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Abstract— The eigenvalue spectrum of the adjacency matrix
of a network is closely related to the behavior of many dynami-
cal processes run over the network. In the field of robotics, this
spectrum has important implications in many problems that
require some form of distributed coordination within a team of
robots. In this paper, we propose a continuous-time control
scheme that modifies the structure of a position-dependent
network of mobile robots so that it achieves a desired set of
adjacency eigenvalues. For this, we employ a novel abstraction
of the eigenvalue spectrum by means of the adjacency matrix
spectral moments. Since the eigenvalue spectrum is uniquely
determined by its spectral moments, this abstraction provides
a way to indirectly control the eigenvalues of the network. Our
construction is based on artificial potentials that capture the
distance of the network’s spectral moments to their desired
values. Minimization of these potentials is via a gradient descent
closed-loop system that, under certain convexity assumptions,
ensures convergence of the network topology to one with the
desired set of moments and, therefore, eigenvalues. We illustrate
our approach in nontrivial computer simulations.

I. INTRODUCTION

A wide variety of coordinated tasks performed by teams
of mobile robots critically rely on the topology of the un-
derlying communication network and its spectral properties.
Examples include, cooperative manipulation [1]–[3], surveil-
lance and coverage [4]–[6], distributed averaging [7]–[9], for-
mation control [10]–[12], flocking [13, 14], and multi-robot
placement [15]–[17], that all require some form of network
connectivity, structure and, oftentimes, spectral properties. In
this paper we address the problem of controlling a network
of mobile robots to a topology with a desired eigenvalue
spectrum. This effort is a first step towards the design of
controllers that allow robots to perform their assigned tasks,
while optimizing coordination within the team.

The eigenvalue spectra of a network provide valuable
information regarding the behavior of many dynamical pro-
cesses running within the network [18]. For example, the
eigenvalue spectra of the Laplacian and adjacency matrices
of a graph affects the mixing speed of Markov chains [19],
the stability of synchronization of a network of nonlinear
oscillators [20, 21], the spreading of a virus in a network
[22, 23], as well as the dynamical behavior of many decen-
tralized network algorithms [24]. Similarly, the second small-
est eigenvalue of the Laplacian matrix (also called spectral
gap) is broadly considered a critical parameter that influences
the stability and robustness properties of dynamical systems
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that are implemented over information networks [25, 26].
Optimization of the spectral gap has been studied both in a
centralized [27]–[29] and decentralized context [30].

In this paper, we propose a novel framework to control
the structure of a network of mobile robots to achieve a
desired eigenvalue spectrum. In particular, we focus on the
spectrum of the weighted adjacency matrix of the network,
with weights that are (decreasing) functions of the inter-
robot distances. This construction is relevant, for example,
in modeling the signal strength in wireless communication
networks. Although our framework performs well with dif-
ferent distance metrics, in this paper, we focus on the `1
norm (Manhattan distance) primarily for analytical reasons,
since its composition with convex functions preserves their
convexity. Additionally, this metric has potential applications
in indoor navigation where the presence of obstacles forces
the signals to propagate in grid-like environments.

We employ a novel abstraction of the eigenvalue spectrum
in terms of the associated spectral moments, and define
artificial potentials that capture the distance between the
network’s spectral moments and their desired values. These
potentials are minimized via a gradient descent algorithm,
for which we show convergence to the globally optimal mo-
ments. Since the eigenvalue spectrum is uniquely determined
by the associated spectral moments, our approach provides
a way to indirectly control a network’s eigenvalues. This
work is related to [31], which addresses a similar problem
for static robots in discrete environments. This formulation,
however, is more appropriate for robotics applications, where
communication depends continuously on the robot motion.

The rest of this paper is organized as follows. In Section II-
A, we introduce some graph-theoretical notation and useful
results. In Section II-B, we formulate the control problem
under consideration. We introduce an artificial potential and
derive the associated motion controllers in Section III-A
and discuss convergence of our approach in Section III-B.
Finally, in Section IV, we illustrate our approach with several
computer simulations.

