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Robust Model Predictive Control of a Wind Turbine

Mahmood Mirzaei, Niels Kjølstad Poulsen and Hans Henrik Niemann

Abstract— In this work the problem of robust model pre-
dictive control (robust MPC) of a wind turbine in the full
load region is considered. A minimax robust MPC approach
is used to tackle the problem. Nonlinear dynamics of the wind
turbine are derived by combining blade element momentum
(BEM) theory and first principle modeling of the turbine
flexible structure. Thereafter the nonlinear model is linearized
using Taylor series expansion around system operating points.
Operating points are determined by effective wind speed and
an extended Kalman filter (EKF) is employed to estimate this.
In addition, a new sensor is introduced in the EKF to give
faster estimations. Wind speed estimation error is used to assess
uncertainties in the linearized model. Significant uncertainties
are considered to be in the gain of the system (B matrix of
the state space model). Therefore this special structure of the
uncertain system is employed and a norm-bounded uncertainty
model is used to formulate a minimax model predictive control.
The resulting optimization problem is simplified by semidefinite
relaxation and the controller obtained is applied on a full
complexity, high fidelity wind turbine model. Finally simulation
results are presented. First a comparison between PI and robust
MPC is given. Afterwards simulations are done for a realization
of turbulent wind with uniform profile based on the IEC
standard.

I. INTRODUCTION

A. Wind turbine control

In recent decades there has been an increasing interest in
green energies, of which wind energy is one of the most
important. Wind turbines are the most common wind energy
conversion systems (WECS) and are hoped to be able to
compete economically with fossil fuel power plants in near
future. However this demands better technology to reduce the
price of electricity production. Control can play an essential
part in this context because, on the one hand, control methods
can decrease the cost of energy by keeping the turbine close
to its maximum efficiency. On the other hand, they can
reduce structural fatigue and therefore increase the lifetime of
the wind turbine. There are several methods for wind turbine
control ranging from classical control methods [1] which
are the most used methods in real applications, to advanced
control methods which have been the focus of research in the
past few years [2]; gain scheduling [3], adaptive control [4],
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MIMO methods [5], nonlinear control [6], robust control [7],
model predictive control [8], µ-Synthesis design [9] are just
a few. Advanced model based control methods are thought to
be the future of wind turbine control as they can conveniently
employ new generations of sensors on wind turbines (e.g.
LIDAR [10]), new generation of actuators (e.g. trailing edge
flaps [11]) and also treat the turbine as a MIMO system.
The last feature seems to be becoming more important than
before, as wind turbines are becoming bigger and more
flexible. This trend makes decoupling different modes, spec-
ifying different objectives and designing controllers based on
paired input/output channels more difficult. Model predictive
control (MPC) has proved to be an effective tool to deal with
multivariable constrained control problems [12]. As wind
turbines are MIMO systems [5] with constraints on inputs
and outputs, using MPC seems to be effective.

Nominal MPC proved to give satisfactory results for
offshore wind turbine control [13] and trailing edge flap
control [14]. However these works have not taken into
account uncertainty in the design model and this problem
has been bypassed by trial-error and extensive simulations
to get the best performance from the controllers. Based on
this argument extending nominal MPC of wind turbines to
robust MPC and including model uncertainties in the design
seems to be natural.

The wind turbine in this paper is treated as a MIMO
system with pitch (θin) and generator reaction torque (Qin)
as inputs and rotor rotational speed (ωr), generator rotational
speed (ωg) and generated power (Pe) as outputs. This paper
is organized as follows: In section II modeling of the wind
turbine including modeling for wind speed estimation, lin-
earization and uncertainty modeling are addressed. In section
III robust MPC design is explained. Finally in section IV
simulation results are presented.

II. MODELING

A. Wind model

Wind can be modeled as a complicated nonlinear stochas-
tic process. However for practical control purposes it could
be approximated by a linear model [15]. In this model the
wind has two elements, mean value term (vm) and turbulent
term (vt): ve = vm+vt. The turbulent term could be modeled
by the following transfer function:

vt =
k

(p1s+ 1)(p2s+ 1)
e; e ∈ N(0, 1)

And in the state space form:(
v̇t
v̈t

)
=

(
0 1

− 1
p1p2

−p1+p2
p1p2

)(
vt
v̇t

)
+

(
0
k

p1p2

)
e (1)



The parameters p1, p2 and k are found by second order
approximation of the wind power spectrum [15] and they
depend on the mean wind speed vm. For wind speed esti-
mation, a one degree of freedom (DOF) nonlinear model of
the wind turbine is augmented with the wind model given
above. An extended Kalman filter uses this model to estimate
the effective wind speed. This wind speed is used to find
the operating point of the wind turbine and consequently
calculate appropriate control signals.

