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A Scalable Method for Continuous-Time Distributed Control Synthesis

Karl Mårtensson and Anders Rantzer

Abstract— In this paper a synthesis method for distributed
controllers for continuous time distributed systems, is discussed.
The systems considered consists of subsystems interconnected
in a graph structure. This graph represents a communication
structure of the system and hence governs the structure of the
admissible controller, meaning that distributed controllers are
considered. The objective of the synthesis is to obtain such
admissible controllers that optimize a given performance. The
method is scalable with respect to the size of the system and is
therefore suitable for large-scale systems.

Distributed controllers are suboptimal with respect to cen-
tralized ones and it is desirable to measure the amount of
performance degradation. Using the variables of the synthesis
scheme, it is shown how to determine such a measure of
suboptimality.

I. INTRODUCTION

Decision making when the decision makers have access

to different information concerning underlying uncertainties

has been studied since the late 1950s [9], [11]. The subject

is sometimes called team theory, sometimes decentralized or

distributed control. The theory was originally static, but work

on dynamic aspects was initiated by Witsenhausen [17], who

also pointed out a fundamental difficulty in such problems.

Some special types of team problems were solved in the

1970’s [15], [6], but the problem area has recently gain

renewed interest. Spatial invariance was exploited in [1], [2],

conditions for closed loop convexity were derived in [14],

[13] and methods using linear matrix inequalities were given

in [7], [12], [5].

In this paper we will focus on finding a solution to the

linear quadratic regulator (LQR) problem for systems in

continuous time. The method for finding the centralized

solution for this problem has been known for a long time.

However, when considering large-scale systems conventional

methods for finding this solution are no longer tractable.

The reason lies in that the computational time and memory

requirements scales as O(n3) and O(n2), respectively, for

these methods, see for example [4]. Methods for large-scale

systems needs to exploit some structure in the problem.

How to take advantage of the structure of a system with

sparse dynamics matrices is presented in [3]. Here it is

also assumed that the number of input signals is a lot

less than the number of states. The resulting controllers

will approximately solve the centralized control problem.

When considering distributed systems, they usually have a

communication constraint, meaning that a subsystem does

not have access to the full state vector. With the use of
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the augmented Lagrangian method, iterative schemes to find

structured state feedback matrices minimizing a quadratic

cost, are treated in [16], [8]. The methods are initialized

with the centralized solution for the problem, and recursively

the solution approaches a structured feedback matrix. The

methods hinge on the solutions of Lyapunov equation and

the solution of the centralized problem, thus not applicable

to large-scale systems. In [10] an iterative distributed control

synthesis scheme for discrete-time systems is considered. We

will follow a similar approach when developing the theory

in this paper. The synthesis method operates by iteratively

updating the controller in a descent direction of the LQR

performance. This direction is determined by simulating the

system and the corresponding adjoint system. When the

system matrices are sparse it is realized that this produces

a scalable method, hence suitable for large-scale systems.

Since distributed controllers are suboptimal compared to

centralized solutions, it is desirable to have a measure of

suboptimality. We show how to use the variables of the

synthesis algorithm to determine a bound of suboptimality

of the current controller.

Section II contains a description of the distributed systems

considered and the notations used in the paper are defined.

In section III the method for updating the control laws

using descent directions to the cost function is presented. In

section IV the theory for finding the suboptimality bound to

the previously mentioned method, is formulated. An example

is given in section V, showing the described methodology.

II. PROBLEM FORMULATION

The systems treated in this paper are continuous time,

linear time invariant systems

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, (1)

where x(t) ∈ R
m, u(t) ∈ R

p and x0 ∈ N (0, σ). We will

assume that the system is distributed, a property that will be

explained by a graph associated to the system. The vertices

v1, v2, . . . , vn of the graph represent subsystems or agents

of the complete system. Hence, the vertices can be thought

as a partition of all of the states. If the states are rearranged

such that the states of each subsystem are next to each other,

we write x =
[
xT
1 xT

2 . . . xT
n

]T
where xi are the states

of subsystem i. The sparsity structure of the system is now

defined by the edges of the graph. The collection of all edges

is denoted by E , where (i, j) ∈ E if there is an edge from

vi to vj . By convention we assume that (i, i) ∈ E for all i.
We call two distinct subsystems neighbors if there is an edge

between the corresponding vertices. The edges describe the
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Fig. 1. Graphical representation of a distributed system. The ar-
rows shows how each agent directly affects the others. The set
E = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1), (1, 3), (3, 2), (3, 4),
(4, 3)}

sparsity of the dynamics matrix and its structure is restricted

by

Aij = 0 if (j, i) /∈ E ,

(throughout the paper the subscript will denote blocks of the

intended matrices corresponding to the subsystems). Hence,

the dynamics of a subsystem is only directly affected by the

states of the subsystem and its neighbors. The subsystems

will also be assumed to have a distinct set of control signals,

i.e. each control signal affects only one subsystem directly.

