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Abstract

This paper considers data rate limitations for mean square stabilization of uncertain discrete-time

linear systems via finite data rate and lossy channels. For a plant having parametric uncertainties, a

necessary condition and a sufficient condition are derived, represented by the data rate, the packet loss

probability, uncertainty bounds on plant parameters, and the unstable eigenvalues of the plant. The

results extend those existing in the area of networked control, and in particular, the condition is exact

for the scalar plant case.

1 Introduction

Networked control systems have attracted much research interest in recent years [1, 2]. In such systems,
the communication between the plant and the controller is constrained due to the use of shared channels.
Though modern communication channels may have large bandwidth, in the systems consisting of sensors,
actuators, and other devices, each component can be allocated only a portion of it for the required real-time
transmissions. Thus, it is important to study fundamental relations concerning the control performance and
the communication constraints in such systems.

One such relation is the limitation on the data rate for the stabilization of unstable linear systems. The
seminal works of [3–5] have presented the minimum data rate for stabilization, and have shown that it only
depends on the product of the unstable eigenvalues of the plant. Another fundamental relation can be found
under the presence of packet losses. In practical channels, transmitted packets may be lost due to congestion
or delay. In [6], it is shown that the maximum loss probability tolerable for mean square stabilization
is described also by the product of the unstable eigenvalues of the plant. It is worth noticing that both
limitations require more communication for plants with more unstable dynamics. On the other hand, the
works [7,8] focus on the two constraints of data rates and packet losses simultaneously and extend the results
on limitations. It is interesting that while the work [7] studies the notion of stability with probability 1,
the paper [8] is concerned with mean square stability. As a consequence, different bounds are obtained.
Furthermore, various communication constraints are considered (e.g., delays, variable sampling periods,
sharing the channel among multiple nodes), not only for linear systems but also for nonlinear systems (see,
e.g., [9–11]).

While in the existing works, it is commonly assumed that the exact plant model is known, when the
plant is uncertain, fewer results are available. The work of [12] deals with a linear time-invariant plant with
norm-bounded uncertainty; and in [13], a nonlinear scalar plant with stochastic uncertainty is considered.
Both papers give sufficient conditions on the data rate for stabilization using a lossless channel. However,
these limitations may contain some conservativeness, and it is still unclear at least how large the data rate
should be when the plant is uncertain.
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Figure 1: Networked control system

The objective of this paper is to provide an answer to this question. We consider plants with parametric
uncertainty. Though this class of uncertainty is different from those in the works mentioned above, it is widely
adopted and various results are established (see [14] and references therein). To deal with the uncertainty,
we follow the approach of [8], where the plants are given in the controllable canonical forms. Hence, the
uncertainty can be considered as a natural extension of this approach. As to the communication constraints,
following the setup in [8], we consider the channel is with data rate constraints and packet losses.

We derive a necessary condition and a sufficient condition, which provide bounds on the required data
rate and loss probability to stabilize the closed-loop system. The results have several features: First, the
limitation given by the conditions is tight for the scalar plants case, which is not attained in [12,13]. Second,
it generalizes the results in [8] in the sense that without uncertainty in the plants, the bounds coincide with
that in [8]. Moreover, it is known that for plants without uncertainty, stabilization is possible with any data
rate greater than the necessary bound by introducing a time-sharing protocol [4, 5, 8]. However, we show
that this may be difficult in the uncertain case.

The paper is organized as follows. In Section 2, we describe the setup of the networked control systems
considered. Then, we present a necessary condition and a sufficient condition in Sections 3 and 4, respectively.
The limitation for the system employing a time-sharing protocol is discussed in Section 5, and finally we
provide concluding remarks in Section 6.

2 Problem Formulation

We consider the stabilization of a networked control system which includes a digital channel between the
plant and the controller. At time k ∈ Z+, the encoder observes the plant output yk ∈ R, and quantizes it
as an R-bit signal sk ∈ ΣR, where R ≥ 0. Here, the set ΣR represents all possible outputs of the encoder,
and contains 2R symbols. The quantized signal sk is transmitted to the decoder via a lossy channel. Based
on the received signal, the decoder generates the interval Yk ⊂ R, which is an estimate of the plant output
yk. Finally, the controller receives this set Yk and provides the control input uk ∈ R. Fig. 1 shows the
connections among components of the system.