II. PRELIMINARIES & PROBLEM DEFINITION

A. Notation and Preliminaries

In this section we introduce some nomenclature and results
needed in our exposition. Let G = (V ,E ,W ) denote a
weighted undirected graph, with V = [n] being a set of n
nodes, E ⊆ V ×V a set of e undirected edges, and W ∈Re

+

a set of weights associated to the edges. If {i, j} ∈ E we call
nodes i and j adjacent (or neighbors), which we denote by
i ∼ j. In this paper, we consider graphs without self-loops,
i.e., {i, i} 6∈ E for all i ∈ V . We denote by ai j = a ji ∈R+ the
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weight associated with edge {i, j} ∈ E , and assume that ai j =
0 for {i, j} 6∈ E . We define a walk w of length k from node
v0 to vk to be an ordered sequence of nodes (v0,v1, ...,vk)
such that vi ∼ vi+1 for i = 0,1, ...,k−1. We define the weight
aw of a walk w = (v0,v1, ...,vk) as aw = ∏

k−1
i=0 avi,vi+1 .

A weighted graph can be algebraically represented via its
weighted adjacency matrix, defined as the n× n symmetric
matrix AG = [ai j], where ai j is the weight of edge {i, j}.
In this paper we are particularly interested in the spectral
properties of AG . Since AG is a real symmetric matrix, it has
a set of real eigenvalues λ1 ≥ λ2 ≥ ... ≥ λn. The powers of
the adjacency matrix AG can be related to walks in G :

Lemma 1: Let G be a weighted undirected graph with no
self-loops. The (i, j)-th entry of Ak

G can be written in terms
of walks in G as follows:[

Ak
G

]
i j
= ∑

w∈W (k)
i, j

aw,

where W (k)
i, j is the set of all closed walks of length k from

node i to j in the complete graph Kn
1.

Proof: The above result comes directly from an alge-
braic expansion of

[
Ak

G

]
v0,vk

. First, notice that[
Ak

G

]
v0,vk

=
n

∑
v1=1

av0,v1

[
Ak−1

G

]
v1,vk

.

Using the above rule in a simple recursion, we can expand
the entries of the decreasing powers of AG , to obtain[

Ak
G

]
v0,vk

= ∑
1≤v1,...,vk−1≤n

av0,v1av1,v2 ...avk−1,vk

= ∑
w∈W (k)

i, j

k−1

∏
i=0

avi,vi+1 ,

which is the statement of our lemma.
The following result will be useful in our derivations:
Lemma 2: Let G be a weighted undirected graph with no

self-loops. Then, we have that

∂ tr(Ak
G )

∂ai j
= 2k

[
Ak−1

G

]
i j
. (1)

Proof: First, notice that for any two matrices S = [si j]
and B = [bi j], we have that tr(SB) = ∑i, j si jb ji. Consider S
and B to be symmetric matrices. Then, we can write S =U +
L, where U and L are upper and lower triangular matrices,
respectively, with L = UT . Let i < j (the same holds for
j < i), hence

∂

∂ si j
tr(SB) =

∂

∂ si j
[tr(UB)+ tr(LB)]

=
∂

∂ si j

[
∑
i< j

ui jb ji +∑
i> j

li jb ji

]

=
∂

∂ui j
∑
i< j

ui jb ji +∑
j>i

ui jbi j

= b ji +bi j = 2bi j.

1The complete graph Kn, is the undirected graph with n nodes in which
every pair of distinct vertices is connected by a unique edge.

Then, we have that

∂ tr(Ak
G )

∂ai j
=

∂ tr(SG Ak−1
G )

∂ si j
+

∂ tr(AG SG Ak−2
G )

∂ si j
+ ...

+
∂ tr(Ak−1

G SG )

∂ si j

= k
∂ tr(SG Ak−1

G )

∂ si j
= 2k

[
Ak−1

G

]
i j
,

which completes the proof.