B. Nonlinear model

For modeling purposes, the whole wind turbine can be di-
vided into 4 subsystems: aerodynamics subsystem, mechan-
ical subsystem, electrical subsystem and actuator subsys-
tem. The aerodynamic subsystem converts wind forces into
mechanical torque and thrust on the rotor. The mechanical
subsystem consists of the drivetrain, tower and blades. The
drivetrain transfers rotor torque to the electrical generator.
The ower holds the nacelle and withstands the thrust force
and the aerodynamically shaped blades transform wind speed
into torque and thrust. The generator subsystem converts
mechanical energy to electrical energy and finally the blade-
pitch and generator-torque actuator subsystems are part of the
control system. To model the whole wind turbine, models
of these subsystems are obtained and at the end they are
connected together. A wind model is obtained and augmented
with the wind turbine model to be used for wind speed
estimation. The dominant dynamics of the wind turbine come
from its flexible structure. Several degrees of freedom could
be considered to model the flexible structure, but for control
design just a few important degrees of freedom are usually
considered.

In this work we only consider two degrees of freedom,
namely the rotational DOF and the drivetrain torsion.

Nonlinearity of the wind turbine mostly comes from its
aerodynamics. Blade element momentum (BEM) theory [16]
is used to calculate aerodynamic torque and thrust on the
wind turbine. This theory explains how torque and thrust are
related to wind speed, blade pitch angle and rotational speed
of the rotor. In steady state, i.e. disregarding dynamic inflow,
the following formulas can be used to calculate aerodynamic
torque and thrust.

Qr =
1

2

1

ωr
ρπR2v3

eCp(θ, ω, ve) (2)

Qt =
1

2
ρπR2v2

eCt(θ, ω, ve) (3)

In which Qr and Qt are aerodynamic torque and thrust, ρ
is the air density, ωr is the rotor rotational speed, ve is the
effective wind speed, Cp is the power coefficient and Ct is
the thrust force coefficient.

The absolute angular position of the rotor and generator
are of no interest to us, therefore we use ψ = θr − θg
instead which is the drivetrain torsion. Having aerodynamic
torque and modeling the drivetrain with a simple mass-
spring-damper, the whole system equation with two DOFs

becomes:

Jrω̇r = Qr − c(ωr −
ωg
Ng

)− kψ (4)

(NgJg)ω̇g = c(ωr −
ωg
Ng

) + kψ −NgQg (5)

ψ̇ = ωr −
ωg
Ng

(6)

Pe = Qgωg (7)

In which Jr and Jg are rotor and generator moments of
inertia, ψ is the drivetrain torsion, c and k are the drivetrain
damping and stiffness factors, respectively lumped in the
low speed side of the shaft, and Pe is the electrical power
generated. For numerical values of these parameters and
other parameters given in this paper, refer to [17].

C. Uncertain Linear Model

1) Linearized model: As mentioned in the previous sec-
tion, wind turbines are nonlinear systems. A basic approach
to design controllers for nonlinear systems is to linearize
them around some operating points. For a wind turbine, the
operating points on the quasi-steady Cp and Ct curves are
nonlinear functions of rotational speed ωr, blade pitch θ
and wind speed v. To get a linear model of the system we
need to linearize around these operating points. Rotational
speed and blade pitch are measurable with enough accuracy,
however this is not the case for the effect of wind on the rotor.
Wind speed changes along the blades and with the azimuth
angle (angular position) of the rotor. This is because of wind
shear and tower shadow as well as the stochastic spatial
distribution of the wind field. Therefore a single wind speed
does not exist which can be used and measured for finding
the operating point. We bypass this problem by defining a
fictitious variable called effective wind speed (ve), which
shows the effect of wind in the rotor disc on the wind turbine.

