beam Interface 

As shown in Figure 1-2, this implementation allows the motor to manipulate the beam 

angle by rotating a disk on the motor shaft that counter-rotates a semicircular disk affixed to the 

beam.  The beam rotates about a fixed point at its center.  This method of construction was used 

at MIT for creating a set-up to be used in an undergraduate class (Rosales).  Instead of a disk, it 

would be possible to use a gear system, which would reduce the slipping problems discovered by 

Ito (Ito). 

Motor-Mounted Beam Construction 

 
Figure 1-3 Motor-Mounted Beam 

The implementation shown in Figure 1-3, with an offset, was selected for this work.  The 

beam center is attached to the motor shaft directly (Ito; Situm 225-234).  This eliminates 

problems caused by slipping in the drive train, such as undetermined positions, as experienced by 

Ito, which were then solved by opting for a direct-mount construction (Ito). 

Sensor Selection 
There are many options available to monitor the angle of the beam and the position of the 

ball.  A few of the more common choices are reviewed here, but this list is not intended to be 

exhaustive. 

Beam Angle Sensor 

The beam angle can be determined using a potentiometer attached to the beam shaft 

(Rosales) or attached to the rear of the actuator shaft (Situm 225-234).  A second option is an 
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accelerometer which can be utilized with its measured acceleration proportional to the sine of the 

beam angle (Ito).  Another method, the one used for this thesis, is to have an angular encoder on 

the rear shaft of the motor (Rosales), allowing the determination of the beam angle directly, 

when the beam is mounted directly to the motor shaft or connected by a transmission system. 

Ball Position Sensor 

Arguably the most difficult task in the construction of a ball-and-beam apparatus is 

selecting a sensor to determine the position of the ball.  Finding or constructing a sensor with 

high resolution and low noise that can determine the ball position reliably and accurately can 

require significant cost.   

Rosales tested several versions of linear potentiometers based on the ball being 

conductive and passing current from one rail to another (Rosales).  In this method, one rail is 

electrified with a constant current producing a linear distribution of voltage along the rail; the 

voltage of the other rail is monitored to determine the ball position.  As the ball rolls on the rails 

it causes a change in voltage that can be measured and used in conjunction with the known rail 

resistance to determine where on the length of wire, and thus the beam, the ball is located.  This 

method was used in prior and current ball-and-beam projects (Rosales; Ito; Situm 225-234; 

Rosales et al. 1314-1318 vol.2; Sheng, Renner and Levine 402-408).  The major benefit to this 

type of sensor is that it is available for very little cost (Rosales et al. 1314-1318 vol.2).  A 

downfall to this method is the noise generated by the ball rolling on the track and the possible 

loss of signal due to pits and irregularities, depending on the track type selected (Rosales; Ito).  

Depending on the rail configuration, sliding friction could be introduced at the point of contact 

with the ball, a disadvantage illustrated in the second option shown in Figure 1-4. 

 
Figure 1-4 Conductive rail configurations 



 4 

Infrared range (IR) finders could be used as an alternative as mentioned in (Rosales et al. 

1314-1318 vol.2).  This possibility was explored when an IR sensor was tested by Ito (Ito).  

Because these sensors have an inherently nonlinear response, Ito concluded that systems 

incorporating this type of sensor would require the ability to operate using a range of gains and 

varying ball position uncertainty (Ito).  A benefit to using this type of sensor is that it provides 

non-contact monitoring of the ball position.  Drawbacks of these sensors are their limited 

operating range and lack of precision when detecting a spherical object. 

Laser range finders are another non-contact method of measuring a position.  However, 

the available commercial versions are either too expensive or have a range that is too limited to 

measure a ball’s position on desired beam lengths. 

A final sensor alternative is ultrasonic transducers (Rosales et al. 1314-1318 vol.2).  

Situm explored this as an option and discarded it in favor of the linear potentiometer method, 

because the particular sensor tested had a relatively short range of measurement (Situm 225-

234).  Like IR sensors, the benefit to ultrasonic sensors is non-contact measuring of the ball 

position.  Disadvantages to using ultrasonic sensors include limited ranges (depending on sensor 

and configuration) and cost of the sensor.  Despite these disadvantages, an ultrasonic sensor was 

selected as the method to measure the ball position for this work, because it was a non-contact 

alternative that could measure the ball position over the length of the beam. 

 



 5 

CHAPTER 2 - Specific Construction 

The ball-and-beam construction chosen for this thesis is described in this chapter.  The 

sensors chosen for measurements together with the materials and design of the beam are 

described as well as the choice of motor, amplifier, ball, control hardware, and possible wireless 

hardware. 

This ball-and-beam is a stepping stone toward building an inverted pendulum cart that 

will balance a ball on a beam that is fixed to the top of the pendulum, as illustrated in Figure 2-1.  

 
Figure 2-1 Ball-and-Beam Inverted Pendulum Cart 

It is desired to control that cart wirelessly, with the controller not onboard, which is the 

motivation for determining the appropriate wireless hardware.  The ball-and-beam assembly was 

completed after a few design iterations in order to complement hardware choices that had been 

made for the aforementioned cart. 