B. Problem Definition

Consider a group of n mobile robots and define by
xi(t) ∈ Rd the position of robot i at time t ≥ 0. Let x =[
xT

1 . . . xT
n
]T ∈ Rdn denote the stacked column vector of

all robot positions, so that xir is the r-th coordinate of the i-th
robot position. We assume that we can control the position
of the robots by the simple kinematic law

ẋ = u =
[
uT

1 . . . uT
n
]T ∈ Rdn, (2)

where ui (t) ∈Rd is the control input applied to robot i, and
uir (t) is the r-th coordinate of ui (t).

For a given set of robot positions, {xi}n
i=1, we define

the weighted adjacency matrix of the network of robots as
A(x) = [ai j(x)] with

ai j(x), e−c‖xi−x j‖z , (3)

where c > 0 is a constant and z ∈ {1,2} denotes the `1 or `2
norm. Notice that A(x) is a symmetric matrix with position-
dependent real eigenvalues, {λi (x)}n

i=1. We define, further,
the k-th spectral moment of A(x) by

mk (x),
1
n

n

∑
i=1

λ
k
i (x) =

1
n

tr
[
Ak (x)

]
, (4)

for 1 ≤ k ≤ n, where the last equality follows from diag-
onalizing Ak (x). For any finite network with n nodes, its
eigenvalue spectrum is uniquely defined by the sequence of
n moments (m1,m2, ...,mn). Therefore, we can simultane-
ously control the whole set of eigenvalues of a network by
controlling the first n spectral moments of A(x). This gives
rise to the following problem that we aim to address:

Problem 3 (Control of spectral moments): Let {m?
k}n

k=1
denote a desired set of spectral moments. Design control
laws ui for all robots i = 1, . . . ,n so that the adjacency matrix
A(x) of the position-dependent robot network has spectral
moments that satisfy mk(x)→ m?

k for all k = 1, . . . ,n.
Controlling the eigenvalue spectrum of the adjacency

matrix of a network is particularly important, since it is
related to the behavior of interesting network dynamical
properties [18]. In Section III we propose a gradient descent
algorithm to address Problem 3 and discuss its convergence
properties. In Section IV we illustrate our approach in
numerical simulations.



III. CONTROL OF SPECTRAL MOMENTS

A. Controller Design

Assume a given sequence of desired spectral moments
{m?

k}n
k=1 and define the cost function

f (x),
n

∑
k=1

1
4k

(mk (x)−m?
k)

2 , (5)

where mk (x) is defined in (4). Define, further, the gradient
descent control law

u ,−∇x f (x). (6)

Then, we can show the following result:
Lemma 4: Let the adjacency matrix A = A(x) be defined

as in (3) and assume that z = 1 (`1 norm). Then, an explicit
expression for the entries of u is given by

uir =
c
n

n

∑
k=1

(
1
n

trAk−m?
k

)[
(A◦Sr)Ak−1

]
ii
,

where Sr (x) = [si j] with si j ,sgn(xir− x jr).
Proof: The adjacency matrix of an undirected graph

with no self-loops has
(n

2

)
independent entries (for example,

the upper triangular entries). Each one of these entries are
a function of the vector of positions x. Hence, applying the
chain rule, we have the following expansion for the partial
derivative of the cost function with respect to the entries xir:

∂ f (x)
∂xir

= ∑
1≤p<q≤n

∂ f
∂apq

∂apq

∂xir
. (7)

Furthermore, a particular entry apq depends solely on the
position xp and xq; therefore, we have that ∂apq

∂xir
= 0 if both

p and q are different than i. Thus, for a fixed i, only the
following summands in (7) survive

∂ f (x)
∂xir

=
i

∑
p=1

∂ f
∂api

∂api

∂xir
+

n

∑
q=i

∂ f
∂aiq

∂aiq

∂xir

=
n

∑
j=1

∂ f
∂ai j

∂ai j

∂xir
, (8)

where we have used that ai j = a ji and aii = 0.
We now analyze each one of the partial derivatives in (8).

