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Abstract— We study the problem of finding the minimum-
length curvature constrained closed path through a set of
regions in the plane. This problem is referred to as the Dubins
Traveling Salesperson Problem with Neighborhoods (DTSPN).
Two algorithms are presented that transform this infinite
dimensional combinatorial optimization problem into a finite
dimensional asymmetric TSP by sampling and applying the
appropriate transformations, thus allowing the use of existing
approximation algorithms. We show for the case of disjoint
regions, the first algorithm needs only to sample each region
once to produce a tour within a factor of the length of the
optimal tour that is independent of the number of regions. We
present a second algorithm that performs no worse than the
best existing algorithm and can perform significantly better
when the regions overlap.

I. INTRODUCTION

Research in the area of unmanned aerial vehicles (UAV)
has evolved in recent years. There is rich literature covering
various areas of autonomy including path planning, trajectory
planning, task allocation, cooperation, sensing, and commu-
nications. As the mission objectives of UAVs have increased
in complexity and importance, problems are starting to arise
at the intersection of these disciplines. The Dubins Traveling
Salesman Problem with Neighborhoods (DTSPN) combines
the problem of path planning with trajectory planning while
using neighborhoods to represent communication ranges or
sensor footprints. In this problem the UAV simply needs to
enter a region surrounding each objective waypoint.

The path planning problem seeks to determine the optimal
sequence of waypoints to visit in order to meet certain
mission objectives while minimizing costs, such as the total
length of the mission [1], [2]. Path planning problems
typically rely on approximating the cost of the mission
by the length of the solution to an Euclidean Traveling
Salesman Problem (ETSP), where the cost to travel from
one waypoint to the next is approximated by the Euclidean
distance between the two waypoints. This approximation
simplifies the overall optimization, but may lead to UAV
routes that are far from optimal because the aircraft dynamics
are not considered.

Another area of UAV research is trajectory planning, in
which the goal given an initial and final waypoint pair is
to determine the optimal control inputs to reach the final
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waypoint in minimum time given dynamic constraints of the
aircraft. In 1957, Dubins showed that for an approximate
model of aircraft dynamics the optimal motion between a
pair of waypoints can be chosen among six possible paths
[3]. Similar results were proven later in [4] using tools from
optimal control theory. In [5], the authors propose a means
of choosing the optimal Dubins path without computing all
six possible Dubins optimal paths.

A significant amount of research has gone into combining
the problems of motion planning and path planning [6], [7],
[8], [9], [10], and [11]. In these works, the dynamics of
the UAV are taken into consideration by using the Dubins
model when determining the optimal sequence of waypoints.
This problem is typically referred to as the Dubins Traveling
Salesman Problem (DTSP).

A third area of UAV related research is a version of
path planning that takes into account the communication
range of the aircraft or the sensor footprint of the aircraft.
This problem is best described as a Traveling Salesman
Problem with Neighborhoods (TSPN). Now, not only does
one determine a sequence of regions but also an entry point at
each region. Many researchers have addressed this problem
with various regions, but most have used the Euclidean
distance as the cost function [12], [13], [14]. Obermeyer was
the first to tackle the TSPN with Dubins vehicle dynamics
in [15] using a genetic algorithm approach, then later in
[16] by using a sampling based roadmap method which we
will call RCM that is proven to be resolution complete. In
the latter method, the DTSPN is transformed to a General
Traveling Salesman Problem (GTSP) with non-overlapping
nodesets and then to an Asymmetric Traveling Salesmen
Problem (ATSP) through a version of the Noon and Bean
transformation [17]. This is a similar approach to that used
in [9] for the DTSP.

In this work, we propose two algorithms to approximate
the DTSPN. The first involves the case in which the regions
do not overlap. In this case, we present a simple algorithm
requiring just one sample configuration in each region. The
second algorithm addresses the case in which the regions
intersect frequently. In this case, we propose a sampling
based roadmap algorithm similar to that of [16], but use a
more general version of the Noon and Bean transformation
[18] in which the GTSP can contain overlapping nodesets.
We show that for the same set of samples this method will
produce a tour that is no longer than that of RCM from [16]
and performs significantly better when the regions overlap.

