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Abstract— This paper further studies the discrete-time dou-
ble integrator. Earlier it has been shown by us that there exists a
class of locally stabilizing saturated linear state feedbacks which
cause periodic behavior for certain initial conditions and hence
the closed-loop system is then not globally asymptotically stable.
In this paper, we show that all the remaining locally stabilizing
saturated linear state feedbacks globally stabilize the discrete-
time double integrator.

I. INTRODUCTION

Linear systems subject to actuator saturation are ubiqui-
tous and have been the subject of extensive study, see for
instance two special issues, [1], [2], and references therein.

Internal stabilization for this class of systems has a long
history. Let us briefly review the literature on linear systems
subject to actuator saturation. [5], [9] established that, global
stabilization of linear systems subject to actuator saturation
can be achieved if and only if the linear system in the absence
of actuator saturation is stabilizable, and has all its open-
loop poles in the closed left-half plane for continuous-time
linear systems and in the closed unit disc for discrete-time
linear systems (equivalently, asymptotically null controllable
with bounded control). In general, this requires nonlinear
feedback control laws. However, for certain cases, global
stabilization can be achieved by linear static state feedback
control laws. For example, in both continuous-time and
discrete-time settings, it is well known that there exists linear
static state feedback control laws which globally stabilize
neutrally stable linear systems subject to actuator saturation,
see for instance [4]. Moreover, in continuous-time setting,
there also exists linear static state feedback control laws
which globally stabilize the system consisting of double-
integrator, single-integrator, and neutrally stable dynamics,
subject to actuator saturation, see for instance [6], [7].
Furthermore, in continuous-time setting, it is well known
that a linear static state feedback law which locally stabilizes
the double integrator also globally stabilizes the double
integrator subject to actuator saturation. See for instance, [6],
[3]. However, similar results have not yet been obtained for
discrete-time.

In a previous conference paper [8], we considered the
discrete-time equivalent of a double integrator subject to
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actuator saturation and showed that there are intrinsic dif-
ferences between continuous- and discrete-time systems. In
particular, a large class of linear state feedbacks, which
achieve local stability for the discrete-time equivalent of the
double integrator, fail to achieve global asymptotic stability.
This property is established by explicitly constructing non-
zero periodic solutions. The result in this earlier paper is
therefore in direct contrast with continuous-time where local
stability for the double integrator always implies global
stability.

Although it was established earlier that there exists linear
state feedbacks which achieve global stability, the objective
of this paper is an attempt to completely classify all lin-
ear state feedbacks which result in global stability for the
discrete-time equivalent of the double integrator.

II. PROBLEM FORMULATION AND REVIEW

Consider a discrete-time double integrator subject to ac-
tuator saturation described by{

x1(k+1) = x1(k)+ x2(k),
x2(k+1) = x2(k)+σ(u(k)), (1)

where σ(u(k)) is the standard saturation function

σ(u(k)) = sgn(u(k))min{1, |u(k)|} ,

and
u(k) = f1x1(k)+ f2x2(k). (2)

Let us first consider system (1) with a feedback control
law (2) in the absence of actuator saturation. From Jury’s
test, we see that any feedback control law (2) where f1 and
f2 satisfy the following conditions

1
2

f1−2 < f2 < f1 < 0, (3)

stabilizes the system (1) in the absence of actuator saturation
or, in other words, achieves local asymptotic stability.

Let us first recall our previous result from [8].
Theorem 1: If f1 and f2 satisfy Jury’s condition (3) plus

the following condition

f2 >
3
2

f1, (4)

then the closed-loop system has non-zero periodic solutions
for certain initial conditions and is therefore not globally
asymptotically stable.

From Theorem 1, we see that in order to globally stabilize
system (1) via a linear state feedback control law (2), it is
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necessary that the feedback gains f1 and f2 have to satisfy
the following condition

1
2

f1−2 < f2 <
3
2

f1 < 0. (5)

We will show that the condition (5) is also a sufficient
condition in Section III.