This assumption is translated to assuming that the matrix B
is block-diagonal, i.e. B = diag(B1, B2, . . . , Bn).

With these initial definitions, an example of the setup is

given in Figure 1.

The system (1) is controlled using state feedback u(t) =
−Kx(t). The graph also imposes a communication con-

straint on the system and the admissible controllers are only

those where each subsystem uses only the states of itself and

its neighbors to determine its control input. This restriction

translates to a structure in the feedback matrix according to

Kij = 0 if (j, i) /∈ E .

The subspace of admissible controllers is denoted by

K = {K | ∀K such that Kij = 0 if (j, i) /∈ E}.

The set of admissible stabilizing controllers is denoted by

Kstab = {K | ∀K ∈ K and K is stabilizing}.

With the restrictions of the matrices A, B and K, the closed

loop dynamics matrix A − BK has the same structure as

A, and hence satisfies the structural constraint that the graph

gives. That the closed loop dynamics matrix still is sparse

will prove valuable later on when looking into the complexity

of the coming method.

III. ITERATIVE DISTRIBUTED CONTROL

SYNTHESIS

The objective of the control synthesis is to determine

a feedback matrix that minimizes some performance. The

performance that is considered is the commonly known LQR

cost for continuous time systems

J(K,x0) =

∫ ∞

0

x(t)TQxx(t) + u(t)TQuu(t)dt, (2)

where x(t) satisfies the dynamics equation (1) and u(t) =
−Kx(t). The weights Qx and Qu are assumed to be

block-diagonal meaning that it is possible to separate the

cost into costs for each subsystem. For all stabilizing K,

the cost (2) can be determined by solving certain Lya-

punov equation. Specifically, we have that J(K,x0) =
tr
(
(Qx +KTQuK)X0

)
= tr

(
Px0x

T
0

)
where X0 and

P are the solutions to the following Lyapunov equations,

respectively.

(A−BK)X0 +X0(A−BK)T + x0x
T
0 = 0, (3)

(A−BK)TP + P (A−BK) +Qx +KTQuK = 0. (4)

With these solutions an expression for the gradient of J with

respect to K can also be determined.

Proposition 1: Given the system (1) and a stabilizing K,

the gradient of the cost function (2) with respect to K is

∇KJ = 2(QuK −BTP )X0. (5)

Proof. For simpler expression we define the matrices

AK = A−BK,

M = QuK −BTP.

By differentiating (4) with respect to K we get the following

Lyapunov equation

AT
KdP + dPAK + dKTM +MT dK = 0.

The integral solution to this equation is

dP =

∫ ∞

0

etA
T

K (dKTM +MT dK)etAKdt.

Now, since dJ = tr
(
dPx0x

T
0

)
, we get

dJ = tr

(∫ ∞

0

etA
T

K (dKTM +MT dK)etAKx0x
T
0 dt

)

= 2 · tr

(

dKTM

∫ ∞

0

etAKx0x
T
0 e

tAT

Kdt

)

= 2 · tr
(
dKTMX0

)
.

By using the relation about differentials

dZ = tr
(
dXT · Y

)
=⇒ ∇XZ = Y,

relation (5) is verified. 2

In order to calculate the gradient of J with respect to K
using the result of Proposition 1, the Lyapunov equations (3)

and (4) needs to be solved. If large-scale systems are consid-

ered it is not possible to solve these equations in a reasonable

time. Hence, for a scalable method these solutions we need

to find an expression that does not rely on these solutions. In

the next proposition adjoint variables are introduced and it

is shown how to use them to get rid of X0 and P from (5).
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Theorem 1: Given the system (1) and a stabilizing K, let

the adjoint states λ be defined by

−λ̇(t) = (A−BK)Tλ(t)− (Qx +KTQuK)x(t), (6)

where x(t) are the states of (1) and lim
t→∞

λ(t) = 0. Then

∇KJ = 2

∫ ∞

0

(
−Quu(t) +BTλ(t)

)
x(t)T dt. (7)

Proof. By denoting QK = Qx+KTQuK, the adjoint states

can be determined

λ(t) =

∫ ∞

t

−e(s−t)AT

KQKx(s)ds.