Ball Sensor 
An ultrasonic sensor was selected for this project to avoid any introduction of sliding 

friction for the ball and to allow accurate measurement of the position of a ball that could be 

made of non-conductive material, which provides a greater selection in ball candidates.  The 

linear potentiometer sensor variants require that a conductive ball be used; otherwise a current 

cannot be passed from the electrified rail to the measurement rail.  Depending on the 
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configuration of these rails the ball could be required to slide along the rails, instead of roll, 

which introduces sliding friction into the system dynamics.  To overcome these shortfalls the 

decision was made to pick a non-contact position sensor.  After researching possible infrared and 

laser optical sensors it was determined that the measuring range of commercially available 

sensors was not well suited to the proposed beam length.  The choice was made to investigate 

ultrasonic sensors as a means of obtaining non-contact position measurement.  The Senix 

ToughSonic series appeared to be capable of detecting various ball sizes over the required 

distance, with a limitation that objects closer than about four inches cannot be correctly detected 

by the sensor.  The final sensor selected was a TSPC-30S1-232 from Senix.  It can be configured 

using a PC and the provided SenixVIEW software so that the analog 0-10 Volt output is scaled 

to represent the desired range.  The sensor requires 10-30 Volts DC to be powered, but its 

sensitivity is reduced below 15 Volts (Senix Corporation).   

One consideration for acoustic sensors placed at opposing ends of the beam is that they 

may receive ultrasonic waves from each other, causing inaccurate measurements.  Another is 

their ability to accurately determine the ball’s position over the specified range of the beam.  

These will be discussed further in a later chapter. 

Beam Construction 
The beam had to meet several requirements based on its inclusion with the future project.  

It needed to be lightweight, allow the ball to roll without slip, and be able to support the 

ultrasonic sensors.  Aluminum was chosen for the beam material to satisfy the weight 

requirement.  Two different extrusion options were considered, angled and U-channel.  The 

angled aluminum was selected because it required less material and offered a rolling surface that 

‘cradled’ the ball instead of just supporting it.   

Sensor brackets were then designed and machined from aluminum blocks and attached to 

the beam.  These brackets allow the sensors to point along the beam axis directed at the center of 

the ball, while offering protection from the ball rolling directly against the sensor surface.  The 

beam center is attached to a milled aluminum block that has a shaft press-fit into it that allows 

rotation about the beam’s central axis.  As noted later, this introduced changes in the form of 

additional moments to the assumed dynamics because of the offset between the surface that the 

ball rolls on and the beam rotation. 



 7 

Motor and Amplifier 
Both the motor and amplifier choice were determined by equipment availability.  The 

motor that provides actuation to the beam rotational axis is a Reliance Electric brushless DC 

motor model BDC-T330-BVL.  The motor has a Danaher Industrial Controls optical encoder 

model M20250011001 attached to the rear shaft for angular position measurement.  Connected to 

this motor is an Advanced Motion Controls brushless PWM servo amplifier model CBE25ACB.  

This amplifier allows current control of the motor, supplying a current that is proportional to the 

amplifier input voltage.  The amplifier has a rectifier built-in and can be plugged directly into 25-

130 Volt AC outlets (Advanced Motion Controls). 

The motor shaft is connected by a coupler to the shaft of the beam assembly, which 

allows the actuation of the beam.  This connection method also directly couples the beam angle 

to the motor angle, allowing the beam angle to be determined by using the optical encoder 

attached to the motor. 

Ball 
Several ball options were considered during the construction of the system.  Originally, a 

ping-pong ball was desired because of its low inertia and availability.  However, the ping-pong 

ball with its small diameter initially made it difficult for the ultrasonic sensor to accurately 

determine its position.  The next option was five inches in diameter and liquid-filled, but that was 

quickly phased out for something smaller and not liquid-filled in order to avoid the additional 

complications of the extra weight.  A croquet ball and a toy foam ball were both tried, but neither 

was sufficiently smooth to facilitate easy rolling on the beam surface.  Finally, a standard 

racquetball was chosen to complete the apparatus.  The racquetball is an attractive choice due to 

the sensor being able to determine its location, its low inertia, its cost, and its availability. 

Controller Hardware 
The hardware for the controller of the system was selected based on two factors, 

compatibility and availability.  Due to a recent lab renovation, real-time desktop PC’s were 

readily available and running NI LabVIEW Real Time with NI PCIe-6361 X-series DAQs 

already purchased and installed.  These two crucial pieces for a controller, communication and 

computation, were readily available and already designed to work together. 
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System Wiring 
To complete the system, the sensors and amplifier inputs needed to be connected to the 

controller through the inputs and outputs of the PCIe-6361.  This was facilitated by the use of the 

NI CB-68LPR, which provides screw-terminal access to the pins of the PCIe-6361.  The wiring 

chart for the ball-and-beam system is provided in Table 2.1 and illustrated in Figure 2-2.  It is 

important to note that the acoustic sensor grounds (blue of sensors 1 and 2) are connected to 

DAQ analog negative reference, analog in ground, and the voltage source ground.  Also shown 

are the connections necessary for the final acoustic sensor configuration discussed in Chapter 5. 

