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Abstract

We consider nonlinear control systems for which there exist some
structural obstacles to the design of classical continuous stabilizing
feedback laws. More precisely, it is studied systems for which the
backstepping tool for the design of stabilizers can not be applied. On
the contrary, it leads to feedback laws such that the origin of the
closed-loop system is not globally asymptotically stable, but a suitable
attractor (strictly containing the origin) is practically asymptotically
stable. Then, a design method is suggested to build a hybrid feedback
law combining a backstepping controller with a locally stabilizing con-
troller. The results are illustrated for a nonlinear system which, due
to the structure of the system, does not have a priori any globally
stabilizing backstepping controller.

1 Introduction

Over the years, research in control of nonlinear dynamical systems has lead
to many different tools to design (globally) asymptotically stabilizing feed-
backs, see e.g. [8, 18, 19]. Usually these techniques require to impose special
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Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne;
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structure on the control systems. Depending on the assumptions made on
the model, the designer may use high-gain approaches (as in [13]), a back-
stepping technique (see [8, 20, 24]) or a forwarding approach (consider e.g.,
[17, 21, 31]), among others design methods. Unfortunately, in presence of
unknown parameters or unstructured dynamics, these classical design meth-
ods may fail and some structural obstacles to large regions of attraction may
exist. Examples of such systems are the partially linear cascades systems,
considered e.g. in [5, 28] and [32], for which the local stabilization is linear
but a perturbation may cause finite escape time, if some parts are not prop-
erly controlled. This phenomenon, so-called slow-peaking, has been studied
(e.g. in [29, 30]) to design global stabilizers.

For such systems where the classical backstepping techniques can not be
applied, the approach presented may solve the problem by combining a back-
stepping feedback law with a locally stabilizing controller. More precisely,
it is designed a hybrid feedback law to blend both kinds of controllers. The
backstepping controller renders a suitable compact set globally attractive,
whereas the local one is assumed to have its basin of attraction containing
the attractor of the system in closed-loop with the backstepping controller.
The main result can thus be seen as a design techniques of hybrid feedback
laws for systems, which a priori do not have classical nonlinear stabilizing
controllers. The use of hybrid stabilizers for systems which do not have con-
tinuous stabilizers, is by now classical (see e.g., [14, 22, 25]). This approach
has been particularly fruitful for control systems that do not satisfy the
Brockett’s condition [6] that is a necessary topological condition for the exis-
tence of a continuous stabilizing feedback (see in particular [9, 10, 15, 16, 26]).
The considered class of hybrid feedback laws has the advantage to guarantee
a robustness property with respect to measurement noise, actuators errors
(see [27] and also [12] for related issues).

Best to our knowledge this is the first work suggesting a design method
to adapt the backstepping technique to a given local controller in the context
of hybrid feedback laws. Other works do exist in the context of continuous
controllers (e.g., see [23] where a backstepping controller is blent with an
LQ controller, and consider [1] where, using control Lyapunov functions, a
globally stabilizing controller is combined with a local optimal controller).
In contrast to these works, for the class of systems considered in this paper,
a priori no continuous stabilizing controller does exist.

This paper is organized as follows. In Section 2, we introduce precisely the
problem under consideration in this paper and the class of controllers that
will be used to solve this problem. In Section 3 the main result is stated,
that is the existence of a hybrid feedback law combining a backstepping
controller with a local stabilizer. In Section 4, the main result is illustrated
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on an example, and it is designed such a hybrid feedback law for a system for
which the classical backstepping approach can not be applied. All technical
proofs are collected in Section 5, and Section 6 contains some concluding
remarks.

The proof of some results has been removed due to space limitation.