−4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

III

II

I

I

A

B

C

D

f1

f 2

III

II

I

I

A

B

C

D

III

II

I

I

A

B

C

D

III

II

I

I

A

B

C

D

Fig. 1. Stability characteristics as a function of f1 and f2

Let us briefly summarize the results of our previous paper
[8] and state the goal of this paper. The behavior of the
closed-loop system can be illustrated by Figure 1. Note that
in Figure 1, line AB is f2 = f1, line BC is f2 = 1

2 f1− 2,
line AD is f2 = 3

2 f1 and line AC is f1 = 0. The Jury test
establishes that whenever f1 and f2 take their values within
the triangle ABC, the closed-loop system is locally asymp-
totically stable; otherwise unstable. However, in Region II
(triangle ABD) the closed-loop system is not globally asymp-
totically stable since these controllers always yield non-zero
periodic solutions as shown in [8]. In that paper it was,
however, not established whether the closed-loop system is
globally asymptotically stable in Region III (triangle ADC).
Some preliminary results were obtained which showed that
the closed-loop system is globally asymptotically stable in
part of this Region III. The goal of this paper is to show
that the closed-loop system is globally asymptotically stable
in Region III. Consequently, the previous paper [8] and this
paper complete the stability issues of the discrete-time double
integrator via saturated linear state feedbacks.

III. MAIN RESULTS

In this section, we present our main result.
Theorem 2: If f1 and f2 satisfy the Jury’s condition (3)

plus the following condition

f2 <
3
2 f1, (6)

then the closed-loop system is globally asymptotically stable.
In order to prove Theorem 2, we need to establish asymp-

totic stability in the region III depicted in Figure 1. A basis
transformation turns out to be useful for establishing this

result. We define y1(k) = u(k) and y2(k) = f1x2(k). The
closed-loop system is then given by:{

y1(k+1) = y1(k)+ y2(k)+ f2σ(y1(k)),
y2(k+1) = y2(k)+ f1σ(y1(k)).

(7)

We sometimes denote:

y(k) =
(

y1(k)
y2(k)

)
and y, y1 or y2 without explicitly indicating time will refer
to y(k), y1(k) or y2(k) respectively.

Let us recall the following lemma from [8].
Lemma 1: Consider system (1) with a feedback control

law (2). With the basis transformation, y1(k) = u(k) and
y2(k) = f1x2(k), the closed-loop system is given by (7). The
following Lyapunov candidate

Vk = 2y1σ(y1)−σ
2(y1)−2σ(y1)y2− 1

f1
y2

2

establishes the global asymptotic stability of the closed-loop
system (7) if the feedback gains f1 and f2 are in Region IV
of Figure 2, that is, condition (5) is satisfied and

( f2− f1 +1)2−1 < f1. (8)
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Fig. 2. Stability characteristics as a function of f1 and f2

Note that Region III has been split into two regions:
Region IV and Region V, as depicted in Figure 2. Also note
that Lemma 1 shows that the closed-loop system is globally
asymptotically stable in Region IV, thus in order to prove
Theorem 2, it remains to show that the closed-loop system
is globally asymptotically stable in Region V.

Let us consider a Lyapunov candidate in the presence
of saturation, which is based on the linearized system as
follows:

Vk = 2y1σ(y1)−σ
2(y1)+2bσ(y1)y2− 1

f1
y2

2, (9)

where

b =

{
2
f2

f 2
2 +4 f1 ≥ 0,

− f2
2 f1

f 2
2 +4 f1 < 0.

(10)

It is easy to verify that in the Region V of Figure 2 we
have b ∈ [−1,−0.5) while for b =−1 we get the Lyapunov
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function used in Lemma 1. We sometimes refer to the first
case, when f 2

2 +4 f1≥ 0 as the real case since in that case the
linearized system has real eigenvalues while the second case,
when f 2

2 +4 f1 < 0, is referred to as the complex case since
in that case the linearized system has complex eigenvalues.

It is easy to see that the Lyapunov candidate (9) works
for the linearized closed-loop system. In order to be a valid
Lyapunov function, it is necessary that it must work when
σ(y1) stays at 1 or at −1 in two consecutive time instants.
It is easy to verify that in that case:

∆V = (2b−1) f1 +2 f2, (11)

where (∆V )(k) =Vk+1−Vk, while Vk =V (y(k)). Thus, ∆V =
( f 2

2 + 4 f1)/ f2 +( f2− f1) < 0 in the real case while ∆V =
f2− f1 < 0 in the complex case.