Table 2.1 System Wiring Chart 

Sensor Wire Function Wire to NI Board Terminal NI PCIe-6361 Channel 
Sensor 1 White 0-10 V → 33 Analog In 1 + 
Sensor 1 Blue Ground → 66 & 32 Analog In 1 - & AI GND 
Sensor 2 White 0-10 V → 65 Analog In 2 + 
Sensor 2 Blue Ground → 31 & 64 Analog In 2 - & AI GND 

Motor Encoder         
Red Vcc → 14 + 5 V 

Black Ground → 15 GND 
Green Channel A → 42 Counter 1 A 
Orange Channel B → 46 Counter 1 B 
White Z index → 41 Counter 1 Z 

Amp Pin P1         
4 + REF IN → 22 Analog Out 0 
5 - REF IN → 55 Analog Out GND 
     Motor Wire  

10 + VHALL 30mA OUT → Pink  
11 GROUND → Black  
12 HALL 1 → Yellow  
13 HALL 2 → White  
14 HALL 3 → Orange  

Amp Pin P2        
1 Motor A → Blue  
2 Motor B → Brown  
3 Motor C → Purple  

Sensor Wire     Sensor Wire  
Sensor 1 Yellow RS-485 + → Sensor 2 Yellow  
Sensor 1 Gray RS-485 - → Sensor 2 Gray  

      Voltage Source  
Sensor 1 Brown + DC IN Voltage → + VDC  
Sensor 1 Blue - DC IN & Signal GND → -VDC  

Sensor 2 Brown + DC IN Voltage → + VDC  
Sensor 2 Blue - DC IN & Signal GND → -VDC  
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Figure 2-2 Current wiring configuration of system 

Wireless Hardware 
In order to separate the controller from the apparatus, some form of wireless 

instrumentation needs to be implemented.  The author recommends the following configuration 

to get the system to fully realize this separation.  National Instruments provides wireless data 

acquisition products that operate on the IEEE 802.11 wireless communication standard (Wi-Fi).   

Specifically, the NI WLS-9472 provides eight digital output channels that could be 

combined with a digital-to-analog converter to allow the controller to pass commands wirelessly 

to the amplifier (National Instruments Corporation).  To achieve a higher resolution for the 

control signal it is recommended that two units be purchased, as this product provides the most 

output channels available from the National Instruments Wi-Fi products. 

In order to wirelessly obtain the measurements from the apparatus, the author 

recommends the NI WLS-9205 which provides 32 single-ended or 16 differential analog inputs 

(National Instruments Corporation).  These inputs could be configured to receive the ultrasonic 

sensor voltages and either individual encoder channel pulses or a digital input that uses a channel 

for each bit, with a quadrature decoding counter circuit between the motor encoder and the input 

to convert the encoder signal to a digital signal.  Figure 2-3 provides a high-level block diagram 

of the proposed setup. 
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Figure 2-3 Illustration of proposed apparatus connections 
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CHAPTER 3 - System Model 

In order to develop a controller for the ball-and-beam, a system model was developed 

that could be utilized when performing the pole-placement operation.  Based on the system 

diagram a mathematical model of the system was formed, which assisted to specify which 

system parameters needed to be identified. 

System Diagram 
The system free body diagram, shown in Figure 3-1, was developed to accurately capture 

the forces and moments present in the designed ball-and-beam apparatus.  One of the most 

notable features of the system used in this work is the offset distance between the point of 

rotation of the beam and the surface the ball rolls on; the similar systems researched had the two 

points coincident.  This required careful consideration when determining the dynamic equations, 

to insure that the mathematical model of the system accurately captured how the system 

behaved.  It is also important to note the difference introduced by the beam selection between Ro 

and Rball; Rball is the radius of the ball and Ro is the distance from the ball’s center to the surface it 

is rolling on.  The coordinate directions, distances, and forces are shown in Figure 3-1.  For a 

listing of parameters and their values see Table 3.2. 

 
Figure 3-1 Ball-and-Beam Free Body Diagram 
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Dynamic Equations 
The dynamic equations were determined by using the symbolic manipulator Maple.  This 

operation was completed two ways, through classical mechanics and Lagrangian analysis.  First, 

using classical mechanics, the center of the ball (xc, yc) was written in terms of the global 

coordinate frame.  Then these two coordinates were differentiated with respect to time to give 

relationships in terms of velocities and accelerations.  Next, a coordinate transformation was 

performed to provide the relationships in the ball-local coordinate frame.  Forces were summed 

in the ball-local coordinates to allow the unknown quantities to be determined and substituted 

into Euler’s equation.  Finally, moments were summed about the ball center and the global origin 

(point O) to find the desired equations of motion.   

Lagrangian analysis was conducted to verify the results from the classical method.  After 

the development of the kinetic and potential energies, construction of the Lagrangian 

( VTL −= ), and the appropriate differentiations, the classic results were verified with some 

manipulations and both were put into standard form.  The dynamic equations were found to be: 
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The full Maple development of the dynamic equations for both analyses can be found in 

Appendix A. 

Parameter Identification 
After developing the governing differential equations, the parameters used in the 

equations needed to be determined.  Some parameters could be determined as derived from 

easily measured quantities.  For example, the mass, diameter, and thickness of the racquetball 

and coupling collar could all be measured and used to determine the rotational inertias of both 

parts.  To determine the inertia of the beam assembly (beam, cradle, sensor brackets, and 

sensors), it was modeled in SolidWorks, had appropriate material properties applied, and a solver 

within SolidWorks was used to determine its rotational inertia.   
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There were three parameters that proved more difficult to identify.  These were the motor 

inertia, motor friction, and the proportional constant that determines the amplifier output as a 

function of the input voltage.  Due to a lack of documentation for the motor, the motor inertia 

and motor friction needed to be determined through an experimental procedure of collecting data 

and determining estimates.  The difficulty in obtaining the proportional constant was produced 

by the unusable current sense channel on the amplifier, a channel that should provide an analog 

voltage proportional to the current delivered to the motor.  The motor model was changed from a 

current-input model to incorporate the amplifier and became a voltage-input model, to utilize the 

known voltage information.  The transfer function of the motor was assumed to be 

sbsJ
K

sI
s

m

t

⋅+⋅
= 2)(

)(θ  where θ is the position of the motor, I is the motor input current, Kt is the 

motor torque constant, Jm is the motor inertia, and b is the motor viscous friction coefficient.  