2 Problem statement

Consider the nonlinear system
{

ẋ1 = f1(x1, x2) + h1(x1, x2, u)
ẋ2 = f2(x1, x2)u+ h2(x1, x2, u),

(1)

where (x1, x2) ∈ R
n−1×R, u ∈ U is an admissible input. The functions f1, f2,

h1 and h2 are locally Lipschitz continuous. Furthermore, the functions satisfy
f1(0, 0) = h1(0, 0, 0) = h2(0, 0, 0) = 0 and f2(x1, x2) 6= 0, ∀(x1, x2) ∈ R

n.
In a more compact notation, we denote system (1) by ẋ = fh(x, u). Fur-

thermore, when h1 ≡ 0 and h2 ≡ 0 we write ẋ = f(x, u).

2.1 Assumptions

The first assumption concerns the local stabilizability around the origin of
system (1). More precisely,

Assumption 1. (Local stabilizability) There exist a C1 positive definite and
proper function Vℓ : R

n → R≥0, a continuous function ϕℓ : R
n → R and a

positive constant vℓ such that,

∂xVℓ(x) · fh(x, ϕℓ(x)) < 0 , ∀x ∈ {x : 0 < Vℓ(x) ≤ vℓ}.
Note that, when the first order approximation of system (1) is control-

lable, Assumption 1 is trivially satisfied. Indeed, if the couple of matrices
(A,B), with A = ∂xfh(0, 0) and B = ∂ufh(0, 0) is controllable, then there
exist matrices P > 0 and K such that Vℓ(x) = xTPx and ϕℓ(x) = Kx. Thus
Assumption 1 holds with a sufficiently small positive constant vℓ.

The second hypothesis provides estimates on terms which prevents us-
ing the traditional backstepping method. More precisely, this assumption
concerns the global stabilizability of the system

ẋ1 = f1(x1, x2) (2)

with x2 as an input and bounds of functions h1 and h2. This assumption
will be also useful to state a global practical stability property of (1) (see
Proposition 3.1 below).
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Assumption 2. There exist a C1 proper and positive definite function V1 :
R

n−1 → R≥0, a C1 function ϕ1 : Rn−1 → R such that ϕ1(0) = 0, a locally
Lipschitz K∞ function α : R≥0 → R≥0, a continuous function Ψ : Rn → R

and two positive constants ε < 1 and M such that the following properties
hold.

1. (Stabilizing controller ϕ1 for (2)) ∀x1 ∈ R
n−1,

∂x1
V1(x1) · f1(x1, ϕ1(x1)) ≤ −α(V1(x1)).

2. (Estimation on h1) ∀(x1, x2, u) ∈ R
n−1 × R× R,

Lh1
V1(x1, ϕ1(x1), u) ≤ (1− ε)α(V1(x1))

+εα(M), (3)

|h1(x1, x2, u)| ≤ Ψ(x1, x2) (4)

3. (Estimation on ∂x2
h1) ∀(x1, x2, u) ∈ R

n−1 × R× R,

|∂x2
h1(x1, x2, u)| ≤ Ψ(x1, x2). (5)

4. (Estimation on h2) ∀(x1, x2, u) ∈ R
n−1 × R× R,

|h2(x1, x2, u)| ≤ Ψ(x1, x2). (6)

As we will see in this work, it is not necessary that ϕ1 be C1 in a neigh-
borhood of the origin because, in such a region, we use the local controller
ϕℓ.

Before introducing the third assumption, let us denote A the subset of
R

n defined by

A = {(x1, x2) ∈ R
n : V1(x1) ≤ M, x2 = ϕ1(x1)}. (7)

Note that since, by Assumption 2, the function V1 is proper, this set is
compact. Moreover, it will be proven below (see Proposition 3.1) that with
the other items of Assumption 2 a controller to (1) can be designed such
that A is globally practically stable to the system in closed-loop with this
controller.

The last assumption describes thatA is included in the basin of attraction
of the controller ϕℓ.