With this expression we can rewrite to following
∫ ∞

0

λ(t)x(t)T dt

=

∫ ∞

0

∫ ∞

t

−e(s−t)AT

KQKx(s)ds · x(t)T dt

=

∫ ∞

0

∫ ∞

t

−e(s−t)AT

KQKe(s−t)AKx(t)ds · x(t)T dt

= −PX0.

This relation and that QuKX0 = −Qu

∫∞

0
u(t)x(t)T dt

fitted into (5) gives the desired result. 2

Remark 1: The dynamical system for the adjoint variables

is stable when considering time going from the future back-

wards, i.e. from t = ∞ to t = 0. Hence, it is simulated in

the backwards time direction.

The gradient gives a direction in which the feedback

matrix K can be updated in to decrease the cost J(K,x0).
Though, since we impose a structure on K, the gradient

∇KJ needs to be projected to the subspace K defining

this structure. This projected gradient will also produce a

descent direction of J(K, a). To understand this, consider

the restriction of J on K. The gradient of this function is

exactly the projection of ∇KJ on K.

In order to get a tractable algorithm, the time for simulat-

ing the states in (1) and (6) must be truncated to some finite

time tfinal. The truncation implies that an approximation of

the gradient in Theorem 1 will be determined. The algorithm

of iteratively updating the feedback matrix is given below.

Algorithm 1: Consider the system (1) with control u(t) =
−Kx(t) where K ∈ Kstab. To find a local minimizer to (2),

start with K(0) ∈ Kstab and for each τ ≥ 0

1) Simulate the states x(t) of (1) with control u(t) =
−K(τ)x(t) for times t ∈ [0, tfinal].

2) Simulate the adjoint states λ(t) of (6) with for times

t ∈ [0, tfinal] in the backwards time direction with

λ(tfinal) = 0.

3) For all agents i and all j such that (j, i) ∈ E

I) Calculate

Gij = 2

∫ tfinal

0

(
−[Qu]iui(t) +BT

i λi(t)
)
xj(t)

T dt.

II) Update the feedback matrix

K
(τ+1)
ij = K

(τ)
ij − γGij ,

for some step length γ.

4) Increase τ with 1 and goto 1).

Remark 2: As previously mentioned the closed loop ma-

trix A − BK follow the sparsity pattern described by the

graph associated with the distributed system. Examining the

matrix Qx +KTQuK we find that it also has a distributed

structure related to the graph. Hence, if the distributed system

is sparse we understand that, using a sparse ODE solver,

Algorithm 1 benefits from this structure. In fact, the scheme

is linear in complexity when considering systems consisting

of subsystems with the same average state space size and

number of neighbors. This can be compared to solving

Lyapunov equations which in standard implementation re-

quires O(n3) flops. This means that the alternate version

of Algorithm 1 where the gradient instead is determined

through (5) would not be tractable for large-scale systems.

Remark 3: In order to approximate the gradient in Algo-

rithm 1 a final time tfinal needs to be determined to ensure

that the approximation is still a descent direction. For any

descent direction D, tr
(
∇KJT ·D

)
< 0 must hold. Letting

G be the truncated gradient and H = ∇KJ − G. Then

G is a descent direction if tr
(
(G+H)TG

)
< 0, that is

tr
(
GTG

)
< tr

(
HTG

)
. Since tr

(
GTG

)
can be determined,

a valid final time would be one for which it is possible

to determine a bound on H in order for the inequality to

hold. A strategy could be to analyse the decrease in the state

trajectory to find such bound. This is an issue that needs

further attention.

IV. SUBOPTIMALITY BOUND

Solving the ordinary LQR control problem is a well-

studied problem and has a tractable solution when the system

is of moderate size. But when we introduce restrictions in the

structure of the feedback matrix, there is no general formula

for finding the optimal one. The minimization problem is

not even guaranteed to be convex. The underlying method in

Algorithm 1 is a descent method, thus we can not guarantee

that the globally optimal structured feedback matrix is ever

attained. We only know that a locally optimal solution is

reached. A measure of the suboptimality in each iteration

step of the Algorithm 1, is α ≥ 1 such that

J(K,x0) ≤ αJ(Kopt, x0), (8)

where Kopt = argmin
K

J(K,x0). The value of α tells us

that the cost of the feedback matrix, J(K,x0), is within a

factor α of the optimal value. If there is a way to verify that

an α close to 1 must satisfy (8), then even though K might

not be the optimal feedback matrix, we will not find one

that reduces the cost greatly compared to this one. Hence,

the suboptimality bound can be used as a stop criterion

for Algorithm 1. That is when the bound goes below a

given value we consider that the current feedback matrix

is satisfactory and return it from the algorithm.