The remainder of the paper is organized as follows. In
Section II, the Dubins Traveling Salesman Problem with



Neighborhoods is formally introduced. An approximation
algorithm for the DTSPN when the regions do not overlap
is described in Section III. Section IV describes a second
algorithm for the DTSP when the regions overlap. In Section
V, we present a numerical study comparing our algorithm
with an existing algorithm for various sized regions and
various amounts of overlap. Conclusions and future work
are discussed in Section VI.

II. PROBLEM STATEMENT

The dynamics of the UAV can be approximated by the
Dubins vehicle in the plane. The state of the Dubins vehicle
X can be represented by the triplet (z,y, ) € SE(2), where
(z,y) € R? define the position of the vehicle in the plane
and 0 € S! defines the heading of the vehicle. The vehicle
dynamics are then written as,

& v cos(0)
y| = |vsin(0) |, (1
0 Lu

rel
where v is the forward speed of the vehicle, p is the
minimum turning radius, and » € [—1,1] is the bounded
control input. Let C, : SE(2) x SE(2) — Ry associate
the length C,(X;, X5) of the minimum length path from
an initial configuration X; of the Dubins vehicle to a final
configuration X5, subject to the dynamic constraints in (1).
This length, which we will refer to as the Dubins distance
from X; to X, can be computed in constant time [5].

Let R = {R1, Ra, ..., Ry} be set of n compact regions in
a compact region Q@ C R2, and let X = (04, 03,...,0,) be
an ordered permutation of {1,...,n}. Define a projection
from SE(2) to R? as P : SE(2) — R? ie. P(X) =
E y]T, and let P; be a point in SE(2) whose projection
lies in R;. We denote the vector created by stacking all n
configurations P, as P € SE(2)".

The DTSPN involves finding the minimum length tour
in which the Dubins vehicle visits each region in R while
obeying the kinematic constraints of (1). This is an optimiza-
tion over all possible permutations 32 and configurations P.
Stated more formally:

Problem 2.1 (DTSPN):

n—1
mirggize Co(Ps,, Py)) + z; Co(Ps,,Pos,,,)
subject to P(P,)eR;,i=1,...,n.

We present two algorithms to address this problem. Each
algorithm involves generating a set of m > n sample
configurations S := {Sy,...,S,,} such that,

P(Sk) € R, @)
=1
vi Jk s.t. P(Sg) € R;. 3)

Each algorithm approximates Problem 2.1 by finding the best
sample configurations P C S and the order 3 in which to
visit them.

III. DTSPN WITH DISJOINT REGIONS

DTSPN ‘ ‘ DTSPN ‘ ‘ DTSPN ‘
GTSP
GTSP GTSP
Disjoint Nodesets Disjoint Nodesets
GTSP GTSP
Canonical Form Canonical Form
Clustered Clustered
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‘ ATSP ‘ ‘ ATSP ‘ ‘ ATSP ‘

(a) Algorithm 1. (b) RCM [16]. (¢) Algorithm 2.

Fig. 1. Three algorithms for DTSPN of increasing generality: (a) disjoint
regions and disjoint nodesets, (b) overlapping regions and disjoint nodesets
and (c¢) overlapping regions and overlapping nodesets.

Consider the instance of Problem 2.1 where all the regions
are disjoint. In this simpler case, we consider an algorithm
that finds a feasible solution with a length that is within a
factor of the length of the optimal solution that is independent
of n. This algorithm samples from each region a single Du-
bins configuration, computes the n(n — 1) Dubins distances
between those configurations, and uses these costs to form
a cost matrix D used by the ATSP solver, see Algorithm
1. The process of taking a single sample per region allows
one to proceed directly to the ATSP step, as can be seen in
Figure 1(a).

Algorithm 1 DTSPN(p, R)

Require: An asymmetric TSP aproximation algorithm
ATSP(D), and a function to compute the optimal Dubins
distance between two configurations C,(X, X').

