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Abstract— We study the problem of finding the minimum-
length curvature constrained closed path through a set of
regions in the plane. This problem is referred to as the Dubins
Traveling Salesperson Problem with Neighborhoods (DTSPN).
Two algorithms are presented that transform this infinite
dimensional combinatorial optimization problem into a finite
dimensional asymmetric TSP by sampling and applying the
appropriate transformations, thus allowing the use of existing
approximation algorithms. We show for the case of disjoint
regions, the first algorithm needs only to sample each region
once to produce a tour within a factor of the length of the
optimal tour that is independent of the number of regions. We
present a second algorithm that performs no worse than the
best existing algorithm and can perform significantly better
when the regions overlap.

I. INTRODUCTION

Research in the area of unmanned aerial vehicles (UAV)

has evolved in recent years. There is rich literature covering

various areas of autonomy including path planning, trajectory

planning, task allocation, cooperation, sensing, and commu-

nications. As the mission objectives of UAVs have increased

in complexity and importance, problems are starting to arise

at the intersection of these disciplines. The Dubins Traveling

Salesman Problem with Neighborhoods (DTSPN) combines

the problem of path planning with trajectory planning while

using neighborhoods to represent communication ranges or

sensor footprints. In this problem the UAV simply needs to

enter a region surrounding each objective waypoint.

The path planning problem seeks to determine the optimal

sequence of waypoints to visit in order to meet certain

mission objectives while minimizing costs, such as the total

length of the mission [1], [2]. Path planning problems

typically rely on approximating the cost of the mission

by the length of the solution to an Euclidean Traveling

Salesman Problem (ETSP), where the cost to travel from

one waypoint to the next is approximated by the Euclidean

distance between the two waypoints. This approximation

simplifies the overall optimization, but may lead to UAV

routes that are far from optimal because the aircraft dynamics

are not considered.

Another area of UAV research is trajectory planning, in

which the goal given an initial and final waypoint pair is

to determine the optimal control inputs to reach the final
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waypoint in minimum time given dynamic constraints of the

aircraft. In 1957, Dubins showed that for an approximate

model of aircraft dynamics the optimal motion between a

pair of waypoints can be chosen among six possible paths

[3]. Similar results were proven later in [4] using tools from

optimal control theory. In [5], the authors propose a means

of choosing the optimal Dubins path without computing all

six possible Dubins optimal paths.

A significant amount of research has gone into combining

the problems of motion planning and path planning [6], [7],

[8], [9], [10], and [11]. In these works, the dynamics of

the UAV are taken into consideration by using the Dubins

model when determining the optimal sequence of waypoints.

This problem is typically referred to as the Dubins Traveling

Salesman Problem (DTSP).

A third area of UAV related research is a version of

path planning that takes into account the communication

range of the aircraft or the sensor footprint of the aircraft.

This problem is best described as a Traveling Salesman

Problem with Neighborhoods (TSPN). Now, not only does

one determine a sequence of regions but also an entry point at

each region. Many researchers have addressed this problem

with various regions, but most have used the Euclidean

distance as the cost function [12], [13], [14]. Obermeyer was

the first to tackle the TSPN with Dubins vehicle dynamics

in [15] using a genetic algorithm approach, then later in

[16] by using a sampling based roadmap method which we

will call RCM that is proven to be resolution complete. In

the latter method, the DTSPN is transformed to a General

Traveling Salesman Problem (GTSP) with non-overlapping

nodesets and then to an Asymmetric Traveling Salesmen

Problem (ATSP) through a version of the Noon and Bean

transformation [17]. This is a similar approach to that used

in [9] for the DTSP.

In this work, we propose two algorithms to approximate

the DTSPN. The first involves the case in which the regions

do not overlap. In this case, we present a simple algorithm

requiring just one sample configuration in each region. The

second algorithm addresses the case in which the regions

intersect frequently. In this case, we propose a sampling

based roadmap algorithm similar to that of [16], but use a

more general version of the Noon and Bean transformation

[18] in which the GTSP can contain overlapping nodesets.

We show that for the same set of samples this method will

produce a tour that is no longer than that of RCM from [16]

and performs significantly better when the regions overlap.

The remainder of the paper is organized as follows. In

Section II, the Dubins Traveling Salesman Problem with





respectively. Define the diameter di of region Ri, as the

maximum Euclidean distance between any two points in the

region Ri,

di := max
(X,X′)∈Ri×Ri

‖P(X) − P(X
′

)‖2, (6)

and define d as the maximum diameter of all the regions,

d := max
i∈{1,2,...,n}

di. (7)

Theorem 3.1 (Worst case performance for Algorithm 1):

Given ρ > 0, and n ≥ 2 disjoint regions R whose maximum

diameter is d, and separated by a least ǫ > 0, Algorithm

1 will produce a DTSPN tour that is within the following

factor of the optimum DTSPN tour. If an exact ATSP solver

is used, the factor will be,

λ :=

(

2d + µ + κρπ

ǫ

)

. (8)

If instead the modified Christofides algorithm from [19] is

used, the factor will be

λ min

(

log n,
3

2
γ

)

(9)

where

γ :=
(

1 +
κρπ

ǫ

)

, (10)

comes from [8]

The proof of Theorem 3.1 will make use of Theorem 3.4
from [7], which bounds the Dubins distance as,

Cρ(P,P
′

) ≤ ‖P(P) − P(P
′

)‖2 + κπρ, (11)

where κ ∈ [2.657, 2.658].
Proof: The Euclidean distance between any two con-

figurations Pi and Pj is at most 2d + µ. Using (11),

Cρ(Pi,Pj) ≤ 2d + µ + κπρ. (12)

Let P
∗ and Σ

∗ denote the optimal tour. Then, the length of

the each leg of the tour provided by Algorithm 1 satisfies

Cρ(P̂σ̂i
, P̂σ̂i+1

)

Cρ(P∗
σ∗

i

,P∗
σ∗

i+1
)
≤

(

2d + µ + κρπ

ǫ

)

= λ, (13)

because Cρ(P
∗
σ∗

i

,P∗
σ∗

i+1
) ≥ ǫ.