Because of the difficulty encountered in obtaining a measurement of the amplifier output current 

the substitution of VKI v ⋅=  was used, which relates the amplifier output current to its 

command voltage.  After rearranging the transfer function to use voltage as an input, the 

multiplied constants are renamed as: α=⋅ tv KK .  With this substitution the motor model 

became:
sJbs

J
sbsJsV

s

m

m

m ⋅+
=

⋅+⋅
= 22)(

)( ααθ .  This can be rearranged to be a model of the motor 

velocity (instead of position), given by: 
m

m

Jbs
J

sV
ss

+
=

⋅ αθ
)(
)( . 

With the motor model changes described above, the experiment needed to determine the 

motor inertia and motor friction could also be used to determine the unknown constant α with the 

following procedure.  First, without any load attached to the motor, a range of known voltages 

were used as inputs to the system.  For each input, the resulting system step response was 

recorded to determine the time constant and steady-state velocity corresponding to each voltage.  

Taking the inverse Laplace Transform of the given motor velocity transfer function, it is clear 

that the time constant of the system is given by bJ mt  / = τ  and the relationship between steady-

state velocity and input voltage is given by )()()( tVbt ⋅= αθ .  This relationship is shown in 

Figure 3-2.  Also illustrated in Figure 3-2 is the static friction that the motor must overcome, 

which has the effect of making the relationship not strictly linear. 
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Steady State Input-Output Relationship
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Figure 3-2 Relationship between steady-state velocity and command voltage 

After performing an exponential curve-fit to the experimental step-response data and a 

linear regression applied to the velocity/voltage relationship, estimates for the ratios bJ m  /  and 

b /α  can be obtained.  If a transfer function model for the motor was all that was desired, these 

would be sufficient.  However, the actual motor inertia and the motor friction were needed in the 

dynamic equations for the system simulation and controller development.  

Therefore, a method of determining the specific quantities within the ratios was 

developed.  By adding a known inertia to the motor (ΔJ) and performing the same experimental 

tests and curve-fits and by examining the difference in time constants, illustrated in Figure 3-3, 

an estimate of the ratio ΔJ /b could be determined.  Then b is easily determined from the known 

ΔJ, and Jm and α readily determined from the calculated b.  The equations in Table 3.1 

demonstrate the process. 

Table 3.1 Equations used to determine motor coefficient b 

b
J m

motor =τ  b
JJ m

Jw
+∆

=∆/τ  
b
J

motorJw
∆

=−∆ ττ /  
motorJw

Jb
ττ −

∆
=

∆/

 

When performing the experiments, the collar used to connect the motor to the beam 

assembly was used as ΔJ.  Table 3.2 lists the identified parameters and their values for the 

apparatus used for this work. 
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Comparing 0.6V with & without Collar
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Figure 3-3 Graph of 0.6 Volt Step Responses showing Time Constants 

 

Table 3.2 System Parameter Values 

Description Parameter Value Units Determination 

Ball Inertia Jb 1.844E-05 2mkg ⋅  Calculated 

Ball Radius Rball 2.830E-02 m  Measured 

Collar Inertia ΔJ 3.293E-05 2mkg ⋅  Calculated 

Local Acceleration of Gravity g 9.79987 
2sm  Research 

Modified Torque Constant α 1.060E-01 VmN ⋅  Experimental 

Motor Friction b 1.484E-04 smN ⋅⋅  Experimental 

Motor Inertia Jm 2.757E-04 
2mkg ⋅  Experimental 

Offset Distance H 2.788E-02 m  Measured 

Point of contact offset hf 4.100E-03 m  Calculated 

Radius of Travel Ro 2.340E-02 m  Calculated 

Rotational Inertia of Beam I  2.569E-01 2mkg ⋅  SolidWorks 
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CHAPTER 4 - Controller 

This chapter discusses the control chosen for the ball-and-beam apparatus as well as the 

implementation of the control algorithm.  The control was implemented first in the simplest 

system simulation as part of an undergraduate Honors Research project.   

Control Selection 
From the results presented in Chapter 3, it is straightforward to see that the state-space 

model of the ball-and-beam apparatus is fourth-order.  At all points during the parameter 

identification process it was clear that the ball-and-beam system had one positive, real pole in the 

s-plane and two very lightly damped poles on the jω-axis.  Therefore, the pole placement method 

of control was selected because it provided the ability to stabilize unstable poles.  This method is 

dependent on the model being fairly accurate, which may have caused some problems during 

initial tests.  In order to accurately simulate the nonlinear system, all of the parameters in the 

dynamic equations of Chapter 3 needed to be identified.  After these parameters had been 

determined, a system simulation was created in Simulink; its block diagram is included in 

Appendix B.   

To calculate the gains necessary to place the system poles at the desired locations, the 

dynamic equations were linearized.  The linearized equations were found to be: 
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The system poles were placed at numerous locations during simulations to determine 

which set of poles would be most appropriate for the real system, and the final poles were chosen 

as [-2+2i, -2-2i, -6, -7].  Using the linearized system equations, the controller gain was found to 

be: [ ]182346.13931127.4678876.16028773.27 −−=K .  Also, the observer gains were 

calculated, and the state estimator was included in the simulation; its function is provided in 

Appendix B.  The reasons for using a state estimator are discussed in more detail in Chapter 6.  