Ensure: A sequence 3 of waypoint configurations P for
DTSPN over the set of disjoint regions R.

fori=11ton do

set S; .= {X € SE2) | P(X) € R,}.
end for
fori=11ton do

for j =1tondo

set D(Z,]) = Cp(Sl-, SJ)

end for
end for
set 33 :—ATSP(D), P := S
return f], P
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Define ¢ and p as the minimum and maximum Euclidean
distances between any two regions in R,

IPX) = PX )2, @

€ := min min
i#j (X,X)ER; xR,

IPX) = PX )2 (3

[ i= max min
i£j (X,X)ER; xRy



respectively. Define the diameter d; of region R;, as the
maximum Euclidean distance between any two points in the
region R,

d; = max
(X,X')ERi XR;

IP(X) = P(X)]l2, ©6)

and define d as the maximum diameter of all the regions,

d:= max d;. @)

ie{1,2,...,n}

Theorem 3.1 (Worst case performance for Algorithm 1):
Given p > 0, and n > 2 disjoint regions R whose maximum
diameter is d, and separated by a least ¢ > 0, Algorithm
1 will produce a DTSPN tour that is within the following
factor of the optimum DTSPN tour. If an exact ATSP solver
is used, the factor will be,

o <2d+u+mp7r>. ®)

€

If instead the modified Christofides algorithm from [19] is
used, the factor will be

3
A min (log n, 27) )
where

vi=(1+5), (10)

comes from [8]

The proof of Theorem 3.1 will make use of Theorem 3.4

from [7], which bounds the Dubins distance as,
Co(P,P) < [P(P) = P(P')||2 + #mp,

where k € [2.657,2.658].
Proof: The Euclidean distance between any two con-
figurations P; and P; is at most 2d + p. Using (11),

Y

C,(P;,P;) <2d+ pn+ Kmp. (12)

Let P* and X" denote the optimal tour. Then, the length of

the each leg of the tour provided by Algorithm 1 satisfies
CP(P&L??&/L'+1) < 2d+M+I€p7T
Cp(P5. Py )~

) =, (13)
€
because CP(P?*’P;*H) > e

The total tour length for a given p, R, 3, and P is
computed by summing Dubins distances along the tour,

n—1
L,r(2,P):=Cy(Ps, . Py) + Y Co(Po,, Po,,), (14)
=1

so the length of the tour produced by Algorithm 1 satisfies

L,r(2,P) <AL, (X, P¥). (15)

The above result holds if an exact TSP solve is used, and
matches the condition given in (8). If using an approximate
ATSP solver, the bound will be slightly weaker. For example
Christofides’ algorithm has a multiplicative error bound of

min (log n, %fy) resulting in an approximate DTSPN solu-
tion with the combined approximation factor given in (9).
|
Given n samples from n regions this algorithm will com-
pute the ATSP over n nodes. The worst case computational
complexity of filling the ATSP cost matrix is upper bounded
by O(n?). Then the worst case complexity for solving the
ATSP using the modified version of Christofides’ algorithm
provided in [19] is upper bounded by O(n?).

IV. DTSPN WITH INTERSECTING REGIONS
A. Algorithm 2

For the case in which the regions overlap, we propose a
more general algorithm that seeks to take advantage of the
possibility of visiting several regions at a single vehicle con-
figuration. Algorithm 2 approximates the solution to Problem
2.1 by converting the DTSPN to a GTSP with overlapping
nodesets, as shown in Figure 1(c), by sampling regions R
with a finite set of m Dubins vehicle configurations S. The
GTSP is then transformed into a standard ATSP through the
Noon and Bean transformation [18]. A variety of solvers are
available for ATSP.

The GTSP can be described with a directed graph with
nodes A and arcs A where the nodes are members of
predefined nodesets S. Here each node represents an element
of the vector of sampled configurations S, and the arc
connecting node S; to node S; represents the length of the
minimum length path for a Dubins vehicle ¢; ; = C,(S;,S;)
from configuration S; to configuration S;. The nodeset Sy
corresponding to region Ry contains all samples whose
projection lies in Ry, Sp = {S; | P(S;) € Ry} for
1 € {1,2,...,m}. The objective of the GTSP is to find
a minimum cost cycle passing through each nodeset exactly
one time.

B. Noon and Bean Transformation

What follows is a brief summary of the Noon-Bean
transformation from [18] as it is used in this work. The
transformation is best described in three stages.

The first stage converts the GTSP to a GTSP with mutually
exclusive nodesets. This is done by first eliminating any
arcs from A that do not enter at least one new nodeset.
Next, a finite cost o > Z(i,j)EA ci,; 18 added to each arc
cost for each new nodeset the arc enters. Next, any nodes
that belong to more than one nodeset are duplicated and
placed in different nodesets so as to allow each node to
have membership in only one nodeset. Any arcs to and from
the original nodes are duplicated as well. In addition, zero
cost arcs are added between all the spawned nodes of each
multiple membership node. The large cost o added to all
the other arcs ensures that all spawned nodes will be visited
consecutively, if at all.

