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Optimal Linear Control for Channels with Signal-to-Noise Ratio
Constraints

Erik Johannesson, Anders Rantzer and Bo Bernhardsson

Abstract— We consider the problem of stabilizing and mini-
mizing the disturbance response of a SISO LTI plant, subject
to a stochastic disturbance, over an analog communication
channel with additive white noise and a signal-to-noise ratio
(SNR) constraint. The controller is linear, based on output
feedback and has a structure with two degrees of freedom: Noisy
One part represents sensing and encoding operations and the D Channel C
other part represents decoding and issuing the control signal.
It is shown that the problem of simultaneously designing the
two optimal controller parts can be solved in two stages: First Fig. 1. General feedback system with noisy communication blarin
a functional depending both on the 1- and 2-norms of the Youla this paper,C' and D are linear and the channel has an SNR constraint.
parameter is minimized. This minimization can be arbitrarily
well approximated by a quasiconvex program. The second stage
consists of a spectral factorization.

Plant

Another approach was taken in [14], where instead the
I. INTRODUCTION decoder was fixed to be a unit gain.

The trend towards decentralized control systems has in The case when the encoder has access to the channel
recent years inspired a lot of research on networked contr@¥tput (feedback channel) has been considered in [1], where
systems (NCS). As control systems are required to operd{ewas shown that non-linear strategies can be better than
using non-ideal communication channels between its part§)ear if the system is not of order one. Further, linear
it becomes important to take into account the impact citrategies were studied in [13], [15] and others. The feekiba
these channels on the control performance. Communicatihannel makes the problem different, but it is interesting t
constraints, which are a fundamental aspect of NCS, c&¢€ that the solution in [15] involves minimizing a funcedn
take various forms depending on the type of communicatioffith a similar structure to the one obtained in this paper.
system used. In digital networks there may be packet drops, The problem of optimizing the control performance at
bit rate limitations, and time delays. In analog communica@ 9iven terminal time was considered in [5] and [3]. The
tion systems there may be constraints on the Signal-tod\loi§0|Uti0”S may however yield poor transient performance and
Ratio (SNR). therefore be unsuitable for closed-loop control.

The NCS considered in this paper uses an analog COmmg- pain Contribution
nication channel and has the architecture seen in Fig. 1. Th
controller has two degrees of freedodi:can be seen as a
sensor/encoder anB as a decoder/controller.

eThe problem of designing the optimal linear output feed-
back controller with two degrees of freedom is considered.
The plant is SISO, LTI and subject to a stochastic distur-
A. Previous Research bance. The objective of the controller is to stabilize the
Until a few years ago, the majority of the research orsystem, satisfy an SNR constraint on the noisy channel and

NCS with analog channels was focused on fundamentdlinimize the plant output. _
limitations. Stabilizability of the feedback loop has been !tiS Shown that the optimal controlier can be found by first
characterized for general noisy channels in [12]. For Adelit minimizing a functional which depends on a.combmatlon of
White Noise (AWN) channels, conditions on the SNR fort™ and_ 2—npr_m§ Of, the Youla parameter. It is demo_nstrated
stabilizability were derived, under different assumpsiom that this m|n|m|zat|on can be arbitrarily WeI_I approxmatg
[2] and [13]. limitations due to noisy channels have alsabee?y @ guasiconvex program. The controller is then obtained
characterized in [10] and [6]. from a spectral factorization.

More recently, the design problem has gained more atten- 1Ne solution technique is based on transfer function repre-
tion. Design of an encoder-decoder pair with one degree Fntatiqns. Itis closely related to the methodqlogy usegﬂ]in'
freedom, when placing a fixed nominal controller in eithe or design of an encoder-decoder pair for signal estimation
part, was studied in [7]. In [4], the decoder was optimize®Ve" 2 channel of the same type as here.
under the assumption of a constant gain encoder, and it wgs Notation

shown that this structure is optimal for first order plants. Denote the unit circle byT. For 1 < p < oo, we define

The authors are with Automatic Control LTH, Lund Universi8weden. .the LebeSgue space!?sp and the Hardy spacgsp, overT,
E-mail: erik@control.lth.se, rantzer@control.Ith.seb@control.Ith.se in the usual manner. The space of real, rational and proper



transfer functions is denoted If§. The intersections oRR CEn a Y v
with H,, and£,, are denoted®@H,, andR L, respectively. For
details, consult standard textbooks such as [11] and [18]. u
For1 < p < oo and scalar transfer functions andY,
define thep-norms D r " t C
1 e - 1/p T
%1 = (50 [ 1P ) n
. Fig. 2. Model of feedback system with disturbance and a noéymuni-
and the quantity cation channel. The inpub is only used for definition of internal stability.
1 2m . .
(X,)Y)=— X* ()Y (e")dw.
2m Jy
A transfer functionX € %, is said to be outer if the set [ll. SOLUTION
{Xq : qis a polynomial inz"'} is dense inH,. If X is This section is divided into four subsections. In the first,
rational, then this is equivalent t&(z) # 0 for |z| > 1. conditions for internal stability of the feedback systere ar