Therefore, the Lyapunov candidate (9) has the required
properties when σ(y1) is in saturation for two consecutive
time instants or is out of saturation for two consecutive
time instants. Note that for a continuous-time problem, we
would be done, since y1 is continuous. However, for discrete-
time systems, y1 obviously jumps from one time to the
other and hence if σ(y1(k)) saturates then it might well be
that σ(y1(k+ 1)) is out of saturation or conversely. This is
intrinsically different from the continuous-time case. Thus,
we have to show that the Lyapunov candidate (9) also
decreases when y1 jumps either into saturation or out of
saturation. The traditional Lyapunov argument is to show
that Vk+1−Vk < 0 for all initial conditions. However, this
approach does not work here. For the real case, if f2 <−2,
there exist initial conditions, such that Vk+1 −Vk > 0. A
similar problem can arise in the complex case. Thus, we
need a different technique. The main idea is to show that V
decreases over a specifically chosen number of time steps,
and V is bounded in the interim. In order to proceed with
this idea, we first choose suitable time instants ki. The formal
definition of ki is given by:

Definition 1: k0 = 0, and ki is the smallest integer larger
than ki−1, such that either
• |y1(ki)|< 1; or
• y1(ki)y1(ki +1)< 0 and |y1(ki +1)| ≥ 1.
In other words, ki is defined as the first time instant k >

ki−1 where y1(k) either gets out of saturation, or where y1(k)
switches sign. It is easily seen that ki is well defined given
ki−1 since the only way ki would not be well defined is if
y1(k)> 1 for all k > ki−1 or if y1(k)<−1 for all k > ki−1. It
is easily seen from the dynamics (7) that this is not possible.
Instead of a classical Lyapunov design we will study whether
Vki is decreasing as a function of i. Before we formally prove
Theorem 2, we present two crucial lemmas.

Lemma 2: Let the Lyapunov candidate V be defined in
(9) and assume the feedback gains f1 and f2 are in Region
V of Figure 2, that is, (5) is satisfied and

( f2− f1 +1)2−1 > f1. (12)

In that case, if |y1(ki)|< 1 and Vki−1 6= 0, then

Vki −Vki−1 < 0.

Proof: Since the proof is very lengthy, for the readability,
we give the proof in Section IV.

Lemma 3: Let the Lyapunov candidate V be defined in
(9) and assume the feedback gains f1 and f2 are in region
V of Figure 2, that is, (5) is satisfied and

( f2− f1 +1)2−1 > f1.

In that case, if |y1(ki)| ≥ 1 and Vki−1 6= 0, then

Vki −Vki−1 < 0 or Vki+1 −Vki−1 < 0
Proof: Due to the space limitation, we have omitted the
proof.

Remark 1: Note that if the feedback gains f1 and f2 take
their values inside the triangle ABD (Region II) in Figure 1,
there actually exist initial conditions for which Vki+1−Vki−1 =
0 since ki+1− ki−1 is precisely the period of the periodic
behavior as constructed in the proof of Theorem 1 in [8].
Proof of Theorem 2: We know that the system is locally
asymptotically stable from Jury’s test. It remains to show
global attractivity of the origin. If (8) is satisfied, Lemma
1 guarantees global asymptotic stability. Therefore, we only
need to consider the case where (12) is satisfied in addition
to (5).

We first note that (9) can be rewritten as

V (y) = 2σ(y1) [y1−σ(y1)]+ [σ(y1)+by2]
2−
(

b2 + 1
f1

)
y2

2.

It is easy to show that b2+ 1
f1
≤ 0. This immediately implies

V (y) > 0 if y 6= 0 unless b2 + 1
f1
= 0, or equivalently, f 2

2 +
4 f1 = 0. However for the latter case, it is easily verified that
V (y(k)) = 0 implies that V (y(k+1)) = 0 and that y(k)→ 0
as k→ ∞.

Next, we note that y is bounded since V (y) is bounded.
Moreover, given a M there exists a K such that ‖yki‖ < M
implies that ki+1− ki < K.