The second stage takes the GTSP with mutually exclusive
nodesets and eliminates any intraset arcs, leaving a GTSP
in “canonical form.” The third stage of the transformation
converts the canonical GTSP to a “clustered” TSP as follows.
The nodes in each nodeset are first enumerated. Then, a



zero cost cycle is created for each nodeset by adding zero
cost edges between consecutive nodes in each nodeset and
connecting the first node to the last. The interset edges are
then shifted so they emanate from the previous node in its
cycle. Finally, the clustered TSP is converted to an ATSP by
adding a finite cost 3 > Z(i, f)eACiyj to each intercluster
arc cost.

C. Performance Comparison

Algorithm 2 is very similar to the Resolution Complete
Method (RCM) proposed in [16] with the key exception
that we use the fact that visiting one of these samples
in the intersection of multiple regions achieves the goal
of visiting all these regions. The RCM requires mutually
exclusive nodesets for the conversion from DTSPN to a
GTSP with disjoint nodesets, as depicted in Figure 1(b).
To meet this requirement, samples are assigned directly
to the nodeset of the region from whose boundary they
are drawn. If multiple regions overlap and a sample lies
in the intersection, Algorithm 2 assigns this sample to all
the nodesets corresponding to all the intersecting regions,
while RCM does not. Algorithm 2 then uses this additional
information in the optimization.

Theorem 4.1 (Algorithm 2 performance): Given p > O,
n > 2 possibly intersecting regions R, and m sample con-
figurations S, let 745 and Tgrcas denote the tours produced
by Algorithm 2 and the RCM [16], respectively. Then the
length of 745 is no greater than that of Trcas,

length(Ta2) < length(Trcoar). (16)

Proof: Let T = {S1,S3,...,8,} be a feasible tour,
and note that both Algorithm 2 and RCM minimize the
tour length plus an additive constant while ensuring that
all regions are visited. The difference is that Algorithm 2
may produce tours visiting fewer than n unique samples,
should some samples lie in the multiple regions. In particular,
Algorithm 2 ensures that each leg of the tour enters at least
one new region, by construction. Therefore, in performing
the optimization Algorithm 2 will either consider T, or subset
of T, in which samples at the end of legs not entering an
unvisited region have been removed. Due to the Dubins
distance function satisfying the triangle inequality [20], a
tour that visits a redundant sample will be longer than a tour
that visits a subset of the samples. The optimal tour T4
cannot be longer than Trcjps, because both optimize over
the same set of feasible tours except for the tours in which
Algorithm 2 bypasses these unneeded samples. |

The property resolution complete method as used in [16],
dictates that the method converges to a solution at least as
good as any nonisolated optimum solution as the number of
sample configurations goes to infinity.

Corollary 4.2 (Algorithm 2 is Resolution Complete):
Given p > 0, n > 2 possibly intersecting regions R, and m
sample configurations S drawn from a Halton quasirandom
sequence [21] as in RCM, Algorithm 2 is Resolution
Complete.

S1
So
Ss

(a) Example instance of DTSPN with three circular
regions and samples S, Sg, and Ss.

(b) “GTSP with overlapping nodesets” from Algorithm 2 with
edges only entering new nodesets.

Fig. 2. Example DTSPN with the corresponding “GTSP with overlapping
nodesets”.

Proof: From [16], the RCM is a resolution complete
method and converges as the number of samples goes to
infinity, and from Theorem 4.1, we have shown that for the
same set of sample configurations Algorithm 2 will produce
a tour that is no longer than RCM. |

D. Complexity of Algorithm 2

We have provided an algorithm that takes advantage of
when sample configurations happen to lie in overlapping
regions, and we have shown that this algorithm produces
a tour that is no longer than the previous best algorithms in
the literature. However, the size of the ATSP is increased
by the number of multiple nodeset duplicate nodes. Given
a m samples from n regions this algorithm will compute
the ATSP over at most mn nodes. The worst case compu-
tational complexity of the Noon and Bean transformation
[18] is upper bounded by O(m?n*). Then the worst case
complexity for solving the ATSP using the modified version
of Christofides’ algorithm provided in [19] is upper bounded
by O(m3n3).