Equalities and inequalities involving functionsAl, evalu- presented. In the second, it is shown how to find optifial
ated onT are to be interpreted as holding almost everywhergng p if their productDC is given. In the third subsection,
onT. That s, the subset df in which the (in)equality does 5 criterion for stabilizability under the SNR constraint is
not hold is of measure zero. Transfer function arguments Wihresented, and the factorization result is used to showequi
sometimes be omitted when they are clear from context. zjence between Problem 1 and minimization of a functional

II. PROBLEM FORMULATION in the Youla parameter. Finally, in the fourth subsections i
shown that this minimization problem can be approximated

Consider the system in Fig. 2. The plafitis assumed . . L
earrb|trarlly well by a quasiconvex optimization problem.

to be a finite dimensional, SISO, LTI system whose transf
function G(z) admits a coprime factorization ové®Ho.. A, Internal Stability
The input signals, the disturbaneeand the channel noise . -
: . . . In order to analyze internal stability of the closed loop
n are mutually independent white noise sequences with zero . . -
. . ) . ) ; . system, we consider the block diagram in Fig. 2. The system
mean and identity variance (the signalis only included in

the stability definition and is otherwise assumed to be zerosan be represented by the closed loop rifap

The system is studied under a stationarity assumption,eso th Y v
feedback system is required to be internally stable. t| =T |w
The communication channel is assumed to be an AWN U n
channel with a transmission power constraint. Specifically The feedback system of Fig. 2 is said to be intemally
r(k) = t(k) +n(k), Etk)?) <o? (1) stable if
where k is the time index,t is the transmitted variable, G DCG DG )
7 is the received variablep is the channel noise, and 7'=| CG ~ C  DCG| (1-GDC) " € Hs. (2)
o > 0 determines the maximum instantaneous transmission DCG  DC D

power. Since the transmission power constraint in this casgys gefinition implies that, given stochastic input signal
is equivalent to an SNR constraint [13], we shall refer to ity finite variance, all the signals in the system will have
as the SNR constraint. bounded variance

The objective is to find the transfer functions@fand D The product DC will play an important role so we
5 ) .
;uch t.ha.tE(y ): the statllonary variance .Of the plant OUtpULiroduce the notatiodk = DC'. For practical reasons, we
is minimized, while making the system internally stable an(£

e h : h hi oved ill restrict ourselves to consideringg € RL;. It will be
safisfying the SNR constraint (1). The search is restrigted gy, in section I1I-D that this restriction does not change

linearC, D. However, we make no claim that linear solutionsthe infimum value of the problem

are optimal per se. Toaether with (2 L
. . . € RL, implies that
Under these assumptions, the relevant variances are given g @K 11mp

by the closed-loop transfer functions, and we have: 1 —-K]! e
Problem 1: [—G 1 } = {G 1} €RHx, ()
9 9 1-GK 1-GK
minimize Hylli — HG HDG since these transfer functions are rational and have na pole
¢,D 1=GDC|l, ||[1-GDC], on or outside the unit circle. It is well-known that the set
subject to of K satisfying (3) can be parameterized using the Youla
2 2 parameterization of all stabilizing controllers [18].
||t||§ = HCG HDCG < o? It will be shown in the next subsection how to find the
1-GDC|, |[1-GDCY|, optimal factorsC' and D, for any givenK € RL; such that

while achieving internal stability of the feedback systam. (3) holds. It turns out that the optimal factors can always be



chosen so thaf’ € H, is outer andD € L. For suchk,
C and D, it is easy to show thdl’ € H,. Hence, we make
the following characterization of internal stability, whi is
a slight variation of the Youla parametrization:

Lemma 1:Suppose thati = NM~1 is a coprime factor-
ization overR*H ., and thatU, V' € RH,, satisfy the Bezout
identity VM + UN = 1. Suppose further that’ € H; is
outer, thatD € £, and thatK = DC € RL;. Then the
closed loop system is internally stable if and only if

MQ-U
NQ+V’
B. Optimal Factorization ofi’

Suppose for now that the produéf = DC € RL; is
given, and that (4) holds. PerhaaSis a nominal controller

K = Q€ RHo. (4)

Proof: The proof is trivial if K = 0, so assume that
K is not identically zero. Thel' is not identically zero and
D = KC~'. Cauchy-Schwarz’s inequality gives that

|KCH|IICH|; = (KO H|,|CHI)? = | KH?|[;

This shows that (9) is a lower bound on (7). Equality holds
if and only if |[KC~'H| = X\|CH| for someX € R and
HC’HHS = a. It is easily verified that this is equivalent to
the optimality condition (10).