First, from (5) and (4), we have that

∂ f
∂ai j

=
n

∑
k=1

1
2k

(mk (x)−m?
k)

∂

∂ai j

(
1
n

tr
(

Ak (x)
))

=
1
n

n

∑
k=1

(mk (x)−m?
k)
[
Ak−1 (x)

]
i j
, (9)

where we have used Lemma 2 in the last equality. Second,
from (3) we have that

∂ai j (x)
∂xir

= −ce−c‖xi−x j‖1
∂

∂xir

∣∣xir− x jr
∣∣

= −cai jsgn(xir− x jr) , (10)

for xir 6= x jr (the fact that
∣∣xir− x jr

∣∣ is not differen-
tiable at xir = x jr does not affect our analysis). Let us
define the antisymmetric matrix Sr (x) =

[
s(r)i j (x)

]
with

s(r)i j (x) ,sgn(xir− x jr). Hence, we can write (10) using a
Hadamard product as follows

∂ai j (x)
∂xir

=−c [A(x)◦Sr (x)]i j . (11)

Substituting (9) and (11) in (8), we have

∂ f (x)
∂xir

= − c
n

n

∑
k=1

(mk (x)−m?
k)

n

∑
j=1

[
Ak−1

]
ji
[A◦Sr]i j

= − c
n

n

∑
k=1

(mk (x)−m?
k)
[
(A◦Sr)Ak−1

]
ii
,

where both matrices A and Sr depend on x. Then, from (4),
we obtain the statement of our lemma.

An efficient relaxation of the spectral control Problem 3
results from controlling a truncated sequence of spectral
moments (m1, ...,ms), for s < n. In this case, we can define
a cost function

fs(x) =
s

∑
k=1

1
4k

(mk (x)−m?
k)

2 , (12)

and an associated control law u = −∇x fs(x). An explicit
expression for u can be obtained by following the steps in
the proof of Lemma 4, which result in

u(s)ir =
c
n

s

∑
k=1

(
1
n

trAk−m?
k

)[
(A◦Sr)Ak−1

]
ii
. (13)

Although controlling a truncated sequence of moments
is not mathematically equivalent to controlling the whole
eigenvalue spectrum of the adjacency, we observe a very
good overall matching between the eigenvalues obtained
from the relaxed problem and the desired eigenvalue spec-
trum, especially for the eigenvalues of largest magnitude,
which are usually the most relevant in dynamical problems
(Section IV).

B. Convergence Analysis

To simplify convergence analysis of the closed-loop sys-
tem (2), we restrict its dynamics to the open set F =
{x | mk (x) > m?

k , ∀ 1 ≤ k ≤ s}.2 We can ensure that x ∈F
for all time by adding the barrier potential

bs(x),
s

∑
k=1

εk

4k
1(

mk (x)−m?
k

)2 , (14)

to (5), for sufficiently small constants ε1, . . . ,εs > 0 (assum-
ing that the initial state of the system is already in F ). The
convergence properties of the resulting closed loop system
ẋ =−∇x( fs(x)+bs(x)) are discussed in the following result.

Theorem 5: Let {m?
k}s

k=1 denote a desired set of adjacency
spectral moments and assume that x(0) ∈ F . Then, for
sufficiently small ε1 . . . ,εs > 0, the closed loop system

ẋ =−∇x ( fs(x)+bs(x)) (15)

ensures that the moments {mk(x̃)}s
k=1, where x̃= limt→∞ x(t),

approximate arbitrarily well the desired set {m?
k}s

k=1.

2It is shown in Theorem 5 that this construction does not restrict
convergence of the state variables to the desired equilibria.



Proof: The time derivative of fs(x)+bs(x) is given by

d
dt
( fs(x)+bs(x)) = ∇x( fs(x)+bs(x))ẋ

= −‖∇x( fs(x)+bs(x))‖2
2 ≤ 0 (16)

and so the closed loop system is stable and x will converge
to a minimum of fs(x)+ bs(x). Since bs(x)→ ∞ whenever
x→ ∂F , where ∂F = {x | mk (x) = m?

k , ∀ 1 ≤ k ≤ s} =
{x | fs(x) = 0} denotes the boundary of the set F , equation
(16) also implies that the set F is an invariant of motion for
the system under consideration. Let

P0 = {x | xir(0)≤ x jr(0) ⇒ xir ≤ x jr, ∀ i, j,r}

denote the polytope defined by the relative positions of the
robots with respect to their initial configuration x(0), so that
x(0) ∈P0∩F (see Fig. 13). In what follows we show that
as ε1, . . . ,εs→ 0, the state variable x asymptotically reaches
a value in the set P0∩∂F , where fs(x) = 0.