V. NUMERICAL RESULTS

In Theorem 4.1, we have shown that for the same sample
set Algorithm 2 will perform no worse than the resolution
complete method from [16], but at the cost of solving a
larger ATSP problem when there exist samples that are
contained in multiple regions. In this section, we use Monte
Carlo Simulation to investigate the level of performance
improvement that can be gained by using Algorithm 2.
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(a) Example Tour: Algorithm 2, Tour Length = 7.7.

(b) “GTSP with mutually exclusive nodesets” from Al-
gorithm 2 with duplicated node S,/ and zero cost edges
between So and SQ/.

Fig. 3. Example DTSPN instance with corresponding “GTSP with mutually
exclusive” nodesets from Algorithm 2.

The centers of circular regions are variable but homoge-
neous diameter are randomly placed in a square of variable
side length. By varying both the size of regions and the
area in which the centers of the regions are confined we
are able to vary the degree of overlap. The turning radius
of the UAV p is set to unit radius. To solve for the tours
we used the symmetric TSP solver linkern available at
[22], which uses the Chained Lin-Kernighan Heuristic from
[23]. The radii of the circular regions were varied over
{0.5,0.75,1.00,...,5.5} and the length of the sides of the
square were varied over {5,5.5,...,15}. For the first test,
we ran 100 trials where 10 regions were randomly placed
in the bounding box and 50 samples were drawn from the
boundaries of the regions. In a second test, we repeated
the same test parameters with 100 samples drawn from the
boundaries of the regions.

The results can be seen in Figures 5 and 6 respectively,
where the ratio of the average length of the tours found by the

-6 -4 -2 0 2 4

(a) Example Tour: RCM, Tour Length = 15.4.

(b) “GTSP with mutually exclusive nodesets” from RCM
with no duplicated node S,/ and nonzero cost edge from
Sy to S3.

Fig. 4. Example DTSPN instance with corresponding “GTSP with mutually
exclusive” nodesets from RCM.
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Fig. 5. Simulation results for the 50 sample test.
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Fig. 6. Simulation results for the 100 sample test.

Algorithm 2 to those found by RCM are displayed for each
test configuration. In both instances, it is clear that for small
regions and large bounding box (bottom right of plots) that
there is little to no overlap and the two algorithms perform
equivalently. The tests of interest are when the regions grow
and the bounding area shrinks (moving from bottom right to
top left). For these cases we see that on average Algorithm
2 finds tours that around nearly half the length of RCM.

VI. CONCLUSION

The work in this paper has introduced two algorithms
addressing the Dubins Traveling Salesman Problem with
Neighbhorhoods. When the neighborhoods or regions of
interest do not intersect, we have shown that Algorithm 1
achieves an approximation factor independent of the number
of regions with a worst case complexity of O(n?) due to the
approximation of the ATSP. The more general case where
the regions of interest intersect frequently was addressed in
Algorithm 2. This algorithm samples the regions and then re-
lies on the Noon and Bean tranformation [18] for overlapping
nodesets to transorm the problem to an ATSP. We show that
for the same set of samples this method will produce a tour
that is no longer than that of [16], and presented numerical
results that show performance improvement when there is
overlap in the regions of interest.

There are many directions in which this work may be
extended. First, it is of interest to understand if a determin-
istic way to sample the configurations would be of benefit.
For instance, if there is significant overlap would it be
beneficial to ensure that at least one sample is taken from
each subregion. Finally, we are applying this work to improve
the work in [1] to account for communication regions and
Dubins dynamics.

REFERENCES

[1] D. J. Klein, J. Schweikl, J. T. Isaacs, and J. P. Hespanha, “On UAV
routing protocols for sparse sensor data exfiltration,” in American
Control Conference (ACC), June 2010, pp. 6494 —6500.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

[23]

S. D. Bopardikar, S. L. Smith, F. Bullo, and J. P. Hespanha, “Dy-
namic vehicle routing for translating demands: Stability analysis and
receding-horizon policies,” IEEE Transactions on Automatic Control,
vol. 55, no. 11, 2010.

L. E. Dubins, “On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions
and tangents,” American Journal of Mathematics, vol. 79, no. 3, pp.
497-516, 1957.