It only remains to verify the existence @ € H, and
D = KC~! € L such that (10) holds. Sinc& satisfies
(3), it can be written as in (4) withZ, N, Q,U,V € RH
and thus

log |K| =1log|MQ —U| —log | NQ + V.

that is designed to have some desired properties and now
has to be implemented in the architecture of Fig. 2. Anothé®y Lemma 6 (in appendix)log |MQ —U| € £, and
possibility is thatkX is optimal in the sense that it is the log|[N@ + V| € L£1. Thuslog |K| € £y, so K satisfies
product of some&” and D that is the solution to problem 1.

In either case, a natural question to ask is how to factorize
K into C and D such that internal stability is achieved,
the SNR constraint is satisfied (if possible) aﬂlglng is It follows from Theorem 4 (in appendix) that there exists
minimized (the latter is equivalent to minimizing the impacan outer functionC' € #, such that (10) holds. Finally,
of the channel noise). I is “optimal’, then finding an D = KC~! € £, since
optimal factorization should give a solution to Problem 1.

2w
/ log |K (ei“’)|dw > —00. (12)
0

Problem 2 (Optimal Factorization)Given K € RL; such
that (4) holds,

. ? |re ? )
e 1=K, T|T=cK |,
subject to
cG | KG |
K = - — || <%
be, HlGK2 ’1GKf—U ©

while achieving internal stability of the feedback system.

Note that the first term in (5) and the second term in (6
are constant. Problem 2 can thus be solved by applying t
following lemma. For simplicity, the lemma is written in
terms of a transfer functiofi/, which is to be interpreted as

H = G/(1 — GK) when considering Problem 2.
Lemma 2:Suppose thatr > 0, H € RH,, and that
K € RL, satisfies (3). Then the minimum

CG£T§GEZHD[“@ @)
subject to the constraints
K=DC, |CH|;<a 8)
is attained. The minimum value is
LS a ©

Moreover, if K is not identically zero, ther and D are
optimal if and only ifC € Hy, D = KC~! € £, and
o «

([ B H2|y

If K =0, then the minimum is achieved iy = D = 0.

lel |K| onT. (10)

. 1
|KC7 ;= IKH?| 1K < oo

|
Note that thanks to Szé theorem(' can always be chosen
to be Hy and outer instead of, for exampl&,, without
any increase in the optimal value. However, changing this
restriction could give more possible solutions. For exanpl
we could chooseD to be H, and outer. In this paper, we
settle on restrictingC in this way since it simplifies the
characterization of internal stability.

Analyzing the structure of the solution to the factorizatio
roblem, it is interesting to note that the magnitudesCof
fid D are directly proportional to the square root of the

magnitude of K, on the unit circle. In other words, the
dynamics of K is “evenly” distributed on both sides of the
communication channel. The static gain@fs such that the
SNR constraint is active.

C. Minimum Variance Control

We will now present a condition for stabilizability of a
plant under the SNR constraint. First, we need to define the
set of admissible pairéC, D),

©c,p ={(C,D):C € HyisouterD € Lo, DC € RLy,

ca |° DCG |]?
T < g2
e/H2’1GDCZJFH1GDCQ—U}
and the set of admissibi@,
MQ-U
O =<0Q:QceRHw, K =—— € RLy,
Q { NQ+V ! (12)

HMNQme@<ﬁ}



The next lemma says that the smallest SNR compatiblé K is not identically zero, thefC, D) € ©¢ p minimize
with stabilization by linear filters can be found by consid-(C, D) if and only if K = DC and
ering ©¢. That is, by minimizing| M NQ — NUH%. This

result was previously presented as Theorem 111.2 in [2], o? ‘ 1K§ H
where an analytical formula for the smallest SNR was also | P |K| onT. (17)
given, showing that the SNR requirement depends not only H (1-GK)?

on the unstable plant poles but also on the non-minimu _ N

phase zeros and the relative degree. The condition is iedlud K =0, theny(C, D) is m|n|m|zed byC =D =0.

here in the present form to simplify the main theorem.
Lemma 3:Suppose thatr > 0, G = NM~! is a coprime Oc.p(K)={(C,D): (C,D) € Oc, D7DC =K}

factorization overRH., and thatU,V € RH,, satisfy 2

the Bezout identityV' M + UN = 1. Then there exists Ox = {K K € RL, satisfies (3)H < 02}~