The total tour length for a given ρ, R, Σ, and P is

computed by summing Dubins distances along the tour,

Lρ,R(Σ,P) := Cρ(Pσn
,Pσ1

) +

n−1
∑

i=1

Cρ(Pσi
,Pσi+1

), (14)

so the length of the tour produced by Algorithm 1 satisfies

Lρ,R(Σ̂, P̂) ≤ λLρ,R(Σ∗,P∗). (15)

The above result holds if an exact TSP solve is used, and

matches the condition given in (8). If using an approximate

ATSP solver, the bound will be slightly weaker. For example

Christofides’ algorithm has a multiplicative error bound of

min
(

log n, 3
2γ

)

, resulting in an approximate DTSPN solu-

tion with the combined approximation factor given in (9).

Given n samples from n regions this algorithm will com-

pute the ATSP over n nodes. The worst case computational

complexity of filling the ATSP cost matrix is upper bounded

by O(n2). Then the worst case complexity for solving the

ATSP using the modified version of Christofides’ algorithm

provided in [19] is upper bounded by O(n3).

IV. DTSPN WITH INTERSECTING REGIONS

A. Algorithm 2

For the case in which the regions overlap, we propose a

more general algorithm that seeks to take advantage of the

possibility of visiting several regions at a single vehicle con-

figuration. Algorithm 2 approximates the solution to Problem

2.1 by converting the DTSPN to a GTSP with overlapping

nodesets, as shown in Figure 1(c), by sampling regions R
with a finite set of m Dubins vehicle configurations S. The

GTSP is then transformed into a standard ATSP through the

Noon and Bean transformation [18]. A variety of solvers are

available for ATSP.

The GTSP can be described with a directed graph with

nodes N and arcs A where the nodes are members of

predefined nodesets S. Here each node represents an element

of the vector of sampled configurations S, and the arc

connecting node Si to node Sj represents the length of the

minimum length path for a Dubins vehicle ci,j = Cρ(Si,Sj)
from configuration Si to configuration Sj . The nodeset Sk

corresponding to region Rk contains all samples whose

projection lies in Rk, Sk := {Si | P(Si) ∈ Rk} for

i ∈ {1, 2, . . . ,m}. The objective of the GTSP is to find

a minimum cost cycle passing through each nodeset exactly

one time.

B. Noon and Bean Transformation

What follows is a brief summary of the Noon-Bean

transformation from [18] as it is used in this work. The

transformation is best described in three stages.

The first stage converts the GTSP to a GTSP with mutually

exclusive nodesets. This is done by first eliminating any

arcs from A that do not enter at least one new nodeset.

Next, a finite cost α ≥
∑

(i,j)∈A ci,j is added to each arc

cost for each new nodeset the arc enters. Next, any nodes

that belong to more than one nodeset are duplicated and

placed in different nodesets so as to allow each node to

have membership in only one nodeset. Any arcs to and from

the original nodes are duplicated as well. In addition, zero

cost arcs are added between all the spawned nodes of each

multiple membership node. The large cost α added to all

the other arcs ensures that all spawned nodes will be visited

consecutively, if at all.

The second stage takes the GTSP with mutually exclusive

nodesets and eliminates any intraset arcs, leaving a GTSP

in “canonical form.” The third stage of the transformation

converts the canonical GTSP to a “clustered” TSP as follows.

The nodes in each nodeset are first enumerated. Then, a
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Fig. 6. Simulation results for the 100 sample test.

Algorithm 2 to those found by RCM are displayed for each

test configuration. In both instances, it is clear that for small

regions and large bounding box (bottom right of plots) that

there is little to no overlap and the two algorithms perform

equivalently. The tests of interest are when the regions grow

and the bounding area shrinks (moving from bottom right to

top left). For these cases we see that on average Algorithm

2 finds tours that around nearly half the length of RCM.

VI. CONCLUSION

The work in this paper has introduced two algorithms

addressing the Dubins Traveling Salesman Problem with

Neighbhorhoods. When the neighborhoods or regions of

interest do not intersect, we have shown that Algorithm 1

achieves an approximation factor independent of the number

of regions with a worst case complexity of O(n3) due to the

approximation of the ATSP. The more general case where

the regions of interest intersect frequently was addressed in

Algorithm 2. This algorithm samples the regions and then re-

lies on the Noon and Bean tranformation [18] for overlapping

nodesets to transorm the problem to an ATSP. We show that

for the same set of samples this method will produce a tour

that is no longer than that of [16], and presented numerical

results that show performance improvement when there is

overlap in the regions of interest.

There are many directions in which this work may be

extended. First, it is of interest to understand if a determin-

istic way to sample the configurations would be of benefit.

For instance, if there is significant overlap would it be

beneficial to ensure that at least one sample is taken from

each subregion. Finally, we are applying this work to improve

the work in [1] to account for communication regions and

Dubins dynamics.
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