Now we describe the details of each element in the system. The plant is an n-dimensional single-input
single-output autoregressive system whose parameters have uncertainties and may be time varying:

yk+1 − a1,kyk − a2,kyk−1 − · · · − an,kyk−n+1 = uk. (1)

Here, the initial value y0 of the output is bounded with a known interval |y0| ≤ Y0, and yk = 0 for k < 0.
Each uncertain parameter ai,k is represented by the nominal value a∗i and the width ǫi≥0 of the perturbation
as

ai,k∈Ai :=[a∗i − ǫi, a
∗
i + ǫi] for i = 1, 2, . . . , n, (2)

where Ai represents the uncertainty of the ith parameter ai,k.
The plant (1) can be rewritten in the controllable canonical form as

xk+1 = Akxk +Buk, yk = Cxk, (3)
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where xk := [yk−n+1 yk−n+2 · · · yk]T and

Ak =




0 1 · · · 0
...

. . .
. . .

...
0 0 · · · 1

an,k an−1,k · · · a1,k


 ∈ R

n×n, B =




0
...
0
1


 ∈ R

n,

C =
[
0 · · · 0 1

]
∈ R

1×n.

Let A∗ denote the nominal A-matrix, and let λA∗ be the product of the eigenvalues of A∗:

A∗ :=




0 1 · · · 0
...

. . .
. . .

...
0 0 · · · 1
a∗n a∗n−1 · · · a∗1


 , λA∗ :=

n∏

i=1

λi(A
∗) = a∗n,

where λi(·) represents an eigenvalue of a matrix. Assume that all eigenvalues of the matrix Ak are unstable
for the uncertain parameters in (2). In particular, this implies

|a∗n| − ǫn > 1. (4)

The encoder Ek at time k quantizes the output yk ∈ R to the R-bit signal sk ∈ ΣR, and then transmits
it to the decoder via a lossy channel. Let the random variable γk represent the state of packet reception/loss
at time k. The encoder knows the state of the previous step, γk−1, through the acknowledgement signal
from the decoder.

In order to deal with the uncertainty in the plant, we introduce some structure in the encoder. Specifically,
it is realized by a finite level uniform quantizer. Such a class of encoders has been employed in, e.g.,
[5, 8, 12, 13]. We will have more discussion later. Let qN (·) denote the N -level uniform quantizer with
N = log2 R and the input range [−1/2, 1/2]. It partitions the range [−1/2, 1/2] into N intervals of widths
1/N as

qN (y) :=

{
i if − 1

2 + i
N

≤ y < − 1
2 + i+1

N
, i ∈ {0, 1, . . . , N − 2},

N − 1 if 1
2 − 1

N
≤ y ≤ 1

2 .

Let the set of its outputs be ΣR := {0, 1, . . . , N − 1}. Then the encoder Ek is given by

sk = Ek(y
k
0 , γ

k−1
0 ) = qN

(
yk
σk

)
,

where yk0 is the sequence yk0 := {y0, . . . , yk} and similarly γk−1
0 := {γ0, . . . , γk−1}. We use similar notations

in the sequel. In addition, σk > 0 is the scaling parameter of the input range. The above equation implies
that the input range of the encoder is [−σk/2, σk/2]. The scaling parameter σk must be computable on both
sides of the channel. Since the receiver side knows only γksk, this parameter must be updated as

σk = Sk((γs)
k−1
0 ), σ0 ≥ Y0,

where (γs)k := γksk.
The transmitted signal sk is randomly lost due to unreliability in the channel caused by congestion or

delay. The packet reception/loss state at time k is represented by the random variable γk ∈ {0, 1}. If γk = 0
then the packet is lost at time k; otherwise, it arrives successfully. The process {γk}∞k=0 is independent and
identically distributed (i.i.d.) with the loss probability specified by p ∈ [0, 1), i.e., Prob ({γk = 0}) = p.

The decoderDk converts the received signal (γs)k to the interval Yk ⊂ [−σk/2, σk/2] by Yk = Dk

(
(γs)k0 , γ

k
0

)
.