In our two DOFs model only the aerodynamic torque (Qr)
and electric power (Pe) are nonlinear and Taylor expansion is
used to linearize them. For the sake of simplicity in notations
we will use Qr, Pe, θ, ω and ve instead of ∆Qr, ∆Pe, ∆θ,
∆ω and ∆ve around the operating points from now on. Using
the linearized aerodynamic torque, the two DOFs linearized
model becomes:

ω̇r =
a− c
Jr

ωr +
c

Jr
ωg −

k

Jr
ψ +

b1
Jr
θ +

b2
Jr
ve (8)

ω̇g =
c

NgJg
ωr −

c

N2
g Jg

ωg +
k

NgJg
ψ − Qg

Jg
(9)

ψ̇ = ωr −
ωg
Ng

(10)

Pe = Qg0ωg + ωg0Qg (11)

2) The uncertain model: As mentioned previously, effec-
tive wind speed is not measurable and we need to use an
estimation of it instead. An extended Kalman filter (EKF) is
used to estimate the wind speed, for more details see section
IV-A. The estimated ve has uncertainties and as we use this
estimation to linearize the aerodynamics of the wind turbine,
we end up with an uncertain linear model. The uncertainty
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Fig. 1: Relative uncertainties of the parameters (percent), α
solid-blue and β1 red-dashed

is only in the equation (8). The uncertain linear model could
be written as:

ω̇r = α(δ1)ωr +
c

Jr
ωg −

k

Jr
ψ + β1(δ2)θ + β2(δ3)ve

In which α(δ1), β1(δ2) and β2(δ3) could be written as:

α(δ1) = ᾱ(1 + p1δ1) |δ1| ≤ 1 (12)
β1(δ2) = β̄1(1 + p2δ2) |δ2| ≤ 1 (13)
β2(δ3) = β̄2(1 + p3δ3) |δ3| ≤ 1 (14)

ᾱ, β̄1 and β̄2 are nominal values and p’s show relative
uncertainties. To get numerical values for relative uncertainty
variables (p1, p2 and p3) we have assumed 1m/s wind
speed estimation error. Figure 1 shows a mapping from this
estimation error to errors in the parameters of the linearized
model (α and β1) for different wind speeds. It can be seen
in figures 1 that wind speed estimation error gives less
than 5% error in α, however this value is more than 20%
for β1. Using this argument and in order to simplify the
optimization problem we neglect uncertainty in the dynamics
of the system (which is determined by α) and consider the
uncertainty only to be in the gain of the system. Collecting
all the discussed models, matrices of the state space model
become:

A =


a−c
Jr

c
Jr

− k
Jr

c
NgJg

− c
N2

gJg
k

NgJg

1 −1 0

 B =

 b1(δ2)
Jr

0

0 − 1
Jg

0 0


(15)

C =

1 0 0
0 1 0
0 Qg0 0

 D =

0 0
0 0
0 ωg0

 (16)

In which x =
(
ωr ωg ψ

)T
, u =

(
θ Qg

)T
and y =(

ωr ωg Pe
)T

are states, inputs and outputs respectively.
In the matrix B, parameter b1 is uncertain.

III. CONTROL

A. Control objectives

The most basic control objective of a wind turbine is
to maximize captured power during the life time of the
machine. This means trying to maximize captured power
when wind speed is below its rated value which is called

maximum power point tracking (MPPT). Rated wind speed
is a value where the turbine starts to operate at its rated
speed and power. When the wind speed is above rated, the
control objectives become regulation of the outputs around
their rated values while trying to minimize dynamic loads on
the structure. These objectives should be achieved against
fluctuations in wind speed which acts as a disturbance to
the system. In this work we have considered operation of
the wind turbine in the above rated wind speed (full load
region). Therefore we try to regulate rotational speed and
generated power around their rated values and remove the
effect of wind speed fluctuations.

B. Minimax MPC formulation

MPC uses a model of the system (to be controlled) to
predict its future behavior. In nominal MPC the prediction
of the output (ŷk+N |k) is a single value and it is calculated
based on one model. However in robust MPC because the
model is uncertain, this prediction is no longer a unique
value but it is a set instead. An approach to tackle the
problem with an uncertain model is to try to consider the
most pessimistic situation with respect to uncertainties. This
means maximizing the cost function on the uncertainty set.
After maximization, we minimize the obtained cost function
over control inputs as we do in nominal MPC. This approach
is called minimax MPC and it is a common solution to
robust MPC problems [18]. As explained in II-C.2 the model
obtained from our system only has uncertainties in the B
matrix. The special structure of our problem can help us in
simplification of the minimax MPC problem. Therefore we
formulate robust MPC of the wind turbine in the form of
minimax MPC of a system with uncertain gain [18]:

xk+1 = Axk +B(∆k)uk (17)
yk = Cxk +Duk (18)

Polytopic uncertainty and additive disturbances are common
ways to include uncertainties in robust MPC formulation
[12]. However here we have employed norm-bounded un-
certainty to model our system [19]:

B(∆k) = B0 +Bp∆kCp, ∆k ∈∆ (19)
∆ = {∆ : ‖∆‖ ≤ 1} (20)

With norm-bounded uncertain model of the system, we
formulate the minimax MPC with quadratic performance
and soft constraints. In order to simplify notations, we use
stacked variables from now on and we define the following
matrices:

Φx =
(
CA CA2 . . . CAN−1

)T
(21)

Γ =


CB(∆1) D . . . 0
CAB(∆2) CB(∆1) . . . 0

...
...