After simulating the system, all of the gains were implemented in the system controller. 
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Control Implementation 
The controller was created using a PC running LabVIEW Real Time with an NI PCIe-

6361 X-series multifunction data-acquisition (DAQ) card that allowed communication between 

the sensors, controller, and amplifier.  The real time PC is programmed to run the control loop at 

10 kilohertz, which is assumed to be faster than the limiting dynamics of the motor, so that the 

control loop does not adversely affect the system performance.   

The control program initializes all of the necessary communication channels and 

variables on startup.  Then it launches a loop that performs sensor readings, state estimation, 

control calculation, control output, and data collection.  The gains developed in the simulation 

are used in the controller to create a stable system.   

As a safety precaution, and to prevent the sensor wires from getting wrapped around the 

motor shaft, the control loop automatically stops if the beam angle exceeds 45 degrees.  

Otherwise, the system will continue operating until the user stops it.  The figures in Appendix C 

show the LabVIEW controller and its initialization.  This controller is very similar to a controller 

developed at Kansas State University for controlling a motor in an undergraduate laboratory 

setting (Wieneke et al. 384-389). 
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CHAPTER 5 - Acoustic Sensor Configuration 

Prior to installing the acoustic sensors on the beam, a single sensor was purchased and 

put through preliminary testing to demonstrate that they could sense the position of a ball and 

also sense the position of a ball as it was rolling.  After passing these tests, the apparatus was 

constructed and another sensor was purchased.  However, it became apparent that the ball 

position was not always being accurately determined because the beam was not able to place the 

ball in the correct location.  This chapter details the different configurations tested and 

implemented using both acoustic sensors. 

End-to-End 
This configuration was intended to eliminate the dead zones immediately in front of each 

sensor.  To accomplish this, each sensor would measure the ball’s position anywhere on the 

beam, from its dead zone to the opposite end.  Then, a switching algorithm would determine 

which sensor was giving a correct reading, based on the measured and estimated ball positions.  

Given what was known about the sensors prior to testing, this configuration made the most 

sense, but in practice this configuration could not be implemented.   

 
Figure 5-1 End-to-End configuration 

While the sensor specifications given in the data sheet appear correct for a larger, flat 

surface, they are difficult to realize when measuring a smaller, spherical surface.  In order for the 

sensors to measure the ball’s position accurately, their gains needed to be turned up rather high, 

which also limited their range.  The shorter range did not allow the sensors to detect the ball at 

the opposite end of the beam, which meant the configuration needed to be changed.  The next 
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logical configuration was to use each sensor to find the ball’s position on half of the beam length, 

because the ball should not be traveling into the sensor dead zones during normal operation. 

End-to-Center 
In this configuration each sensor measures the ball position from its dead zone to the 

center of the beam.  The sensor output voltages were configured as illustrated in Figure 5-2.  

Arranging the voltages this way allowed for adding the two sensor voltages together to determine 

the ball’s position along the entire length of the beam.  However, this configuration had some 

unexpected results.   

 
Figure 5-2 End-to-Center configuration 

First, with both sensors taking measurements continuously and aimed directly at each 

other, the ultrasonic waves traveling the length of the beam would interfere with the opposite 

sensor’s measurement.  Illustrated in the graph of Figure 5-3  is the sensor interference.  The 

points labeled V1 are the voltage output from the first sensor, V2 is the voltage output from the 

second sensor plus 10 volts so that it would line up with the ideal linear regression and V3 is the 

voltage sum from both sensors.  The sensor interference is best illustrated by the points that seem 

coincident with a line possessing negative slope.  Ideally, the V1 points above 54.6 centimeters 

(center of the beam) should all be at 10 volts; similarly with the V2 points below 54.6 

centimeters.  Then the V3 points would all be along a single line with positive slope. 

This interference is not constant, so the sensors do not always provide the documented 

voltages; the output voltage actually alternates between the ideal linear model and the undesired, 

negative slope linear model.  After this discovery, it became necessary to coordinate the sensor 

measurements.  This was accomplished by establishing sensor one as a master and sensor two as 

a slave.  The master sensor then coordinates alternating measurements with the slave.  In this 

configuration the system performed much better; in fact an accurate linear fit could be 

developed. 
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Figure 5-3 Position as a function of Sensor Voltage with interference 

Position vs. Voltage for Acoustic Sensors
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Figure 5-4 Position as a function of Sensor Voltage with V3 linear fit 

It can be seen in the graph of Figure 5-4 that even though a linear regression can be 

performed on the V3 data, there are two locations where small groups of points do not match up 
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with the trend line.  With the sensors alternating measurements, this could not have been caused 

by interference any longer.  Also, these abnormal spots created disturbances in the controller that 

caused instabilities in the system.  After further analysis, it was determined that these 

unpredictable zones were caused by the target selection; using a larger target, or a target with a 

non-spherical surface, resulted in reduction of these zones.  Once again, the sensor configuration 

needed to be adjusted. 

Overlapping 
In order to obtain a reliable measurement of the ball’s position as it crossed the abnormal 

spots within each sensor’s range, the ranges of each sensor were expanded to cover the 

unpredictable zone of the opposite sensor, as illustrated in Figure 5-5.  This configuration allows 

for accurate determination of the ball’s position along the length of the beam (excluding the 

sensor dead zones), and avoided requiring the controller to constantly switch sensors when the 

ball was in the center of the beam.  