Assumption 3. (Inclusion assumption)

max x∈AVℓ(x) < vℓ . (8)
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The problem under consideration in this paper is the design of a controller
such that the origin is globally asymptotically stable for (1). Due to the
presence of the functions h1 and h2 and their dependence with respect to u,
a classical backstepping can not be achieved to compute a global stabilizer.1

However we succeed to design a controller rendering a compact set glob-
ally asymptotically stable to (1) in closed-loop. Then a natural approach is
to combine this controller with a local feedback law given by Assumption 1.
Global asymptotical stabilization of the origin of Rn can be achieved by con-
sidering a hybrid controller which blends the different controllers according
to each basin of attraction. The strategy is similar to that one developed in
[25], namely, we divide the continuous state space in two open sets introduc-
ing a region with hysteresis. This asks to make precise the class of controllers
under consideration in this paper.

2.2 Class of controllers

Definition 2.1. A hybrid feedback law to (1), denoted by IK, consists of

• a totally ordered countable set Q;

• for each q ∈ Q,

– closed sets Cq ⊂ R
n and Dq ⊂ R

n such that Cq ∪Dq = R
n;

– a continuous function ϕq : Cq → R;

1 More precisely, following the classical basckstepping approach, let us assume that item
1 of Assumption 2 holds and let us consider the Lyapunov function candidate V (x1, x2) =
V1(x1) +

1

2
(x2 − ϕ1(x1))

2. We compute along the solutions of (1), for all (x1, x2, u) in
R

n−1 × R× R,

V̇ ≤ −α(V1(x1)) + [x2 − ϕ1(x1)] [f2(x1, x2)u+ h2(x1, x2, u)

−∂ϕ1

∂x1

(x1) · (f1(x1, x2) + h1(x1, x2, u))

+∂V1

∂x1

(x1) ·
∫
1

0
f1(x1, sx2 − (1− s)ϕ1(x1))ds

]

+∂V1

∂x1

(x1) · h1(x1, x2, u) .

And thus to get an term (x2 − ϕ1(x1))
2 in the right-hand side of this inequality, it is

natural to look for a control u = u(x1, x2) satisfying the following identity, for all (x1, x2)
in R

n−1 × R,

f2(x1, x2)u + h2(x1, x2, u)− ∂ϕ1

∂x1

(x1) · (f1(x1, x2) + h1(x1, x2, u))

+∂V1

∂x1

(x1) ·
∫
1

0
f1(x1, sx2 − (1− s)ϕ1(x1))ds = −k (x2 − ϕ1(x1))

for some positive value k. However this equation is implicit in the variable u due to
dependance of h1 and of h2 with respect to u. Therefore it seems to us that the classical
backstepping cannot be achieved to compute a stabilizer for (1).
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– an outer semi-continuous2, and locally bounded3, uniformly in q,
set-valued mapping Gq : Dq ⇒ Q with non-empty images,

such that the family {Cq}q∈Q is locally finite and covers Rn.

System (1) in closed loop with IK lies in the class of hybrid systems as
considered in e.g., [3]. It is defined as the hybrid system

IH :

{
ẋ = fh(x, ϕq(x)), x ∈ Cq

q+ ∈ Gq(x), x ∈ Dq.
(9)

Note that the state space of IH is Rn ×Q.

Definition 2.2. A hybrid time domain S ⊂ R≥0×N, is the union of finitely
of infinitely many time intervals [tj , tj+1] × {j}, where the sequence {tj}j≥0

in nondecreasing, with the last interval, if it exists, possibly of the form [t, T )
with T finite or T = ∞.

Definition 2.3. A solution to IH with initial condition (x(0, 0), q(0, 0)) =
(x0, q0) consists of

• A hybrid time domain S 6= ∅;

• A function x : S → R
n, where t 7→ x(t, j) is absolutely continuous, for

a fixed j, and constant in j for a fixed t over (t, j) ∈ S;

• A function q : S → Q such that q(t, j) is constant in t, for a fixed j

over (t, j) ∈ S;

meeting the conditions

S1) x(0, 0) ∈ Cq(0,0) ∪Dq(0,0);

S2) ∀j ∈ N and æ t such that (t, j) ∈ S,

q̇(t, j) = 0, ẋ(t, j) ∈ Fq(t,j)(x(t, j)), x(t, j) ∈ Cq(t,j);

2a set-valued mapping F : Rm
⇒ R

n is said to be outer semicontinuous if each sequence
(xi, fi) in R

m × R
n that satisfies fi ∈ F (xi) for each i, and converges to a point (x, f) in

R
m × R

n has the property that f ∈ F (x).
3a set-valued mapping F : Rm

⇒ R
n is said to be locally bounded if, for each compact

set K1 ⊂ R
n, there exists a compact set K2 ⊂ R

n such that F (K1) :=
⋃

x∈K1
⊂ K2.