Proof: Define the sets

(C.D) € Oc.p if and only if there exists) € Og. 1-GK
Proof: Suppose thatC, D) € ©¢ p and Note that due to (13),
H DCG 2702 (C,D) € O¢.p < (C,D) € O¢.p(K) for somek € O.
1-GDCY, since the additional inequality i® x imposes no restriction.
Then Now the minimization problem will be rewritten through a
cG 0 DCG 0 series of equalities, followed by an explanation of each.ste
HlGDC2_ HlGDCQ_ 7 . . .
o " inf ¢(C,D) = inf inf »(C, D)
which is a contradiction. Hence, (C,D)eO¢,p KeOk \(C,D)EO¢,p(K)
pcG |F - ? oo DG |?
= 1m —_— m
H —Goc|,<° v(C.D)€Ocp.  (13) Keox \|T=GK|, " (©pcoen)|1-GK |,
By Lemma 1 there exist§ € RH., such that (4) holds H i 2
for K = DC € RL1. Moreover, _ ey
Ko P KGOK 1-— _ ’ 7“
o > H = |[MNQ - NU|Z, (1) el
1-GKl| : >, [(AQ+ B) (EQ + F)||;
= inf [JAQ+ B|;+ 3
s0Q € Og. Q€0q 0% —[|[EQ + FI|;
Desﬁl:]zpose conversely thgt € ©¢. Then (3) and (14) hold. In the first equality, the minimization oveéd¢ p is param-
) eterized by the produck’ = DC. In the second equality,
o=c?— KG _ G (15) the first term of ¢(C, D) is moved out from the inner
1-GK||, 1-GK’ minimization since it is constant for fixe&. In the third

Then Lemma 2 shows existence of an oufee #, and ~ quality, Lemma 2 is applied with and £ given by (15).
D € L, such thatDC = K and||CH||§ < a. ltthen follows N the fourth equality, the parameterization (4) is usedcesi

from Lemma 1 thafl” € Ha, s0(C, D) € Oc¢. p. m (3) holds. The Bezout identity gives that
The following theorem is one of the main results of this G KG B
paper. It shows that the infimum of Problem 1 is equal to the 1-GK AQ+ B, ~GK EQ+F.
infimum of an optimization problem in the Youla parameterype optimality conditions forC and D follow from the
Theorem 1:Make the same assumptions and definitions agypjication of Lemma 2. -

in Lemma 3. Further, suppose that: p is non-empty and

introduceA = N2, B= NV, E = MN and F = —NU D. Quasiconvex Approximation

and the functionals It will now be shown that the minimization af(Q) over
O can be arbitrarily well approximated by a quasiconvex
optimization problem. To this end, the constraktite RL4,

9 which is non-convex inQ, is removed. The minimization is
W(Q) = | AQ + B + I(AQ + B) (EQ + F)II; (16) thus done over the convex set

2 2
1EQ+ £l O = {Q Q€ RHw, |EQ+F|; < 02}. (18)
instead of over®,. Clearly, 0 C ©q. This ch f
inf QO(C D) inf 7/)(@) Instead ol overog early, ©g Q IS change O

(C,D)€OC. b ’ Q66 optimization domain is motivated by the following theorem:
Theorem 2:With definitions given by (12), (16) and (18),

K =(MQ-U)NQ+V)™. (@)= int v(Q). (19)

90(0’ D) =

‘1—GDC Hl—GDC

Then

Moreover, suppos€) € O minimizesy(Q). Then let



Proof: Only a sketch of the proof is provided here due IV. PROCEDURE FORNUMERICAL SOLUTION
to limited space. Clearlyinfoce, ¢(Q) > infoeo, ¥(Q)  A. Optimization Program

sincedq € Oq. Conversely, for any) € 0q\Oq, defineQ By Lemma 4, the problem can be solved by minimiz-
as a small perturbation @, such thatv@Q +V has no zeros in p(a e) In other words, minimizey subject to (20),
on T. Existence of such perturbations can be shown usmg f w)2dw < o2 and M < 0. However, this problem
the implicit function theorem. For sufficiently small pertu & |nf|n|te d|men5|onal so the integrals must be disceetiz
bf?‘“O”S' ¥(Q) — dJ(Q.)' f’md ’”EQ +Fy — HEQ + FH2| and @ must be given a finite basis representation.
will bg small by contynmty. Hence e. O¢ and the stated For N > 2, define the grid point$wk}ff . wherew; = 0
equality follows frominfgee, ¥(Q) < infheq, ¥(Q). M andwyy1 — wy = 27/N. Then M < 0 is approximated by
Theorem 2 shows that the approximation can be made
sufficiently accurate. If the obtaindd has poles on the unit + Ek:l e(wyg)? — o? N Ek 1 a(wi)e(wy) <0
circles, a small perturbation must be done to make factoriza | L SV a(wp)e(wy) & S a(we)? =y | =
tion possible. It will now be shown that the approximationOr
is quasiconvex. To this end, define the functional