 
Figure 5-5 Overlapping Range configuration 

After implementing the overlapping configuration with the hardware, the results of 

Figure 5-6 were obtained.  As shown, there is a linear position to voltage relationship for each 

sensor.   

The linear regressions shown in Figure 5-6 were used to create a system within the 

controller that switches between sensors, responding prior to the ball entering the unpredictable 

zone of each sensor, which allows for accurate determination of the ball position between the 

two sensor dead zones.  The controller is also able to maintain the use of one sensor when the 

ball is in the center, instead of constantly switching at that position; a benefit that reduces 

conflicts within the controller. 
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Figure 5-6 Position as function of individual Sensor Voltage 
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CHAPTER 6 - System Performance 

 After constructing the system, it needed to be tested to determine if it worked as 

designed.  This chapter describes the process of improving the apparatus so that it controlled the 

ball position as desired.  The system controller runs at 10 kilohertz, which is assumed to be faster 

than the limiting dynamics present in the motor itself. 

Performance Discrepancies 
Originally, with a small initial condition the actual system was unstable, while the 

simulation demonstrated that it should bring the ball to center with ease.  This glaring 

discrepancy launched an attempt to capture more of the actual system’s nonlinearities in the 

simulation.  Specifically, the differences in sample rate between the controller, encoder signals, 

and ultrasonic transducers were included.  As mentioned earlier, the controller runs at 10 

kilohertz, but the acoustic sensors were found to be running at 20 hertz.  Incorporating this 

difference in the simulation lead to an unstable growth in the ball velocity signal as time 

progressed because the velocity signal was the discrete derivative of a 20 hertz signal performed 

at 10 kilohertz.  Within the simulation, this was easily corrected by performing the discrete 

derivative at the same rate as the sensors took measurements.  This discovery led to increasing 

the measurement rate of the ultrasonic sensors to 100 hertz and decreasing the ball velocity 

discrete derivative rate to 100 hertz.   

Increasing Model Accuracy 
Seeking an explanation for the performance discrepancies between the simulation and the 

real system, more of the system nonlinearities were added to the simulation.  After incorporating 

a friction model within the nonlinear system dynamics, the simulation was still not unstable, but 

it did stabilize the ball to a limit cycle rather than directly to the beam center.  This change 

seemed appropriate, but still needed to be replicated in the actual system, which appeared to be 

rapidly over-compensating and the ball continued to bounce off of the stops and leave the beam.   

One possible explanation for this was inaccuracy in the motor model, because of the need 

to estimate α and other parameters as described earlier.  Therefore the identification tests were 

performed again after double-checking the amplifier settings and increasing the amplifier 

reference gain.  The results from this second procedure are those presented in Chapter 3.  The 
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only parameter that changed significantly was α, which was largely due to the change in 

amplifier reference gain. 

System Improvement 
Changing α did not noticeably improve the system performance, but the system was now 

making louder audible noises from the motor.  Upon examination of the signals from the 

apparatus, the control signal was found to be saturating.  The cause of this was determined to be 

noisy feedback signals; specifically the feedback velocities, which were determined by using a 

discrete derivative.  With this discovery, the decision was made to implement a state estimator to 

provide feedback velocities, providing a cleaner signal to the controller. 

Using a state estimator led to greatly improved system performance.  The ball no longer 

launched into instability, but often would be stabilized in a small amplitude limit cycle.  

However, the ball would almost always be stabilized at a point off-center on the beam, instead of 

the desired center point.  It was during these tests that the acoustic sensors were fine-tuned, 

further stabilizing the system by eliminating false ball positions, reducing the sensor switching 

when the ball was at the center point of the beam, and providing appropriate coverage of sensor 

unpredictable zones.  Unfortunately, none of these improvements removed the steady-state 

balancing error of the controller.  
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Figure 6-1 Illustration of steady-state error and return after disturbance 
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Overcoming Static Friction 
An observation was made regarding the steady-state ball position error, that it was always 

in the same location and that it appeared that there was not enough error in the system to cause 

the control signal to be high enough to drive the ball to zero, the beam center.  It was assumed 

that this behavior was caused by static friction, or stiction, present in the motor that had not been 

accounted for in the model.   

One last addition was then made to the controller, including an anti-stiction capability.  

The limits of the anti-stiction function were slowly increased, decreasing the steady-state error, 

until the beam balanced the ball properly in the center with a very small amplitude limit cycle, as 

illustrated in both Figure 6-2 and Figure 6-3.  

With the system balancing the ball in the center from an initial condition, it was tested to 

see if it would reject disturbances in the ball position and return the ball to center, producing the 

results shown in Figure 6-4.  The ball was disturbed in both directions from center, and each time 

the controller caused the beam to bring the ball back to center and continue balancing it there. 
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Figure 6-2 Depiction of initial condition response during anti-stiction tuning 
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Initial Condition Response
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Figure 6-3 Illustration of centered limit cycle 
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Figure 6-4 Disturbance Response of final system 
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Demonstration of Robustness 
As a demonstration of the robustness of the system controller, a different ball was placed 

on the beam to determine if the controller could still regulate the ball position with acceptable 

performance.  The other ball is solid plastic and was originally part of an omnidirectional wheel 

assembly.  Figure 6-5 depicts both the racquetball and the plastic ball to illustrate the size 

difference.   