The boundedness is said to be uniform with respect to a parameter if the set K2 can be
selected uniformly with respect to this parameter.
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S3) ∀(t, j) ∈ S such that (t, j + 1) ∈ S

x(t, j + 1) = x(t, j), q(t, j + 1) ∈ Gq(t,j)(x(t, j)),
x(t, j) ∈ Dq(t,j).

From now on, we will refer to the domain of a solution (x, q) to IH as
dom(x, q). A solution (x, q) to IH is called maximal if it cannot be extended,
i.e., does not exists any solution defined on a larger domain of definition and
equal to (x, q) on dom(x, q). A solution is complete if its domain is unbounded.

During flows, x evolves according to the differential equation ẋ = fh(x, ϕq(x)),
x ∈ Cq while q remains constant. During jumps, q evolves according to the
difference inclusion q+ ∈ Gq(x), x ∈ Dq while x remains constant.

Remark 2.4. Note that a sufficient condition for the existence of a hybrid
stabilizer for (1) is the global asymptotic controllability (see [27], Theorem
3.7 for more details).

Together with locally Lipschitz continuity assumption, we consider the
Filippov regularization of (1) which assures existence, uniqueness and bounded
dependence on the initial condition for solutions of IH. Moreover, IH is robust
and its solution behaves as follows: it is either complete or blows in a finite
hybrid domain time or eventually jumps out of Cq ∪Dq, q ∈ Q. For further
information, see [2], [4], [7], [11] and [12].

We can now define the notion of stability needed to design the controller
for the hybrid closed loop system.

Definition 2.5.

• A set A ⊂ R
n is stable for IH if ∀ε > 0, ∃δ > 0 such that any solution

(x, q) to (9) with |x0|A ≤ δ satisfies |x(t, j)|A ≤ ε, for all (t, j) ∈
dom(x, q);

• A set A ⊂ R
n is attractive for IH if there exists δ > 0 such that

– for all (x̄, q̄) ∈ R
n × Q with |x̄|A ≤ δ there exists a solution to IH

with (x, q)(0, 0) = (x̄, q̄);

– for any maximal solution (x, q) to IH with |x(0, 0)|A ≤ δ we have
|x(t, j)|A → 0 as t → sup t(dom(x, q)).

• The set A ⊂ R
n is asymptotically stable if it is stable and attractive;

• The basin of attraction, denoted by IBIH(A), is the set of all x̄ ∈ R
n

such that for all q̄ ∈ Q, there exists a solution to IH with x(0, 0) =
x̄, q(0, 0) = q̄ and any such solution that is also maximal satisfies
|x(t, j)|A → 0 as t → sup t dom(x, q);
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• The set A ⊂ R
n is globally asymptotically stable if IBIH(A) = R

n.

3 Main result

Let us denote the unit closed ball in R
n by B. Before stating our main result,

let us first solve a preliminary design problem by adapting the backstepping
technique:

Proposition 3.1. Under Assumption 2, the set A defined by (7) is globally
practically stabilizable, i.e. for each a > 0 there exists a continuous controller
ϕg such that the set A+aB contains a set that is globally asymptotically stable
for system (1) in closed-loop with ϕg.

We are now in position to state our main result.