. . .
...

CAN−1B(∆N ) CAN−2B(∆N−1) . . . D


(22)



By using these matrices, the predicted output vector could
be written as:

Y = Φxx̂k|k−1 + ΓU (23)

Γ = Γ0 + Γ∆(∆N ) (24)

∆N =
(
∆1 ∆2 . . . ∆N

)T
(25)

And the minimax optimization problem becomes:

min
U

max
∆N

Y TQY+UTRU + ΥTS1Υ + ΞTS2Ξ (26)

subject to U ≤ Umax + Υ (27)
U ≥ Umin −Υ (28)

∆U ≤ ∆Umax + Ξ (29)
∆U ≥ ∆Umin − Ξ (30)

Υ ≥ 0 (31)
Ξ ≥ 0 (32)

We use ∆U = ΨU − I0uk−1 to rewrite constraints on ∆U
in the form of constraints on U in which:

Ψ =


1 0 0 . . . 0
−1 1 0 . . . 0
0 −1 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

 I0 =


1
0
0
...
0

 (33)

Now we use semidefinite relaxation and apply the Schur
complement to the optimization problem to get the following
optimization problem with LMI constraints:

min
t,U

t (34)

s.t.


t Y T UT ΥT ΞT

? Q−1 0 0 0
? ? R−1 0 0
? ? ? S−1

1 0
? ? ? ? S−1

2

 � 0 (35)


I
−I
Ψ
−Ψ

U −


Umax + Υ
−Umin + Υ

∆Umax + I0uk−1 + Ξ
−∆Umin − I0uk−1 + Ξ

 ≤ 0 (36)

Υ ≥ 0 Ξ ≥ 0 (37)

However in the above formulation Y is of the form:

Y =Φxx̂k|k−1 + Γ0U +
∑N

j=1
Vj∆jWjU, ∆j ∈∆

V1 =
(
Bp ABp . . . AN−1Bp

)T
V2 =

(
0 Bp ABp . . . AN−2Bp

)T
...

VN =
(
0 0 0 . . . Bp

)T
W1 =

(
Cp 0 . . . 0

)
W2 =

(
0 Cp . . . 0

)
...

WN =
(
0 0 . . . Cp

)

and it contains uncertain elements. Based on results from
[18], we use the following theorem to eliminate uncertainties
[20].

Theorem 1: robust satisfaction of the uncertain LMI

F + L∆(I −D∆)−1R+RT (I −∆TDT )−1∆TLT � 0

is equivalent to the LMI[
F L
LT 0

]
�
[
R D
0 I

]T [
τI 0
0 −τI

] [
R D
0 I

]
τ ≥ 0

Now we pull out the first uncertain element (∆1) from Y
in the LMI constraint. To do so we define the following
variable:

γi = Φxx̂k|k−1 + Γ0U +
∑N

j=i
Vj∆jWjU, i = 1, . . . , N

(38)

Using theorem 1, and collecting the matrices on the left hand
side we get the following LMI:

t γT2 UT UTWT
1 ΥT ΞT

? Q−1 − τ1V1V
T
1 0 0 0 0

? ? R−1 0 0 0
? ? ? τ1I 0 0
? ? ? ? S−1

1 0
? ? ? ? ? S−1

2

 � 0

(39)

We pulled out ∆1, and now we repeat the same procedure
until we pull out all the uncertainties ∆i for i = 2, . . . , N .
Afterwards we apply the Schur complement to write the final
LMI in the form of smaller LMIs. Finally the optimization
problem can be written in the following form:

min
t,τ,U

tx + tu + tυ +
∑N−1

j=0
tj (40)

subject to

(
tx x̂Tk|k−1ΦTx + UTΓT0
? Q−1 −

∑N−1
j=0 τjVjV

T
j

)
� 0 (41)(

tu UT

? R−1

)
� 0

(
tυ ΥT

? S−1

)
� 0

(
tj UTWT

j

? τjI

)
� 0

(42)
I
−I
Ψ
−Ψ

U −


Umax + Υ
−Umin + Υ

∆Umax + I0uk−1 + Ξ
−∆Umin − I0uk−1 + Ξ

 ≤ 0 (43)

τj ≥ 0 Υ ≥ 0 Ξ ≥ 0 (44)

We have used SeDuMi [21] to solve this optimization prob-
lem. SeDuMi is a program that solves optimization problems
with linear, quadratic and semidefinite constraints.

