Derivation of an optimal boundary layer width for the smooth variable structure filter | IEEE Conference Publication | IEEE Xplore

Derivation of an optimal boundary layer width for the smooth variable structure filter


Abstract:

In this paper, an augmented form of the smooth variable structure filter (SVSF) is proposed. The SVSF is a state estimation strategy based on variable structure and slidi...Show More

Abstract:

In this paper, an augmented form of the smooth variable structure filter (SVSF) is proposed. The SVSF is a state estimation strategy based on variable structure and sliding mode concepts. It uses a smoothing boundary to remove chattering (excessive switching along an estimated state trajectory). In its current form, the SVSF defines the boundary layer by an upper-bound on the uncertainties present in the estimation process (i.e., modeling errors, magnitude of noise, etc.). This is a conservative approach as one would be limiting the gain by assuming a larger smoothing boundary subspace than what is necessary. A more well-defined boundary layer will yield more accurate estimates. This paper derives a solution for an optimal boundary layer width by minimizing the trace of the a posteriori covariance matrix. The results of the derivation are simulated on a linear mechanical system for the purposes of control, and compared with the Kalman filter.
Date of Conference: 29 June 2011 - 01 July 2011
Date Added to IEEE Xplore: 18 August 2011
ISBN Information:

ISSN Information:

Conference Location: San Francisco, CA, USA

References

References is not available for this document.