To see this, observe first that

lim
ε1,...,εs→0

( fs(x)+bs(x)) = fs(x)

for all x ∈P0∩F , i.e., for small enough ε1, . . . ,εs > 0, the
potential fs(x)+bs(x) can be approximated by fs(x) in P0∩
F . Moreover, note that fs(x) is convex in the set P0∩F .
Convexity of fs(x) follows from the fact that −c|xir−x jr| is
affine in P0 for any c > 0 and, therefore, −∑c|xir− x jr| is
also affine for any number of terms in the summation. This
implies that e−∑c|xir−x jr | is convex in P0 as a composition
of a convex and an affine function and, therefore,

1
n

trAk(x)−m?
k =

1
n ∑∏e−c|xir−x jr |−m?

k

=
1
n ∑e−∑c|xir−x jr |−m?

k

is also convex as a sum of convex functions. Clearly,
1
n trAk(x)−m?

k is nonnegative for any x∈P0∩F . Since any
power greater than one of a nonnegative and convex function
is also convex, every one of the terms

( 1
n trAk(x)−m?

k

)2
, for

k = 1, . . . ,s, is convex, which implies that fs(x) is also convex
in P0∩F . Taking the limit of (16) we have that

lim
ε1,...,εs

d
dt
( fs(x)+bs(x)) = ḟs(x)≤ 0

in P0 ∩F . Therefore, convexity of fs(x) along with the
condition ḟs(x)≤ 0 implies that x will converge to a global
minimum of fs(x) in P0∩F (recall that F is an invariant
of motion for the system under consideration). Since

inf
x∈P0∩(F∪∂F )

{ fs(x)}= fs(x)|x∈P0∩∂F = 0,

we conclude that the system will converge to a network with
spectral moments {mk(x)}s

k=1 that are almost equal to the
desired {m?

k}s
k=1. The quality of the approximation depends

on how small the constants ε1, . . . ,εs > 0 are.
What remains is to show that ∂F ⊂P0. For this, assume

that ∂F 6⊂P0. Then, if the desired set of moments {m?
k}s

k=1

3The polytope P0 essentially defines an ordering of the state variables.
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Fig. 1. Plot of the function e−|xir−x jr |. Note the boundary xir = x jr of two
adjacent convex polytopes P .

is realizable, there exists another polytope P? 6= P0 such
that ∂F ⊂ P?. Equivalently, there exists a configuration
x? ∈P? such that A(x?) has eigenvalues {λi(x?)}n

i=1 with
∑

n
i=1 λ k

i (x
?) = m?

k for all k = 1, . . . ,s. The result follows
from the observation that P0 can be obtained from P?

by changing the relative positions of the robots in Rd .
Mathematically, this means that there exists a permutation
matrix Π ∈ Rnd×nd , i.e., an orthogonal matrix with 0 or 1
entries, such that that if P? = {x |Ex≥ 0} with E ∈Rn2d×nd ,
then P0 = {x | E(Πx) ≥ 0}. Therefore, if x? ∈P?, then
ΠT x? ∈P0. Moreover,

A(ΠT x?)⊗ Id = Π(A(x?)⊗ Id)Π
T ,

i.e., a permutation of the robots’ coordinates results in a
permutation of the entries of (A(x)⊗ Id), where ⊗ indicates
the Kronecker product between matrices. Since Π is orthog-
onal, A(ΠT x?)⊗Id and A(x?)⊗Id have the same eigenvalues.
Therefore, there exists a configuration x̃ = ΠT x? ∈P0 such
that A(x̃) has eigenvalues {λi(x̃)}n

i=1 with ∑
n
i=1 λ k

i (x̃) = m?
k

for all k = 1, . . . ,s.4 This implies that ∂F ⊂P0.
In the above discussion, we have used the fact that if

{yi}n
i=1 are the eigenvalues of Y ∈ Rn×n and {zi}m

i=1 are
the eigenvalues of Z ∈ Rm×m, then the eigenvalues of Y ⊗Z
are {y1z1, . . . ,y1zm, . . . ,ynz1, . . . ,ynzm}. This implies that the
eigenvalues of A(x)⊗ Id are essentially the eigenvalues of
A(x), each one with multiplicity d.