Lemma 2 and Lemma 3 imply that either Vki+1 −Vki < 0
or Vki+2 −Vki < 0 if Vki 6= 0. This results in a sequence

{
k̄i
}

such that Vk̄i+1
<Vk̄i

for all i. This clearly implies that Vk̄i
is

bounded and hence k̄i+1− k̄i is bounded as well. This implies
that Vk̄i

→ 0 as i→ ∞.
If b2 + 1

f1
6= 0, then local asymptotic stability implies that

if Vk̄i
is small enough for some i then y(k)→ 0 as k→ ∞

and therefore we have global attractivity. For the case that
b2 + 1

f1
= 0, that is, f 2

2 +4 f1 = 0, global attractivity follows
by using a slightly modified version of LaSalle’s invariance
principle.

IV. PROOF OF LEMMA 2

We first note that (3), (6) and (12) imply that b as
defined in (10) satisfies b ∈ (−1,− 2

3 ] in the real case and
b ∈ (−1,− 3

4 ] in the complex case.
For simplicity we denote y1(ki−1) and y2(ki−1) by y1 and

y2 respectively while y1(ki) and y2(ki) are denoted by ỹ1
and ỹ2 respectively. We will prove the Lyapunov function
will decay for two cases:
• case 1: y1 ≥ 1 and ỹ1 ∈ [−1,1],
• case 2: y1 ∈ [−1,1] and ỹ1 ∈ [−1,1].
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Without loss of generality we only consider y1 ≥ 1 (the
other case where y1 ≤−1 is completely symmetric). Let us
first consider case 1.
Proof of Lemma 2 with y1 ≥ 1: In the case where y1 ≥ 1,
we have

ỹ1 = y1 + ky2 + e1,

ỹ2 = y2− (k−2) f1,

where we denote k = ki− ki−1 while

e1 = f2 +(k−1)( f1− f2)− f1
2 (k−1)(k−2).

We will prove the Lyapunov function defined in (9) will
decay if y1 ≥ 1 and ỹ1 ∈ [−1,1]. In doing this, we ignore
the other constraints which follow from the definition of
ki, namely that y1(ki−1 + j) ≤ −1 for j = 1, . . . ,k − 1.
However, if the Lyapunov function always decays without
these constraints then it will definitely still decay when these
additional constraints are imposed. We get

Vki −Vki−1 = ỹ2
1 +2bỹ1ỹ2−

1
f1

ỹ2
2−2y1 +1−2by2 +

1
f1

y2
2.

This can be rewritten completely in terms of ỹ1 and y1 as:

Vki −Vki−1 = (1+2 b
k )ỹ

2
1 +
[
−2 b

k (ỹ1−1)−4 k−1
k

]
y1

+
[
−2 b

k e1 +2(2− k)b f1 +2−2(2+b) 1
k

]
ỹ1

−2e1 +2(2+b) 1
k e1− (k−2)2 f1 +1.

We need to show this is negative for all y1 ≥ 1 and all
ỹ1 ∈ [−1,1]. However, this is a linear function of y1 whose
coefficient is negative and hence Vki −Vki−1 is maximal for
y1 = 1. Thus, we have

Vki −Vki−1 ≤ (1+2 b
k )ỹ

2
1 +[−2 b

k e1 +2(2− k)b f1 +2

−4(1+b) 1
k ]ỹ1−2e1 +2(2+b) 1

k e1

+2 b
k −4 k−1

k − (k−2)2 f1 +1. (13)

The upper bound is a quadratic function which we need
to maximize. Clearly, the sign of the quadratic term is
crucial here. For k = 1 the coefficient of the quadratic term
is negative and the maximum is obtained by setting the
derivative equal to zero (if we ignore that ỹ1 ∈ [−1,1]). Thus,
we obtain for k = 1:

Vki −Vki−1 ≤ (1+2b)ỹ2
1 +[2b( f1− f2)−2(1+2b)]ỹ1

+2b+1− f1 +2(1+b) f2. (14)

For the real case ( f 2
2 + 4 f1 > 0), since b = 2 f−1

2 and using
(3), we obtain from (14) that

Vki −Vki−1 ≤ ( f 2
2 +4 f1)(4+2 f2− f1) f−1

2 /( f2 +4)< 0.