To determine the suboptimality bounds, we start by define
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the truncated cost

Ĵ(K,x0, tfinal) =

∫ tfinal

0

x(t)TQxx(t) + u(t)TQuu(t)dt,

(9)

where x(t) satisfies (1) and u(t) = −Kx(t). The following

theorem gives us a suboptimality bound telling us that in

the time interval [0, tfinal] we are within a factor of α of the

optimal solution on this interval.

Theorem 2: If α ≥ 1 is such that for a given trajectory of

adjoint (or dual) variables λ(t), with λ(tfinal) = 0

Ĵ(K,x0, tfinal) ≤ α min
x,u

x(0)=x0

∫ tfinal

0

[

x(t)TQxx(t)

+ u(t)TQuu(t) + 2λ(t)T (ẋ(t)−Ax−Bu(t))

]

dt, (10)

then

Ĵ(K,x0, tfinal) ≤ αĴ(Kopt, x0, tfinal), (11)

where

Kopt = argmin
K

Ĵ(K,x0, tfinal).

Proof. Assume that α is such that for a given trajectory of

λ(t), (10) holds. We have that

Ĵ(Kopt,x0, tfinal) =

=







min
K,x

∫ tfinal

0

x(t)T (Qx +KTQuK)x(t)dt

subject to: ẋ(t) = (A−BK)x(t)

x(0) = x0

≥







min
x,u

∫ tfinal

0

x(t)TQxx(t) + u(t)TQuu(t)dt

subject to: ẋ(t) = Ax(t)−Bu(t)

x(0) = x0

≥ min
x,u

x(0)=x0

∫ tfinal

0

(

x(t)TQxx(t) + u(t)TQuu(t)

+ 2λ(t)T (ẋ(t)−Ax(t)−Bu(t))

)

dt,

where the second inequality comes from introducing dual

variables. Hence, if (10) holds, so must (11). 2

The Theorem 2 gives a method to evaluate the expected

performance an updated feedback matrix will give to the

system. We only have to choose the adjoint or dual variables.

The name suggest that we choose the adjoint variables

defined by (6). To motivate this choice, we could refer

to Pontryagin’s maximum principle. The motivation comes

from examining the Hamiltonian

max
λ

min
x,u

∫ tfinal

0

(

x(t)TQxx(t) + u(t)TQuu(t)

+ 2λ(t)T (ẋ(t)−Ax(t)−Bu(t))

)

︸ ︷︷ ︸

H(x,u,λ)

dt

(12)

from Theorem 2. We let the objective function be denoted

by H(x, u, λ). To find a saddle point for H then

0 = ∇x(t)H = 2(Qxx(t)− λ̇(t)−ATλ(t)),

0 = ∇u(t)H = 2(Quu(t)−BTλ(t)).

We get (6) by ∇x(t)H + KT∇u(t)H = 0 and replacing

u(t) = −Kx(t).

To show that it is actually possible to solve the minimiza-

tion program in (10) we give the following proposition.

Proposition 2: The value of the minimization program

in (10) can be determined by

−

∫ tfinal

0

[(

λ̇(t) +ATλ(t)
)T

Q−1
x

(

λ̇(t) +ATλ(t)
)

+ λ(t)TBQ−1
u BTλ(t)

]

dt− 2λ(0)Tx0.

Proof. Introduce f = Qxx(t) − λ̇(t) − ATλ(t) and g =
Quu(t) − BTλ(t). The integral in the objective in (10) is

manipulated:

∫ tfinal

0

[

x(t)TQxx(t) + u(t)TQuu(t)

+ 2λ(t)T (ẋ(t)−Ax−Bu(t))
]

dt

=

∫ tfinal

0

[

x(t)TQxx(t) + u(t)TQuu(t)

− 2λ̇(t)Tx(t)− λ(t)T (Ax+Bu(t))
]

dt

+ 2
[

λ(t)Tx(t)
]tfinal

t=0

=

∫ tfinal

0

[

fTQ−1
x f + gTQ−1

u g − λ(t)TBQ−1
u BTλ(t)