The interval Yk is an estimation set that the plant output yk should be included in. If the packet sk arrives,

3



i.e., if γk = 1, then the output interval Yk corresponds to one of the partitions of the quantizer; otherwise,
Yk is equal to the entire input range of the encoder. Hence, we have

Yk =





[
−σk

2 + σk

N
i,−σk

2 + σk

N
(i+ 1)

)
if γk = 1 and sk = i, i ∈ {0, 1, . . . , N − 2} ,[

σk

2 − σk

N
, σk

2

]
if γk = 1 and sk = N − 1,[

−σk

2 , σk

2

]
if γk = 0.

(5)

The controller Ck generates the control input uk based on the estimation set Yk as uk = Ck(Yk
0 ).

It is remarked that the scaling parameter σk should be large enough to cover all possible inputs to the
encoder. Otherwise, the quantizer may be saturated, in which case we lose track of the plant output yk.
On the other hand, if we take σk large, the quantization error also becomes large. Moreover, to achieve
stabilization of the system σk should decay gradually.

We determine the scaling parameter as follows. At time k, the encoder and the decoder predict the next
plant output yk+1 based on the observed Yk

0 . Let Y−
k+1 ⊂ R be the set of all possible outputs yk+1 of the

uncertain system (1). Then the scaling parameter σk+1 > 0 is chosen such that

σk+1 ≥ µ(Y−
k+1), (6)

where µ(·) denotes the Lebesgue measure on R.
As the prediction set Y−

k+1, we employ the following one.

Definition 1 The prediction set of the plant output yk+1 constructed at time k is defined as follows:

Y−
k+1 := {a′1y′k + · · ·+ a′ny

′
k−n+1 : a′1 ∈ A1, . . . , a

′
n ∈ An, y′k ∈ Yk, . . . , y

′
k−n+1 ∈ Yk−n+1}. (7)

Under this definition, our prediction strategy is to use the information regarding yk, . . . , yk−n+1 inde-
pendently such that yk−i+1 ∈ Yk−i+1 for each i = 1, 2, . . . , n, where Yk−i+1 is the interval received on the
decoder side at time k − i+ 1. Then, clearly, µ(Y−

k+1) is large enough to include yk+1, and it is computable
on both sides of the channel.

Remark 1 The class of prediction sets in Definition 1 is employed to pursue an analytical approach. There
may be other prediction methods that generate a less conservative prediction set Ỹ−

k+1 satisfying µ(Ỹ−
k+1) <

µ(Y−
k+1). If, for example, we take yk, . . . , yk−n+1 not independently but by looking at the correlations among

them, then the estimation sets Yk−1, . . . ,Yk−n+1 from times before k and Y−
k+1 may shrink. In the case of

uncertain plants, however, it is difficult to analytically minimize the Lebesgue measures of the prediction
sets containing yk+1, though it may be possible numerically [15].

The control objective is stabilizing the system depicted in Fig. 1 in a stochastic sense as described below.

Definition 2 The system depicted in Fig. 1 is mean square stable (MSS) if the plant output yk asymptoti-
cally goes to zero in the mean square sense for all possible uncertainties within the bounds in (2), i.e.,

lim
k→∞

E[|yk|2] = 0, ∀a1,k ∈ A1, ∀a2,k ∈ A2, . . . , ∀an,k ∈ An, ∀k ∈ Z+.

The problem of the paper is to find limitations on the data rate and the loss probability for the system
to be MSS.

3 Necessary Condition

In this section, we present the first main result of the paper: A necessary condition for the system to be
MSS. We introduce two notations representing certain lower bounds on the data rate:

R(0)
nec := log2

(|λA∗|+ ǫn)
√
1− p√

1− p(|λA∗|+ ǫn)2
,

R(1)
nec := log2

(|λA∗| − ǫn)
√
1− p√

1− p(|λA∗|+ ǫn)2 − ǫn
√
1− p

.
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The following theorem is the necessity result.

Theorem 1 If the system depicted in Fig. 1 is MSS, then the following inequalities hold:

R > Rnec := max{R(0)
nec, R

(1)
nec}, (8)

p < pnec :=
1− ǫ2n

(|λA∗|+ ǫn)2 − ǫ2n
, 0 ≤ ǫn < 1. (9)

One can verify that Rnec is monotonically increasing with respect to |λA∗|, p, and ǫn (under the constraints
of (9)), and similarly pnec is monotonically decreasing. In particular, as expected, more uncertainty in the
plant will result in higher requirement in communication with a larger data rate and a smaller loss probability.