J.-D. Boissonnat, A. Cérézo, and J. Leblond., “Shortest paths of
bounded curvature in the plane.” Journal of Intelligent and Robotics
Systems, vol. 11, no. 1-2, pp. 5-20, 1994.

A. M. Shkel and V. Lumelsky, “Classification of the Dubins set,”
Robotics and Autonomous Systems, vol. 34, no. 4, pp. 179 — 202,
2001.

K. Savla, E. Frazzoli, and F. Bullo, “On the point-to-point and
traveling salesperson problems for Dubins’ vehicle,” in American
Control Conference (ACC), 2005, pp. 786 — 791.

——, “Traveling salesperson problems for the Dubins vehicle,” IEEE
Transactions on Automatic Control, vol. 53, no. 6, pp. 1378 -1391,
July 2008.

J. Le Ny, E. Frazzoli, and E. Feron, “The curvature-constrained trav-
eling salesman problem for high point densities,” in IEEE Conference
on Decision and Control, Dec. 2007, pp. 5985 —5990.

J. Le Ny, E. Feron, and E. Frazzoli, “On the curvature-constrained
traveling salesman problem,” IEEE Transactions on Automatic Con-
trol, To appear.

X. Ma and D. Castanon, “Receding horizon planning for Dubins
traveling salesman problems,” Dec. 2006, pp. 5453 —5458.

S. Rathinam, R. Sengupta, and S. Darbha, “A resource allocation
algorithm for multiple vehicle systems with non-holnomic constraints,”
IEEE Transactions on Automation Science and Engineering, vol. 4,
no. 1, pp. 98-104, Jan. 2007.

A. Dumitrescu and J. S. B. Mitchell, “Approximation algorithms for
TSP with neighborhoods in the plane,” Journal of Algorithms, vol. 48,
no. 1, pp. 135 — 159, 2003.

K. Elbassioni, A. V. Fishkin, N. H. Mustafa, and R. Sitters, “Ap-
proximation algorithms for Euclidean group TSP,” in 32nd Interna-
tional Colloquim Automata, Languages and Programming (ICALP).
Springer, 2005, pp. 1115-1126.

B. Yuan, M. Orlowska, and S. Sadiq, “On the optimal robot routing
problem in wireless sensor networks,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 19, no. 9, pp. 1252 -1261, Sept.
2007.

K. J. Obermeyer, “Path planning for a UAV performing reconnaissance
of static ground targets in terrain,” in AIAA Conference on Guidance,
Navigation, and Control, Chicago, IL, USA, August 2009.

K. J. Obermeyer, O. P., and D. S., “Sampling-based roadmap methods
for a visual reconnaissance UAV,” in AIAA Conference on Guidance,
Navigation, and Control, Toronto, ON, Canada, August 2010.

C. E. Noon and J. C. Bean, “An efficient transformation of the
generalized traveling salesman problem,” Department of Industrial and
Operations Engineering, University of Michigan, Ann Arbor, Tech.
Rep. 91-26, 1991.

——, “An efficient transformation of the generalized traveling sales-
man problem,” Department of Industrial and Operations Engineering,
University of Michigan, Ann Arbor, Tech. Rep. 89-36, 1989.

A. Frieze, G. Galbiati, and F. Maffioli, “On the worst-case performance
of some algorithms for the asymmetric traveling salesman problem.”
Networks, vol. 12, pp. 23-39, 1982.

S. Yadlapalli, W. Malik, S. Darbha, and S. Rathinam, “A lagrangian-
based algorithm for a combinatorial motion planning problem,” in
Advances in Cooperative Control and Optimization, ser. Lecture
Notes in Control and Information Sciences, P. Pardalos, R. Murphey,
D. Grundel, and M. Hirsch, Eds. Springer Berlin / Heidelberg, 2007,
vol. 369, pp. 373-387.

J. H. Halton, “On the efficiency of certain quasi-random sequences of
points in evaluating multi-dimensional integrals,” Numerische Mathe-
matik, vol. 2, pp. 84-90, 1960.

D. Applegate, R. Bixby, V. Chvdtal, and W. Cook, “Concorde TSP
solver,” Website: http//www.tsp.gatech.edu/concorde.

D. Applegate, W. Cook, and A. Rohe, “Chained Lin-Kernighan for
large traveling salesman problems,” INFORMS Journal on Computing,
vol. 15, no. 1, pp. 82-92, 2003.