C. Offset free reference tracking and constraint handling

Persistent disturbances and modeling error can cause an
offset between measured outputs and desired outputs. To
avoid this problem, we have employed an offset free ref-
erence tracking approach (see [22] and [23]). Our RMPC
solves the regulation problem around the operating point.



However we regulate around the operating points extracted
from wind speed estimation which might be erroneous and
results in offset from desired outputs. Besides, the difference
between linear model and nonlinear model accounts for some
of the differences between the measured outputs and the
desired outputs as well. To avoid this problem, in our control
algorithm we shift origin in our regulation problem to new
operating points which ensures offset free reference tracking.
It is clear that they should be included in the constraints of
the robust MPC formulation.

IV. SIMULATIONS

In this section firstly wind speed estimation is explained.
Afterwards simulation results for the obtained controllers
are presented. The controllers are implemented in MATLAB
and are tested on a full complexity FAST [24] model of
the reference wind turbine [17]. Simulations are done with
realistic turbulent wind speed using the Kaimal turbulence
model [25]. TurbSim [26] is used to generate a time marching
hub-height wind profile. In order to stay in the full load
region, a realization of turbulent wind speed is used from
category C of the turbulence categories of the IEC 61400-1
[25], with 18m/s as the mean wind speed.

A. Wind speed estimation

Wind speed estimation is essential in our control algorithm
and in order to get a faster estimator we have introduced
a sensor that measures rotor acceleration. This could be
done using rotor speed and generator speed measurements
[27]. A one DOF model of the wind turbine, including only
rotor rotational degree of freedom is used for wind speed
estimation. The first order nonlinear equations used in the
extended Kalman filter are:

ω̇ =
1

Jr
Qr(ω, θ, ve)−

1

Jr
Qg (45)

y =
(
ω Pe Qr −Qg

)T
(46)

Using the nonlinear equations above and wind model (1) an
extended Kalman filter is designed to estimate the effective
wind speed. Figure 2 shows wind speed and its estimation.

B. Stochastic simulations

In this section simulation results for a stochastic wind
speed are presented. Control inputs, which are pitch reference
θin and generator reaction torque reference Qin along with
system outputs, which are rotor rotational speed ωr and
electrical power Pe, are plotted in figures 3-6. The estimated
wind speed is inaccurate and the controller is designed
such that it can handle the uncertainties which arise from
this inaccuracy. Simulation results show good regulations
of generated power and rotational speed. Table I shows a
comparison of the results between RMPC and a standard
PI controller. The PI controller configuration and parameter
values are taken from [17]. As could be seen from the table,
the RMPC controller gives better regulation on rotational
speed and generated power (smaller standard deviations)
than the PI controller, while keeping the shaft moment less.

Parameters RMPC PI
ωr standard deviation (RMP) 0.389 0.728
Pe standard deviation (Watts) 6.598× 104 9.050× 104

Pe mean value(Watts) 4.997× 106 4.999× 106

Pitch standard deviation (degrees) 10.261 8.623
Shaft moment standard deviation (N.M.) 0.840× 103 2.376× 103

TABLE I: RMPC and PI performance comparison
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Fig. 2: Wind speed (blue-solid), Estimated wind speed (red-
dashed) (m/s)

However when it comes to pitch activity (here we have used
pitch standard deviation), it has more pitch activity.

V. CONCLUSIONS

In this paper we found a second order nonlinear model
of a wind turbine, using blade element momentum theory
(BEM) and first principle modeling of the drivetrain. Our
control methodology is based on linear models, therefore we
have used Taylor series expansion to linearize the obtained
nonlinear model around system operating point. The operat-
ing point is a direct function of rotor rotational speed, pitch
angle and wind speed. Wind speed estimation is used to find
the operating point and we showed that this will result in
an uncertain B matrix in our linear model. Special minimax
model predictive control formulation was derived to take into
account the assumed uncertainties. The final controller was
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Fig. 3: Blade-pitch reference (degrees)
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Fig. 4: Generator-torque reference (kilo N.M.)
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Fig. 5: Rotor rotational speed (ωr) (rpm)
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Fig. 6: Electrical power (mega watts)

applied on a full complexity FAST [24] model and compared
with a standard PI controller.
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