A special case of this result is when there is no uncertainty in the plant, in which case we have ǫn = 0.
Then, the bounds in the theorem coincide with the ones given in [8].

Proposition 1 ([8]) Suppose that in (3) the exact plant model is known and is time-invariant, represented
by the triple (A,B,C). Then, the system in Fig. 1 is MSS if and only if the data rate and the loss probability
satisfy the following inequalities:

R > RY(λA) := log2
|λA|

√
1− p√

1− p|λA|2
, (10)

p < pY(λA) :=
1

|λA|2
. (11)

Here, λA denotes the product of the eigenvalues of A, that is, λA :=
∏n

i=1 λi(A).

It is clear that when ǫn = 0, then we have that Rnec = RY(λA∗) and pnec = pY(λA∗). Thus, Theorem 1
includes Proposition 1 as a special case. For the case ǫn > 0, we have the following inequalities

Rnec ≥ max
λA∈An

RY(λA) = R(0)
nec,

pnec < min
λA∈An

pY(λA).

By these relations, we have that when the plant is uncertain with ǫn > 0, then even if we assume the most
conservative plant dynamics, the limitations RY and pY given by Proposition 1 may not satisfy the necessary
conditions (8) and (9).

In Theorem 1, the condition ǫn < 1 indicates the existence of a threshold on the uncertainty bound,
over which the system cannot be stabilized with any controller regardless of the size of the data rate in the
channel.

Before starting the proof of Theorem 1, we introduce an inequality regarding the set Y−
k+1. By the

definition in (7), the prediction set Y−
k+1 satisfies

µ(Y−
k+1) =

n∑

i=1

µ (AiYk−i+1) ≥ µ (AnYk−n+1) (12)

where

AiYk−i+1 :=
{
a′iy

′
k−i+1 : a′i ∈ Ai, y

′
k−i+1 ∈ Yk−i+1

}

for i = 1, 2, . . . , n. Here, the equality holds by the Brunn-Minkowski inequality [16].
Proof of Theorem 1: First, we show that the mean square stability of the plant output yk implies that

the scaling parameter σk is also MSS. For any measurable set Yk ⊂ R, it is obvious that

2 max
y′

k
∈Yk

|y′k| ≥ µ(Yk).
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By the definition (5) of the decoder, the right-hand side of the inequality satisfies µ(Yk) = σk/N
γk . Hence,

if limk→∞ E[|yk|2] = 0, then limk→∞ E[σ2
k] = 0 holds.

In the rest of the proof, we study a necessary condition for σk to be MSS. Notice from (6) that σk+1 is
bounded from below by µ(Y−

k+1). Substitution of (12) into (6) yields

σk+1 ≥ µ (AnYk−n+1) . (13)

We next evaluate the right-hand side of the above inequality. This term depends on where the intervals
An and Yk−n+1 lie with respect to the origin of the real axis. By (2), we have An = [a∗n − ǫn, a

∗
n + ǫn], but

(4) implies that it does not contain the origin. We first consider the case a∗n > 0. Using basic notions from
interval arithmetics [17], we obtain

µ (AnYk−n+1) = a∗nµ(Yk−n+1) + ǫnβ(Yk−n+1), (14)

where β(·) is given by

β(Yk) :=






Yk + Yk if 0 ≤ Yk,

Yk − Yk if Yk < 0 < Yk,

−Yk − Yk if Yk ≤ 0,

(15)

Yk := sup
y′

k
∈Yk

y′k, Yk := inf
y′

k
∈Yk

y′k.

Similarly, for the case a∗n < 0, we have

µ (AnYk−n+1) = −a∗nµ(Yk−n+1) + ǫnβ(Yk−n+1). (16)

Clearly, we can write (14) and (16) in one form:

µ (AnYk−n+1) = |a∗n|µ(Yk−n+1) + ǫnβ(Yk−n+1). (17)

Though the value on the right-hand side of (17) may vary with Yk−n+1, the inequality (13) holds for any
Yk−n+1.