For the complex case ( f 2
2 + 4 f1 < 0), since b = − f2 f−1

1 /2
and again using (3), we obtain from (14) that

Vki −Vki−1 ≤ ( f2− f1)( f 2
2 +4 f1) f−1

1 /4 < 0.

Next, we return to the case where k > 1. In that case, the
upper bound (13) has a quadratic term with a positive coef-
ficient. Therefore, the maximum is attained on the boundary,
that is, ỹ1 = 1 or ỹ1 =−1. For ỹ1 = 1 we obtain:

Vki −Vki−1 ≤ (k−2)
[
−2b f1− 4

k ( f2− f1)−3 f1 +2 f2
]

≤ (k−2) [−2b f1−2( f2− f1)−3 f1 +2 f2]

≤ (2− k)(2b+1) f1 ≤ 0,

where we used k ≥ 2 and b < −0.5. Note that the upper
bound is negative unless k = 2 in which case it is easy to
verify that the decay equals zero only if ỹ1 = 1 and y1 = 1.
The latter is inconsistent with k = 2 since we then get

y(ki−1 +1) = y1 + y2 + f2 = 1− 1
2 f1 ≥ 1

while we should have y(ki−1 + 1) ≤ −1. Next, we need to
investigate the other boundary ỹ1 =−1. We get

Vki−Vki−1 ≤ [2b− (k−2)]
[
(3 f1−2 f2)− 4

k ( f1− f2−1)
]
< 0
(15)

The first inequality is a simple rewriting of our upper bound
for ỹ1 =−1. The second inequality is more subtle. It is easy
to see that 2b− (k− 2) < 0 for k ≥ 2. If f1− f2− 1 ≤ 0,
we immediately find that the expression is negative since
we know from (6) that 3 f1−2 f2 > 0. On the other hand if
f1− f2−1 > 0, we find that

(3 f1−2 f2)− 4
k ( f1− f2−1)≥ (3 f1−2 f2)−2( f1− f2−1)

= f1 +2 > 0

and the inequality (15) is satisfied. The fact that f1 > −2
follows from (5).

Next, we need to study case 2, that is,

y1 ∈ [−1,1] and ỹ1 ∈ [−1,1]. (16)

The proof is split into two cases: the real case ( f 2
2 +4 f1 ≥

0) and the complex case ( f 2
2 + 4 f1 < 0). Due to the space

limitation, we only present the proof for the real case:
Proof of Lemma 2 with y1 ∈ [−1,1] and f 2

2 + 4 f1 ≥ 0: In
this case, we have

ỹ1 = d4y1 + ky2 + e4 (17)
ỹ2 = f1y1 + y2− (k−1) f1, (18)

where we denote k = ki− ki−1 and

d4 = 1+ f2 +(k−1) f1

e4 =−(k−1)
(

f2− f1 +
1
2 f1k

)
.

Given (16), we find that:

Vki −Vki−1 = ỹ2
1 +2bỹ1ỹ2− 1

f1
ỹ2

2− y2
1−2by1y2 +

1
f1

y2
2.

We can eliminate ỹ2 and y2 from the above expression by
using (17) and (18):

Vki −Vki−1 = ỹ2
1 +2bỹ1[ f1y1 +

1
k (ỹ1−d4y1− e4)−

(k−1) f1]− 1
f1

[
f1y1 +

1
k (ỹ1−d4y1− e4)− (k−1) f1

]2
− y2

1−2 b
k y1 [ỹ1−d4y1− e4]+

1
k2 f1

[ỹ1−d4y1− e4]
2 . (19)
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Our objective is now to prove that (19) is negative. We first
note that for k = 1 we only need to study the unsaturated
linear system and it is easy to verify that (19) is negative
provided y(ki−1) 6= 0. For k = 2 we will show that (19) is
negative for all

−1≤ y1 ≤ 1, −1≤ ỹ1 ≤−1− (1+ f2− f1)(y1 +1)− f1
(20)

where the upper bound for ỹ1 follows from the constraint
that y1(ki−1)≤−1. For k > 2 we consider all

−1≤ y1 ≤ 1, −1≤ ỹ1 ≤−1 (21)

and we ignore all other constraints which follow from the
definition of ki namely that y1(ki−1 + j) ≤ −1 for j =
1, . . . ,k−1.