Theorem 1. Let vℓ and ṽℓ be two positive constants satisfying 0 < ṽℓ <

vℓ. Under Assumptions 1, 2 and 3 there exists a > 0 such that the hybrid
controller IK defined by Q = {1, 2}, subsets

C1 = {(x1, x2) ∈ R
n−1 × R : Vℓ(x1, x2) ≤ vℓ},

C2 = {(x1, x2) ∈ R
n−1 × R : Vℓ(x1, x2) ≥ ṽℓ},

Dq = (Rn−1 × R) \ Cq, ∀q = 1, 2,

controllers C1 ∋ (x1, x2) 7→ ϕ1(x1, x2) = ϕℓ(x1, x2) ∈ R and C2 ∋ (x1, x2) 7→
ϕ2(x1, x2) = ϕg(x1, x2, a) ∈ R and set-valued mapping Dq ∋ (x1, x2) 7→
Gq(x1, x2) = {3− q}, q ∈ Q, renders the origin globally asymptotically stable
for (1) in closed-loop with IK.

Let us emphasize that this result is more than an existence result since its
proof allows to design a suitable hybrid feedback law. Let us sketch the proof
of Theorem 1. First, we use Assumption 2, and Proposition 3.1 is applied
to design a controller, denoted ϕg, such that the set A is globally practically
stable for the system (1) in closed-loop with ϕg. Using Assumptions 1 and
3, this set is shown to be included in the basin of attraction of the system
(1) in closed-loop with ϕℓ. Then we design a hybrid feedback law based on
an hysteresis of both controllers ϕℓ and ϕg on appropriate sets. This latter
construction is adapted from other works like [11] or [25]. The complete
proof of Theorem 1 is in Section 5 below.
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4 Illustration

Before applying the main result of this paper, let us first consider the follow-
ing example in R

2 {
ẋ1 = x1 + θx2

1 + x2

ẋ2 = u
, (10)

where θ is a positive constant.
This system is in backstepping form and many references on how to design

a global stabilizer are presented in the literature, for instance, the reader may
see [8, 18], and [19]. Following this approach, in a first step, we consider the
two smooth functions ϕ1(x1) = −(1+ c1)x1− θx2

1 and V1(x1) =
1
2
x2
1 where c1

is a positive constant. It can be checked that this function is such that, for
all x1 in R,

∂x1
V1(x1)

[
x1 + θx2

1 + ϕ1(x1)
]
= −2c1V1(x1) . (11)

This gives the control law, for all (x1, x2) in R
2,

ϕb(x1, x2) = −(1 + c1 + 2θx1)(x1 + θx2
1 + x2)

−x1 − c2 (x2 + (1 + c1)x1 + θx2
1)

which is such that along the solutions of (10),

V̇b(x1, x2) = −c1x
2
1 − c2 (x2 + (1 + c1)x1 + θx2

1)
2

where Vb(x1, x2) = V1(x1) +
1
2
(x2 + (1 + c1)x1 + θx2

1)
2.

However the backstepping technique cannot be applied to the following
system: {

ẋ1 = x1 + x2 + θ[x2
1 + (1 + x1)sin (u)]

ẋ2 = u
(12)

due to the presence of the term (1 + x1)sin (u) in the time-derivative of x1

(recall the discussion in Footnote 1). Therefore, it is necessary to revise the
controller design for (1) and to apply Theorem 1. With obvious definitions
of the functions f1, f2, h1 and h2, system (12) may be rewritten as system
(1) and system (10) may be rewritten as ẋ = f(x, u). There exists θ > 0
sufficiently small such that we may apply Theorem 1. Indeed we have the
following result.

Lemma 4.1. Let θ be a positive constant. If θ is sufficiently small, then
Assumptions 1, 2, and 3 hold for system (12).

The proof has been removed due to space limitation.
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Combining this result with Theorem 1, we may design a hybrid feedback
law IK such that the origin is globally asymptotically stable to (12) in closed-
loop with IK.