Remark 6 (Barrier functions): The barrier functions bs(x)
are necessary in the proof of Theorem 5. If not there, the
quantities mk(x)−m?

k are not guaranteed to be positive and,
therefore, the potential fs(x) is not necessarily convex in
P0. This causes technical difficulties in ensuring a global
minimum of fs(x). Also, the analysis in Theorem 5 assumes
that ε1, . . . ,εs→ 0. This essentially restricts the influence of
the barrier potential bs(x) to a small neighborhood of the
set ∂F , so that the potential fs(x) remains unaffected out-

4Equivalently, this means that the two graphs are isomorphic.



Fig. 2. Hexagonal formation of mobile robots.

side this neighborhood. In practice, the closer the constants
ε1, . . . ,εs are to zero, the better the approximation of the
desired spectral moments. This approximation can be made
arbitrarily good.

Remark 7 (Distance metric): In the preceding analysis,
we have employed the `1 norm (z = 1) as a distance metric
to define the entries of the adjacency matrix (see (3)). This
choice is mainly due to technical reasons, since it ensures
that trAk(x) and, therefore, fs(x), are convex functions. From
a practical point of view, the `1 metric has potential appli-
cations in indoor navigation where the presence of obstacles
forces the signals to propagate in grid-like environments.
Nevertheless, our numerical simulations indicate that the
control law herein proposed also performs well for z = 2
(`2 norm). We leave a rigorous proof of this case for future
work.

IV. NUMERICAL SIMULATIONS

In this section we present examples of spectral design
of mobile robot networks and discuss performance of our
proposed approach.

Example 8 (Hexagonal Formation): Consider the prob-
lem of controlling the structure of a network of mobile robots
to match the eigenvalue spectrum of the hexagonal network
on 7 nodes shown in Fig. 2. The target eigenvalues of the
weighted adjacency matrix of this formation are

{λ ?
i }

7
i=1 = {−0.51, −0.47, −0.40, −0.40, 0.05, 0.05, 1.70} ,

and the corresponding spectral moments are

{m?
k}

7
k=1 = {0, 0.53, 0.64, 1.22, 2.02, 3.47, 5.90} .

The initial configuration of the mobile robot network is
that of a random geometric graph on 7 nodes uniformly
distributed in the square [0,1]× [0,1]. We applied the pro-
posed control law (15) and studied the evolution of the
spectral moments of the network’s adjacency matrix. Fig. 3
shows the evolution of the second, third and fourth moment.5

5A similar behavior is observed for the higher order moments. Note that
the first spectral moment is always equal to zero for simple graphs.

Fig. 3. Evolution of second (blue), third (green) and fourth (red) spectral
moments towards the moments of the hexagonal formation.

As expected, they all converge to the desired values. The
asymptotic values of all spectral moments of the network
are

{mk}7
k=1 = {0, 0.53, 0.65, 1.23, 2.04, 3.50, 5.95} ,

which are very close to the desired sequence of moments{
m?

k

}7
k=1, and slightly on the larger side, as predicted by

Theorem 5. The eigenvalues of the weighted adjacency
matrix of the final configuration are

{λi}7
i=1 = {−0.52, −0.48, −0.42, −0.40, 0.02, 0.10, 1.70} ,

which are also very close to the desired values. Notice that
our approach fits better those eigenvalues further away from
the origin, since they are more heavily weighted in the
expression of spectral moments, than those close to zero.
An alternative approach to overcome this limitation would
be to modify our cost function (5) to assign more weight to
eigenvalues of small magnitude.