−
(

λ̇(t) +ATλ(t)
)T

Q−1
x

(

λ̇(t) +ATλ(t)
) ]

dt

− 2λ(0)Tx0,

where the first equality comes from partial integration and

the second equality from completing the squares. When

minimizing the last expression we understand that choosing

x(t) and u(t) to make F = G = 0 minimizes the integral

(the only point on the trajectory of x(t) that can not be

chosen is x(0) but this point does not change the value of

the integral). 2

V. EXAMPLE

In this example we consider a small-scale system. The

reason for not using a large-scale system is to be able to

verify the actual cost of the feedback matrices by determining

the corresponding Lyapunov solution. The system consists

of 10 subsystems, each with one state, connected in a linear

fashion as shown in Figure 2. This structure of the graph

results in a tri-diagonal dynamics matrix. In this example its
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x1 x2 x9 x10A21

A12

A9,10

A10,9

· · ·

Fig. 2. Graphical representation of the system in the example. The arrows
shows how each agent affects the others.
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Fig. 3. Plots of the estimated sub-optimality using the described method
and the exact suboptimality.

value is

A =










−4 1
1 −4 −1

−2 −4 1
−1 −8 8

1 −2 2
−1 −9 −1

−2 −5 −2
−1 −8 −2

7 −10 −1
−1 −4










and the remaining entries equal zero. The matrix B is

diagonal and given by

B = diag ([−1, 2, 6, −3, −6, −1, 3, −4, 7, 2 ]) .

The weights Qx = Qu = I and x0 ∈ N (0, I).
The system is initially stable (the largest real part of

the eigenvalues of A is −1.18), meaning that we can start

Algorithm 1 with K(0) = 0. The algorithm is used for

100 iterations where the systems are simulated between

times [0, 10] in each iteration. The method for estimating

suboptimality bounds is performed in each update iteration.

Also, the actual suboptimality is determined by solving the

appropriate Lyapunov equation with the current feedback

matrix K. The result of a simulation is given in Figures 3-4.

In Figure 3 the estimated suboptimal bound is denoted

by α and shown in blue. A first remark is that in the first

iteration we get a negative value of the suboptimality bound.

This is due to the fact that the minimization program in (10)

is not guaranteed to give a positive value. In case a negative

value is obtained nothing can be said about the suboptimality

with this method. Though, as we get closer to the optimal

feedback matrix, the adjoint trajectory will approach the

optimal (with respect to (12)) and the inequalities in the

0 10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

2

2.5

3

Iteration (k)

 

 

                      

                      
∆αrel

Fig. 4. Plot of the relative difference between the estimated and the exact
suboptimality.

proof of Theorem 2 will almost be equal implying that we

can expect a positive value from (10).

When positive, the suboptimality bound is always larger

than 1 which is natural. In the same figure denoted by αexact

and shown in green, is the true suboptimality determined by

αexact =
J(K(k), x0)

J(Kopt, x0)
.

As expected the suboptimality bound (when positive) is

also always larger than the true suboptimality. As the true

suboptimality approaches 1, that is the cost with the feedback

matrix approaches the optimal cost, the suboptimality bound

also approaches 1.

In Figure 4 the relative difference between the suboptimal-

ity bound and the true suboptimality is shown. The relative

difference is determined by

∆αrel =
α− αexact

αexact − 1
.

As can be seen in the figure, the relative difference is in most

iteration below 1.5 meaning that the suboptimality bound is

not more than a factor 1.5 more from the true suboptimality

(when the true suboptimality is measured as the distance to

1).

VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions

In this paper a scalable method for doing synthesis of

distributed controllers for linear, continuous time, distributed

systems. The objective is to obtain a linear, structured

controller which minimizes the LQR cost. The method

works in an iterative fashion where, in each iteration, a

descent direction (with respect to the cost) is determined by

simulating the system and the corresponding adjoint system.

The controller is then updated by a step in that direction.

The fact that the method relies on simulation of distributed,

sparse system shows that it is scalable with respect to the

number of subsystems.
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In each iteration the trajectories are also used to determine

a bound of the suboptimality of the current controller. This

bound gives qualitative information of the current controller,

and can for example be used as a stopping criteria for the

synthesis method.

B. Future Works

How to determine a valid final time in the simulations to

guarantee that the approximated gradient still is a descent

direction, needs further attention. For more discussion, see

Remark 3.

We will work on connecting the state feedback synthesis

with the similar observer synthesis to get a method for

output feedback synthesis. We will for example look at what

happens to the suboptimality bounds in this case.
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