Let us consider the following parameters θ = 10−3, ρ = 2, c1 =
(2+ρ)θ

2
+1 =

1.0020, a = 10 and c = 10. Item 1 of Assumption 2 is satisfied with α(s) =
2c1s, ∀s ≥ 0. Item 2 is satisfied with positive constants ε = 1−θ 2+ρ

2c1
= 0.998

and M = θ
2ρ(2c1−θ(2+ρ))

= 1.25 × 10−4 . Items 3 and 4 are satisfied with

Ψ(x1, x2) = θ(1 + |x1|).
Since the pair of matrices (A,B) = (∂xfh(0, 0), ∂ufh(0, 0)) is controllable,

Assumption 1 holds with ϕℓ(x) = k1x1 + k2x2, where k1 = −5 − θ and
k2 = −3 + 3θ + θ2, Vℓ(x) = 1

2
(x1 − θx2)

2 + 1
2
(2x1 + (1 − 2θ)x2)

2 and vℓ =(
2

θp(θ)

)2

= 0.1042. Moreover, in the set defined by

A = {(x1, x2) ∈ R
2 : |x1| ≤

√
2.5× 10−4, x2 = ϕ1(x1)}.

we may check that

max x∈AVℓ(x1, x2) = 0.0001 < vℓ,

and thus Assumption 3 holds. Following Proposition 3.1 and Theorem 1, we
may define a hybrid controller. More precisely, computing k = 2M+a

a2
= 0.2,

we define the global controller

ϕg(x1, x2) =
ũ
k
− (1 + c1 + 2θx1)(x1 + θx2

1 + x2) +
x1

2k
,

where ũ = (x1 − ϕ1(x1))
[
−c− c

4
∆(x1, x2)

2
]
and

∆(x1, x2) = |x1|θ(1 + |x1|) + θ(1 + |x1|)
·k(1 + |(1 + c1)x1 + θx2

1|)
Then, letting ṽℓ = 0.05, the origin is globally asymptotically stable for

(12) in closed-loop with the hybrid controller IK defined as in Theorem 1.
Let us check this property on numerical simulations. To do that, we

consider the initial condition x1(0, 0) = 0.5, x2(0, 0) = 0.1 and q(0, 0) = 1.
See Fig. 1 for the time evolution of the x1, x2 and q components of the
solution of (12) in closed-loop with IK. First the system (12) is in closed-
loop with the controller ϕg (for continuous time between 0 and 0.5314). Then
the system (12) is in closed-loop with the controller ϕℓ, and the solution
converges to the origin.
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Figure 1: At top, time evolution of x1, at middle, time evolution of x2 and,
at bottom, time evolution of q.

5 Proof of Theorem 1

5.1 Proof of Proposition 3.1

Proof. Let a be a positive value. We wish to show that there exists a con-
tinuous controller ϕg such that A + aB contains a set that is globally and
asymptotically stable.

First of all, note that if we introduce the function r1(x1, x2, u) = f1(x1, x2)+
h1(x1, x2, u), we get with Item 1 and Item 2 of Assumption 2 that along the
solutions of (1), we have for all (x1, x2) in R

n and u in R,

V̇1(x1) ≤ ε[α(M)− α(V1(x1))]
+∂x1

V1(x1) · [r1(x1, x2, u)− r1(x1, ϕ1(x1), u)]
(13)

Moreover, with the C1 function ηx1,x2
(s) = sx2 + (1− s)ϕ1(x1), it yields

∂sr1(x1, ηx1,x2
(s), u) = ∂x2

r1(x1, ηx1,x2
(s), u)(x2 − ϕ1(x1)) ,
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which implies

r1(x1, x2, u)− r1(x1, ϕ1(x1), u) = (x2 − ϕ1(x1))∫ 1

0
∂x2

r1(x1, ηx1,x2
(s), u) ds.

Hence, Equation (13) becomes,

V̇1(x1) ≤ ε[α(M)− α(V1(x1))]

+(x2 − ϕ1(x1))∂x1
V1(x1) ·

∫ 1

0
∂x2

r1(x1, ηx1,x2
(s), u) ds.

Let V (x) = V1(x1)+
k
2
(x2−ϕ1(x1))

2 for all (x1, x2) in R
n with k = 2M+a

a2
.