As discussed in Section III-A, we also consider a relax-
ation of Problem 3, that involves a truncated sequence of
the first four moments of the network. In this case, the
cost function is given by (12) and the closed loop system
is defined in (15), for s = 4. The asymptotic values of the
first four spectral moments of the network are

{mk}4
k=1 = {0, 0.55, 0.65, 1.26}

and eigenvalues of the final configuration are

{λi}7
i=1 = {−0.55, −0.50, −0.42, −0.31, −0.09, 0.18, 1.71} ,

which are remarkably close to the set of desired eigenvalues,
especially those far from zero. The main advantages of
using a relaxation of Problem 3 are (i) that it reduces the
computational cost of the controller, since it only requires
the terms trAk and Ak−1, and (ii) that it improves the stability
of the numerical behavior of the gradient descent algorithm.

Example 9 (Random Geometric Network): In this exam-
ple we consider the problem of matching the eigenvalue
spectrum of a particular realization of a random geometric



Fig. 4. Random geometric graph with 10 nodes. The width of each edge
is proportional to its weight.

graph on 10 nodes that are uniformly distributed in [0,1]×
[0,1]. This target realization is illustrated in Fig. 4, where
the thickness of each edge is proportional to its weight. The
eigenvalues of the weighted adjacency matrix of this network
are

{λ ?
i }

10
i=1 = {−0.89, −0.85, −0.84, −0.79, −0.77, −0.68,

−0.61, 0.02, 0.27, 5.16} ,

and the corresponding sequence of spectral moments is

{m?
k}k>0 = {0, 3.11, 13.45, 71.60, 368.36, 1905, . . .} .

We applied the control law (15) using the cost function
(5) and starting with a different realization of the random
geometric graph on 10 nodes in the square [0,1]× [0,1].
In this case, matching the whole set of spectral moments
directly provides us with a very good approximation of the
eigenvalues spectrum. As before, we also considered the
relaxation of Problem 3 involving only a truncated sequence
consisting of the first 4 moments. The evolution of the
second, third and fourth moments of the network is shown
in Fig. 5. The asymptotic values of the spectral moments of
the network are

{mk}k>0 = {0, 3.13, 13.46, 71.63, . . .} ,

which are remarkably close to the desired ones and, as in
the previous example, slightly on the larger side. Similarly,
the final set of eigenvalues is

{λ ?
i }

10
i=1 = {−0.94, −0.87, −0.85, −0.83, −0.74, −0.59,

−0.55, −0.27, 0.50, 5.16} ,

which is a very good fit to the given eigenvalues, especially
for those far from zero.

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we proposed a novel control framework to
modify the structure of a mobile robot network in order to
control the eigenvalue spectrum of its adjacency matrix. We
introduced a novel abstraction of the eigenvalue spectrum by

Fig. 5. Evolution of second (blue), third (green) and fourth (red) spectral
moments towards the moments of the random geometric graph.

means of the spectral moments and derived explicit gradient
descent motion controllers for the robots to obtain a network
with the desired set of moments. Since the eigenvalue
spectrum is uniquely determined by the associated spectral
moments, our approach provides a way of controlling the
eigenvalues of mobile networks. Convergence to the desired
moments was always guaranteed due to convexity of the
proposed cost functions. Efficiency of our approach was
illustrated in nontrivial computer simulations. The adjacency
matrix eigenvalue spectrum is relevant to the performance of
many distributed coordination algorithms run over a network.
Therefore, our approach is particularly useful in providing
network structures that are optimal with respect to networked
coordination objectives.

Future work involves theoretical guarantees for the Eu-
clidean distance metric (z = 2 in (3)), as well as extension
of our results to the spectrum of Laplacian matrix of the
network. Moreover, the relaxation of Problem 3 to a trun-
cated sequence of moments does not guarantee (mathemati-
cally) a good fit of the complete distribution of eigenvalues.
Therefore, a natural question is to characterize the set of
graphs most of whose spectral information is contained in a
relatively small set of low-order moments.
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