 
Figure 6-5 Racquetball and plastic ball 

A further comparison between the two balls shows differences between their open loop 

poles, calculated from the linearized system equations.  Table 6.1 provides the open loop poles 

for four linearization cases: racquetball at beam center, racquetball 0.35 meters away from 

center, plastic ball at beam center, and plastic ball at 0.35 meters away from center.  For this 

demonstration it is worth noting that the open loop poles for the plastic ball are almost 20% 

greater in magnitude than the open loop poles for the racquetball.   

Table 6.1 Open loop pole locations for different scenarios 

Ball: Racquetball Plastic ball 
Properties: Mass: 0.0402 kg Radius: 0.0283 m Mass: 0.0643 kg Radius: 0.0247 m 
Scenario: Beam center 0.35 m Beam center 0.35 m 

Poles: 

   1.6826 
  -1.6830           
  -0.0002 + 1.6929i 
  -0.0002 - 1.6929i 

   1.6748           
  -1.6751           
  -0.0002 + 1.6849i 
  -0.0002 - 1.6849i 

   2.0054     
  -2.0057       
  -0.0002 + 2.0256i 
  -0.0002 - 2.0256i 

   1.9906           
  -1.9909 
  -0.0002 + 2.0103i 
  -0.0002 - 2.0103i 

 

The controller successfully stabilized the smaller ball and also rejected disturbances to 

the plastic ball’s position; the disturbance rejection to separate disturbances of opposite polarity, 
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which occur at approximately 0.75 seconds and 4 seconds, is shown in Figure 6-6.  The noise on 

the ball’s position in Figure 6-6 is from the ultrasonic sensors’ difficulty in measuring the 

smaller ball’s position. 

Disturbance Response of Other Ball
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Figure 6-6 Disturbance Response of final system with other ball 
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CHAPTER 7 - Conclusions 

The purpose of this investigation was to determine the feasibility of using ultrasonic 

sensors to determine the position of a ball so that it could be balanced on a beam and also to 

specify the equipment and configuration to give this ball-and-beam system wireless capability.  

This chapter will show that these goals have been met and provide the author’s conclusions 

about the project. 

Wireless Capability 
In Chapter 2 details were provided about specific pieces of equipment that could be 

combined with the current system to remove the hardwired connection of the sensors and control 

output from the controlling real time PC.  Using those recommendations, and the configuration 

illustrated in Figure 2-2, the ball-and-beam apparatus used for this work could become wireless.  

This would effectively remove the columns for the NI CB-68LPR and NI PCIe-6361 in Table 2.1 

and add columns for the extra circuitry, the NI WLS-9205, and the two NI WLS-9472 units.  In 

order to complete this process the items listed in Table 7.1 should be considered for purchase or 

construction.  Only one NI WLS-9472 is listed for purchase because one unit is already available 

for use. 

Table 7.1 Items needed to implement wireless capability 

Item Purpose 

Digital to Analog Converter Converts digital out signal to analog voltage for amplifier 

NI WLS-9205 Allows analog input of acoustic sensors 

NI WLS-9472 Provides 8 digital out channels 

Quadrature Decoding Circuit Determines position from motor encoder and outputs a 16-bit number 

Wireless Router Allows communication with the NI Wireless DAQs 

Acoustic Sensor Usage 
The Senix acoustic sensors selected for this project were able to be configured for use in 

this ball-and-beam application, as detailed in Chapter 5.  After some testing and tweaking of 

parameters, the sensors worked very well, measuring the ball’s position accurately so that it 

could be balanced in the center of the beam by the controller.  This was described in Chapter 6, 



 30 

with the included performance improvement of adding the anti-stiction capability to the 

controller.  These sensors performed well for this work and demonstrated that acoustic sensors 

are a viable alternative to other methods of determining the ball’s position. 
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Appendix A - Dynamic Equations Development 
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Appendix B - System Simulation and Gain Calculation Files 

 

Figure B-1 Simulink 

simulation block diagram 
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% GainCalculation.m 
clear all 
  
% Variable Input 
m = 0.0402; %kg (mass of ball) 
mb = 1.53767813; %kg (mass of beam) 
H = 0.0278765; %m (offset distance) 
hf = 4.1/1000; %m (distance from pole of sphere to latitude line of rotation) 
% Do = 0.0563626; %m (radius of ball) 
Rball = 0.02830; %m (radius of ball) 
Ro = 0.0234; %m (radius of travel) 
Ibar = 0.25691795825; %kg*m^2 (moment of inertia about center of rot.) 
% Ibar = 0.543266; %kg*m^2 (calculated moment of inertia) 
% Jb = 0.00001863824; %kg*m^2 (calculated inertia for hollow ball) 
Jb = 1.844235466666667e-005; %kg*m^2 (calculated inertia for hollow ball) 
% Jb = 0.000138035; %kg*m^2 (calculated inertia for stainless steel ball) 
Jc = 3.292554795127158e-005;  %kg*m^2  (collar inertia) 
Jm = 0.000275691 + Jc; %kg*m^2 (from Excel Calculations) 
bm = 0.000148379; %N*m*s or kg*m^2/s (from Excel Calculations) 
alpha = 0.105984964; %N*m/V {Torque constant} (from Excel Calculations) 
g = 9.79987; %m/s^2 (specific gravity) 
C = .00001; %(assume viscous friction of the ball is negligible) 
  