Let a′ be a positive value such that V1(x1) ≤ a′ implies x1 ∈ {x′
1 : V1(x

′
1) ≤

a′}+ aB, in other words, a′ is such that

V1(x1) ≤ a′ ⇒ ∃x′
1 s.t. V1(x

′
1) ≤ a′ and |x1 − x′

1| ≤ a .

Such positive value a′ exists since V1 is assumed to be a proper function. Let
ã = min {a, a′}. With these definitions of k and a′, we get

{x : V (x) ≤ M + ã} ⊂ A+ aB (14)

Consider now the control ϕg defined for all ũ in R as in Proposition 3.1.
Along the solutions of (1) with u = ϕg(x1, x2, ũ), it yields for all (x1, x2)

in R
n and ũ in R,

V̇ (x) ≤ ε[α(M)− α(V1(x1))] + (x2 − ϕ1(x1))[ũ

+Υ(x1, x2, u)],

where

Υ(x1, x2, u) = ∂x1
V1(x1) ·

∫ 1

0
∂x2

h1(x1, ηx1,x2
(s), u) ds

+kh2(x1, x2, u)− k∂x1
ϕ1(x1)h1(x1, x2, u).

With Item 2, 3 and 4 of Assumption 2, the function Υ satisfies |Υ(x1, x2, u)| ≤
∆(x1, x2) with

∆(x1, x2) = |∂x1
V1(x1)|

∫ 1

0
Ψ(x1, ηx1,x2

(s)) ds (15)

+Ψ(x1, x2)k(1 + |∂x1
ϕ1(x1)|)

Using a particular case of the Cauchy-Schwartz inequality (i.e. α ≤ 1
c
+ c

4
α2),

we get, for all c > 0

(x2 − ϕ1(x1))Υ(x1, x2, u) ≤ 1
c

+ c
4
(x2 − ϕ1(x1))

2∆(x1, x2)
2.
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Consequently, it implies, that by taking

ũ = (x2 − ϕ1(x1))
[
−c− c

4
∆(x1, x2)

2
]
, (16)

it yields along the solutions of

ẋ = f(x, ϕg(x1, x2, ũ)) . (17)

and for all (x1, x2) in R
n,

V̇ (x) ≤ ε[α(M)− α(V1(x1))] +
1
c
− c(x2 − ϕ1(x1))

2 . (18)

Note that for all c ≥ 1, it gives,

V̇ (x) ≤ ε[α(M)− α(V1(x1))] + 1− (x2 − ϕ1(x1))
2 .

The function V1 being proper, the set A1 ⊂ R
n defined by

A1 = {x, εα(V1(x1)) + (x2 − ϕ1(x1))
2 ≤ εα(M) + 1} ,

is compact. Moreover, selecting c > 1, we get, along the solutions of (17),
V̇ (x) < 0, for all x such that V (x) ≥ ζ , where ζ is the positive value defined
as ζ = max x∈A1

{V (x)}. Consequently, for all c > 1, the set {x, V (x) ≤ ζ} is
globally asymptotically stable for (17).

The function α being locally Lipschitz, we can define Kα its Lipschitz
constant in the compact set {x, V (x) ≤ ζ}. Hence, for all x in {x, V (x) ≤ ζ},
it yields,

|α(V1(x1))− α(V (x))| ≤ kKα

2
(x2 − ϕ1(x1))

2 .

Consequently, with (18) and c > 1, we get along the solutions of (17), for all
x such that V (x) ≤ ζ ,

V̇ (x) ≤ ε[α(M)− α(V (x))] + 1
c

−
(
c− εkKα

2

)
(x2 − ϕ1(x1))

2 .

Finally, taking c > cg where

cg = max

{
1

ε[α(M+ã)−α(M)]
, εkKα

2
, 1
}
,

it gives, along the trajectories of (17), for all x such that V (x) ≤ ζ , V̇ (x) ≤
ε [α(M + ã)− α(V (x))].