The quadratic term in ỹ1 in (19) is equal to

1+2b 1
k

which is positive for k≥ 2 since b>−1. Therefore, we know
(19) is maximal in a boundary point, that is, for k = 2,

ỹ1 =−1 or ỹ1 =−1− (1+ f2− f1)(y1 +1)− f1,

and for k > 2,
ỹ1 =−1 or ỹ1 = 1.

For the lower bound ỹ1 =−1 we do not need to distinguish
between k = 2 and k > 2 and we obtain that

Vki −Vki−1 = 1−2b f1 [y1− (k−1)]

− 2b
k (1+ y1) [−1−d4y1− e4]

− 2
k [y1− (k−1)] [−1−d4y1− e4]

− f1 [y1− (k−1)]2− y2
1 (22)

and we need to show this expression is negative. The
expression has the form:

āy2
1 + b̄y1 + c̄. (23)

Here we have:

ā = (2b+1) f1−1+ 2
k (b+1)(1+ f2− f1), (24)

b̄ =−(1+b) f1k+[(1+b)(3 f1−2 f2)−2(1+ f2− f1)]

+ 4
k (1+b)(1+ f2− f1), (25)

c̄ = [(1+b) f1− (3 f1−2 f2)]k

+[1− (2b+1) f1 +(b+1)(3 f1−2 f2)−2(1+ f2− f1)]

+ 2
k (1+b)(1+ f2− f1). (26)

We note that ā < 0. Since if 1+ f2− f1 ≤ 0, we have

ā≤ (2b+1) f1−1≤ (2b+1)(− 1
4 f 2

2 )−1 =−( 1
2 f2+1)2 < 0,

where we used that 2b+1 < 0, the fact that in the real case
f 2
2 +4 f1 ≥ 0 and the definition of b. If 1+ f2− f1 > 0, we

then obtain that ā is maximal for k = 2 and we obtain:

ā≤ b f1 +(1+b) f2 +b≤ b(− 1
4 f 2

2 )+(1+b) f2 +b

= 1
2 f2

( f2 +2)2 < 0.

We need to verify that (23) is negative for all y1 ∈ [−1,1].
We first verify it is negative at the boundary points. We get
for y1 =−1 that (23) equals:

ā− b̄+ c̄ = [2(1+b) f1− (3 f1−2 f2)]k < 0.

In the proof of Lemma 2 with y1 ≥ 1 we already established
that for y1 = 1 we have:

Vki −Vki−1 < 0.

Finally, (23) may attain its maximum in the interior where

y∗1 =−
b̄

2ā
with

∣∣∣∣ b̄
2ā

∣∣∣∣< 1,

but then the maximum is less than c̄− ā and we get

c̄− ā = [(1+b) f1− (3 f1−2 f2)]k+(3−b) f1− (2b+4) f2.

Note that the above expression is a linear function of k whose
coefficient is negative since b > −1 and 3 f1− 2 f2 > 0 and
hence it is maximal for k = 2. Thus, we get

c̄− ā≤ (b−1) f1−4 = 1
f2
[2 f1− f2( f1 +4)]

≤ 1
f2
[2 f1 +2( f1 +4)]

= 4
f2
( f1 +2)< 0.

In other words, for ỹ1 =−1 (19) is negative.
It remains to check whether (19) is negative for the upper

bound for ỹ1. Unfortunately, here we have to distinguish
between k = 2 and k > 2. For k = 2 we have

ỹ1 =−1− (1+ f2− f1)(y1 +1)− f1

for the upper bound. We obtain that

Vki −Vki−1 = ây2
1 + b̂y1 + ĉ. (27)

Here we have:

â = (1+2b)( f1− f2−1)2− ( f1 +1)+2(1+b)( f2 +1),

b̂ =−2(1+b)( f1− f2−1)( f2 +2)−2b( f1− f2−1)(1+ f1)

+2(1+b)+2( f1− f2−1),

ĉ = ( f2 +2)2 +2b( f2 +2)( f1 +1)+2( f1− f2−1)
+2 f2−3 f1.