% Linearized Maple Matrices 
Mass = [Ibar + mb*H^2 + Jm + m*Ro^2 + 2*(H+hf)*m*Ro + m*(H+hf)^2 + Jb, 
(-1)*((H+hf)*m + (m*Ro + Jb/Ro)); 
        (-1)*((H+hf)*m + (m*Ro + Jb/Ro)),(m + Jb/(Ro^2))]; 
  
Cmatrix = [bm, 0; 0, C]; 
  
G = [0; 0]; 
Gbar = [(-H*m*g-Ro*m*g), m*g; m*g,0];   
  
format long 
% Creation of State Space Matrices 
F = [0,0,1,0;0,0,0,1; -inv(Mass)*Gbar ,-inv(Mass)*Cmatrix]; 
G = [0;0;(inv(Mass)*[1;0] )] 
H = [1 0 0 0; 0 1 0 0]; 
  
% Controller gains 
P = [-2+2i,-2-2i,-6,-7];  
K=place(F,G,P)  
  
%Observer Calculations 
P1=[-50,-51,-52,-53]; 
L=(place(F',H',P1))' 
E=F-L*H 
  
format short 
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function DX = fcn(X) 
  
DX = [zeros(4,1)]; 
% Variable Input 
m = 0.0402; %kg (mass of ball) 
mb = 1.53767813; %kg (mass of beam) 
H = 0.0278765; %m (offset distance) 
hf = 4.1/1000; %m (distance from pole of sphere to latitude line of rotation) 
% Do = 0.0563626; %m (ball diameter) 
Rball = 0.02830; %m (radius of ball) 
Ro = 0.0234; %m (radius of travel) 
Ibar = 0.25691795825; %kg*m^2 (I about center of rot.) 
Jb = 1.844235466666667e-005; %kg*m^2 (calculated inertia for hollow ball) 
  
% slightly different than gain calculation numbers 
Jc = 3.2921961e-5;  %kg*m^2 
Jm = 0.000275691 + Jc; %kg*m^2 (from Excel Calculations) 
bm = 0.000148379; %N*m*s or kg*m^2/s (from Excel Calculations) 
g = 9.79987; %m/s^2 
C = 0; %(the viscous friction on the ball should be negligible) 
  
% Input X has state vars 
theta = X(1); 
r = X(2); 
Dtheta = X(3); 
Dr = X(4); 
u= X(5); 
  
% Maple Matrices -- not linearized 
Mass= [Ibar + mb*H^2 + Jm + m*Ro^2 + 2*(H+hf)*m*Ro + m*(H+hf)^2 + m*r^2 + Jb, 
(-1)*((H+hf)*m + (m*Ro + Jb/Ro)); 
        (-1)*((H+hf)*m + (m*Ro + Jb/Ro)),(m + Jb/(Ro^2))]; 
  
Cmatrix = [bm + 2*r*m*Dr, 0; -r*m*Dtheta, C]; 
  
G = [r*m*g*cos(theta)-(H+hf)*m*g*sin(theta)-Ro*m*g*sin(theta); 
m*g*sin(theta)]; 
  
DDTH(1:2,1) = -inv(Mass)*G -inv(Mass)*Cmatrix*[Dtheta; Dr] +inv(Mass)*[u;0]; 
DDtheta = DDTH(1,1); 
DDr = DDTH(2,1); 
  
%simulation of motor static friction 
limitV = 0.25; %any |u| < limitV will not be enough to move motor 
limit_dth = 0.2*(2*pi);  %rad/sec 
M = -0.0000015; %slope of acceleration motor 
  
if ((abs(u) < limitV) && (abs(Dtheta) < limit_dth)) 
    DDtheta = M*sign(Dtheta); 
end 
  
% Now create State Space Matrices 
DX(1,1) = Dtheta; 
DX(2,1) = Dr; 
DX(3:4,1) = [DDtheta; DDr]; 
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function VEL = velobsrv(x) 
 
%dT is based on control loop rate 
dT=1e-4; 
  
%Observer State Space Matrices -- Calculated in "GainCalculation.m" 
G=[0;0; 3.863562657658950; 0.150493329058147]; 
  
L = 1.0e+003 *[0.104603612547061  -0.002171658580328 
  -0.000340017609210   0.101395678769877 
   2.735231253200037  -0.114980181265741 
  -0.022597643298814   2.569972576404279]; 
  
  
E =1.0e+003 *[-0.1046036   0.0021717   0.0010000           0 
   0.0003400  -0.1013957           0   0.0010000 
  -2.7352062   0.1134581  -0.0000006  -0.0000000 
   0.0172663  -2.5700319  -0.00000002 -0.0000001]; 
  
  
%x = [u; motor pos; ball pos; theta; r; thetaD; rD] 
u    = x(1); 
mpos = x(2); 
rpos = x(3); 
x1   = x(4); 
x2   = x(5); 
x3   = x(6); 
x4   = x(7); 
  
%Summing Junction of Observer 
V1=E*[x1;x2;x3;x4]; 
V2=u*G; 
V3=L*[mpos;rpos]; 
Integrate=V1+V2+V3; 
  
%Observer Integration 
Integral = [x1;x2;x3;x4] + dT*Integrate; 
  
%VEL= [motor vel; ball vel; theta; r; thetaD; rD] 
VEL = [Integral(3);Integral(4);Integral]; 
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Appendix C - LabVIEW Controller 

 
Figure C-1 Controller Initialization 
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Figure C-2 System Control Loop 

and Additional Cases  
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