Therefore, with c > cg, for all x such that ζ ≥ V (x) > M + ã, we get
along the solutions of (17), V̇ (x) < 0. Since cg > 1 the same control gives
also V̇ (x) < 0 for all x such that V (x) ≥ ζ . Therefore the set {x, V (x) ≤
M + ã} in an attractor for system (1) in closed-loop with u = ϕg(x1, x2, ũ).
Consequently, with (14), the set A + aB contains a set that is globally and
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asymptotically stabilizable with the control law ϕg(x1, x2) = ϕg(x1, x2, ũ)
where ũ is defined in (16) and c > cg. This concludes the proof of Proposition
3.1.

5.2 Proof of Theorem 1

Proof. Since Assumption 2 holds, Proposition 3.1 applies. Let us choose the
positive real number 0 < a such that

max x∈A+aBVℓ(x) < ṽℓ . (19)

Such values exist since Assumption 3 holds, and since Vℓ is a proper function.
Let us consider the controller ϕg given by Proposition 3.1 with this value

of a.
Let us design a hybrid feedback law IK defining it as in Theorem 1, i.e.,

building an hysteresis of ϕℓ and ϕg on appropriate domains (see also [11] or
[25] for similar concepts applied to different control problems).

Consider an initial condition (x(0, 0), q(0, 0)) in R
n × Q, and a maxi-

mal solution (x, q) of (1) in closed-loop with the hybrid feedback law IK =
(Q, (Cq, Dq, ϕq)q=1,2). Let us assume, for the time-being, the following

Lemma 5.1. There exists a hybrid time (t̄, j̄) in dom(x, q) such that q(t̄, j̄) =
1 and x(t̄, j̄) in C1.

Now, recalling (19) and using Assumption 1, the sets C1 is forward in-
variant for system (1) in closed-loop with ϕℓ. Thus with Lemma 5.1, we get
that (1) in closed-loop with the hybrid feedback law IK is globally asymptot-
ically stable (since system (1) in closed-loop with ϕℓ is locally asymptotically
stable).

Therefore to conclude the proof of Theorem 1, it remains to prove Lemma
5.1. Let us prove this result by assuming the converse and exhibiting a
contradiction. More precisely, let us assume that, for all (t, j) in dom(x, q),

x(t, j) 6∈ C1 or q(t̄, j̄) = 2 . (20)

Thus, due to the expression of D2, for all (t, j) in dom(x, q), we have

x(t, j) ∈ D2 \ C1 or q(t̄, j̄) = 2 . (21)

If there is a time such that x(t̄, j̄) ∈ D2 \C1 and q(t̄, j̄) = 1, then a jump
occurs for the q-variable and, due to the expression of G1, x(t̄, j̄ + 1) ∈ C1

and q(t̄, j̄+1) = 2, which is a contradiction with (20). Therefore, if x(t̄, j̄) ∈
D2 \ C1, then q(t̄, j̄) = 2. Thus we get with (21), for all (t, j) in dom(x, q),
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x(t, j) ∈ D2 and q(t̄, j̄) = 2. Therefore the x-component is a solution of (1)
in closed-loop with ϕg with does not enter C1. Since, with (19), C1 strictly
contains the set A, we get the existence of a solution of (1) in closed-loop
with ϕg which does not converge to A+aB. This is a contradiction with the
choice of the controller ϕg satisfying the conclusion of Proposition 3.1.

This concludes the proof of Theorem 1.

6 Conclusion

A new design method has been suggested in this paper to combine a backstep-
ping controller with a local feedback law. The class of designed controllers
lies in the set of hybrid feedback laws. It allows us to define a stabilizing con-
trol law for nonlinear control systems for which there exist some structural
obstacles to the existence of classical continuous stabilizing feedback laws.
More precisely, it is studied systems for which the backstepping tool for the
design of stabilizers can not be applied.
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stabilization of nonlinear cascade systems, 41 (1996), no. 12, 1723–1735.

[18] H. K. Khalil, Nonlinear systems, 2nd ed., Macmillan Publishing Com-
pany, 1992.
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