2 ew) aw)]” Telw)) a(w)
1 2 , (% 0277 a(w)e(w)dw) No? 0] e(ws) afwa) In e(wz)  afws) -
pla,e) = 7/ a(w)*dw + 5 , 0 Ny : : : : -
2m Jo 02 — & [T e(w)?dw ) ' ) ’
™ e(wn) a(wn) e(wn) a(wn)
with domain Using Schur complement again, this is equivalent to
1 /2 ) ) 1 e(wr) a(wr)]
{(a,e) s a(w), e(w) >0 Vw, ﬂ/o e(w)dw < o } . 1 e(ws)  alws)
Lemma 4: Suppose) € 6. Thenw(Q) <  if and only ) e(aiN) G(L;N) = 0. (22)
if there exists(a, e) such thatp(a,e) <~ and e(wi) elws) ... elwy) No? 0
a>|AQ+B|, e¢>|EQ+F| Yw. 0) Lelwr) alwn) atwn) 0 Ny

Proof: Suppose)(Q) < ~. Then it is enough to define ~ The remaining constraints can be approximated by
a=|AQ + B| ande = |EQ + F|. Conversely, suppose that a(wi) > |A(E“R)Q(e™*) + B(e™")|, k=1...N (23)
a and e satisfies the stated conditions. It then follows from ) > \E( )0 (e M) FEE)|, k=1...N (24)
inspection of the functionals that(a, e) < p(a,e) <~. ® k)= [E€ T

Lemma 5:The functionalp(a, e) is quasiconvex. 1 9 5
Proof: p(a,e) — ~ is the Schur complement of N Z Wk)T <o (25)
12 e(w)2dw — 0 f27r a(w)e(w)da Minimizing ~ subject to (22)—(25) is a semidefinite pro-
M= [2”1 0or 2” ™ a(w)® ] . gram with second-order cone constraints. By definition of
oo alwe(w)dw 57 )" a d‘” -7 the integral, the approximations converge Eis— oo, SO

the value of the approximated problem is arbitrarily clase t
(19) for sufficiently largenN.

™ T . .
1 /7 [e(w)} {e(w)} dos < [02 O]' 21) B. Algorithm for solving Problem 1

So p(a,e) <~ if and only if M =< 0. Equivalently,

27 a(w)] la(w) 0 1) Determine a coprime factorization 6f and calculate
o ) 9 ) A, B, E, F as defined in Theorem 1.
Pre- _a_nd postmultiplication with € R* gives the equivalent 2) Parameteriz&) by a finite basis representation, for
condition example as an FIR filter.
9 o020 3) ChooseN large and calculate the grid points.
e a2, <= [0 W] 2 Yz, 4) Minimize ~ subject to (22)—(25). If the problem is
infeasible it could mean that a largeris needed to
which is convex in(e, a). [ ] stabilize the plant. This can be checked analytically
Theorem 3:The problem of minimizing(Q) over O¢ using the condition in [2]. It is sufficiently large, the
is quasiconvex. problem could still become infeasible¥ is too small
Proof: Suppose thaiQ,Q, € (L)Q, Y(@Q1) < 7, or () is too coarsely parameterized.
¥(Q2) <~ and0 < 6 < 1. Then by Lemma &ay, as, €1, €3 5) CalculateK using (4) and determine a stable and outer
such thatp(ai,e1) < v and p(ag,ez) < 7. By Lemma 5, spectral factor of K|. Most likely, this has to be done
p(Ba; + (1 —0)az,fe; + (1 —H)es) < ~. Moreover, the approximately.

constraints (20) are convex ifu, e, Q). Hence, it follows ~ 6) Using this spectral factor, calculat€ according to
from Lemma 4 that)(6Q; + (1 — 0)Q2) < 7. ™ (17). Finally, letD = KC~*.



Control Performance Theorem 4 (Szé): Suppose thaf(w) is a non-negative
function onw € [—, ], that is Lebesgue integrable and that
J7 log f(w) dw > —oc. Then there exists an outer function
X € H, such that for almost alb € [—, 7] it holds that
X(e™) =lim,_+ X (re™) and f(w) = | X (e™)]|?.
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