Using −4 f1 < f 2
2 , we get:

â < (1+2b)( f1− f2−1)2 + 1
4 f2

( f2 +4)( f2 +2)2 < 0

where we used that 1+2b < 0 and −4 < f2 <−2. Therefore
the maximum is attained on the boundary or in the interior.
Next we show that − b̂

2â ≥ 1. Since â < 0, it is equivalent to
show that b̂+2â > 0. With some algebra, we get:

b̂+2â = 2(2 f2− f1 +4)[−( f1− f2−1)+1](1+ 2
f2
)> 0.

Thus, for case k = 2, Vki −Vki−1 in (27) is maximal when
y1 = 1, and the maximum is â+ b̂+ ĉ. Next, we show that
this is indeed negative. We get:

â+ b̂+ ĉ = 4( f2− 1
2 f1 +2)( f2 +

4
f2
− 1

2 f1 +3)

< 4( f2− 1
2 f1 +2)(− 1

2 f1−1)< 0.
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The following step is to check the upper bound ỹ = 1 for
k > 2. We obtain that

Vki −Vki−1 = 1+2b f1 [y1− (k−1)]

+ 2b
k (1− y1) [1−d4y1− e4]− 2

k [y1− (k−1)] [1−d4y1− e4]

− f1 [y1− (k−1)]2− y2
1. (28)

and we need to show this expression is negative. The
expression has the form:

ãy2
1 + b̃y1 + c̃. (29)

Here we have:

ã = (2b+1) f1−1+ 2
k (b+1)(1+ f2− f1),

b̃ =−(b+1)k f1 +b(3 f1−2 f2)−2−4 f2 +5 f1

+ 1
k (−4b−4 f1 +4 f2),

c̃ = k(−b f1 +2 f2−2 f1)+3+4 f1−4 f2 +b(2 f2− f1)

+ 2
k (b−1)(1− f2 + f1).

Since ã = ā we already showed that ã is negative. In the
proof of Lemma 2 with y1 ≥ 1 we already established that
for y1 = 1 we have:

Vki −Vki−1 < 0.

On the other hand for y1 =−1 we have:

ã− b̃+ c̃ = k(2 f2− f1)+2b(2 f2− f1)+4+
8b
k
.

For k = 3 we get:

6 f2−3 f1 +12− 4
f2

f1 +
16
3 f2

= 6 f2− (3+ 4
f2
) f1 +12+ 16

3 f2

< 6 f2−2 f1 +12+ 16
3 f2

,

This upper bound equals:
2
3 (2 f2−3 f1)+

1
3 f2

( f2 +2)(14 f2 +8)< 0,

where we used that 2 f2−3 f1 < 0 from (6) and f2 <−2. For
k > 3 we have:

ã− b̃+ c̃ < k(2 f2− f1)+2b(2 f2− f1)+4
≤ 4(2 f2− f1)+2b(2 f2− f1)+4

= 8 f2−4(1+ 1
f2
) f1 +12

< 8 f2− 8
3 f1 +12 < 0.

It remains to show that the maximum of (29) is also negative
if (29) attains its maximum in the interior. As before, we note
that the maximum is less than c̃− ã and we get

c̃− ã = k[−(b+2) f1 +2 f2]+3(1−b) f1 +2(b−2) f2

+4+ 4
k [b( f1− f2)−1].

For k = 3 we get:

c̃− ã =−( 28
3 f2

+3) f1 +2 f2 +4 < 1
9 f1 +2 f2 +4 < 0

while for k > 3 we get:

c̃− ã < 4[−(b+2) f1 +2 f2]+3(1−b) f1 +2(b−2) f2 +4
=−(7b+5) f1 +4( f2 +2).

If 7b+ 5 < 0 then this expression is negative since f1 < 0
and f2 <−2. On the other hand, if 7b+5 > 0 then

−(7b+5) f1 +4 f2 +8 < 28
f2
+4 f2 +18 < 22

f2
+4 f2 +16

= 2
f2

(
2( f2 +2)2 +3

)
< 0

since f1 ∈ (−2,0) and f2 ∈ (−3,−2). This completes the
proof of Lemma 2 with y1 ∈ [−1,1] and f 2

2 +4 f1 ≥ 0.
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