We claim that the maximum of µ (AnYk−n+1) in (17) over all possible intervals Yk−n+1 at time k−n+1
can be written as

max
Yk−n+1

µ (AnYk−n+1) = ηkσk−n+1, (18)

where ηk is the random variable given by

ηk :=
|a∗n|+max {Nγk−n+1 − 1, 1} ǫn

Nγk−n+1
. (19)

In (17), the first term is |a∗n|µ(Yk−n+1) = |a∗n|σk−n+1/N
γk−n+1. For the second term, we must consider the

following three cases.
(i) 0 ≤ Yk−n+1: In this case, by (5), it is necessary that γk−n+1 = 1 and N ≥ 2. From (5) and (15), we

have

max
Yk−n+1

β(Yk−n+1) =
N − 1

N
σk−n+1. (20)

(ii) Yk−n+1 < 0 < Yk−n+1: If γk−n+1 = 0 or N < 2, then this condition is satisfied for any Yk−n+1. By

(15), we obtain β(Yk−n+1) = Yk−n+1 − Yk−n+1 = µ(Yk−n+1). Hence, we have

max
Yk−n+1

β(Yk−n+1) =
σk−n+1

Nγk−n+1
.

6



(iii) Yk−n+1 ≤ 0: This case can be reduced to (i). We hence obtain (20).
From the above, the relation in (18) is derived.
By (13) and (18), it holds that

σk+1 ≥ ηkσk−n+1. (21)

This is a key inequality, which is a consequence of σk being MSS. Noticing that σk > 0 for each time k, take
the square of both sides of (21) as

E[σ2
k] ≥ E[η2kσ

2
k−n+1] = E[η2k]E[σ

2
k−n+1].

Here, the equality holds due to the independence of σk−n+1 and γk−n+1; note that σk−n+1 is an element
of the σ-field generated by the sequence γk−n

0 . The above inequality shows that if σk is MSS then ηk must
satisfy E[η2k] < 1.

The next step is to obtain a lower bound on N from the inequality E[η2k] < 1. For this, we must consider
two cases.

(i) 1 ≤ N < 2: By the definition of ηk in (19), in this case we have ηk = (|a∗n|+ ǫn)/N
γk−n+1. Hence, it

holds that

E[η2k] = p(|a∗n|+ ǫn)
2 + (1− p)

( |a∗n|+ ǫn
N

)2

< 1

⇔ N >
(|a∗n|+ ǫn)

√
1− p√

1− p(|a∗n|+ ǫn)2
, p < p(0)nec :=

1

(|a∗n|+ ǫn)2
.

Using R = log2 N , we can simplify this as

R > R(0)
nec, p < p(0)nec. (22)

(ii) N ≥ 2: As in (i), E[η2k] < 1 is equivalent to

R > R(1)
nec, p < p(1)nec :=

1− ǫ2n
|a∗n|2 + 2|a∗n|ǫn

. (23)

We next simplify these necessary conditions (22) and (23) into one form. First, we consider the constraints

on the data rate R. According to (22) and (23), a lower bound on R is R
(0)
nec if 0 ≤ R < 1, and R

(1)
nec otherwise.

However, by the definitions of R
(0)
nec and R

(1)
nec, we can show the three relations

R(0)
nec > 1 ⇒ R(1)

nec > R(0)
nec,

R(0)
nec < 1 ⇒ R(1)

nec < R(0)
nec,

R(0)
nec = R(1)

nec ⇒ R(0)
nec = R(1)

nec = 1.

That is, the bound R
(1)
nec is larger than R

(0)
nec when R

(0)
nec > 1, is smaller when R

(0)
nec < 1, and crosses R

(0)
nec when

R
(1)
nec = 1. Thus, the constraints on R can be reduced to the desired bound R > max{R(0)

nec, R
(1)
nec} in (8).

Next, we turn to the loss probability p. We show that for the case (i), i.e., if 0 ≤ R < 1, then it is clear

that p < p
(0)
nec in (22). Since it holds that R > R

(0)
nec, we have R

(0)
nec < 1. Here, let p∗ denote the p such that

R
(0)
nec = 1 holds. Since R

(0)
nec is monotonically increasing with respect to p, R

(0)
nec < 1 implies that p < p∗.

On the other hand, after some calculation, we can show that p∗ < p
(0)
nec. Thus, the condition p < p

(0)
nec is

automatically satisfied. Moreover, we can also show that p∗ < p
(1)
nec. Hence, p < p

(1)
nec is necessary also in the

case 0 ≤ R < 1.
Finally, since p

(1)
nec must be larger than zero, as a necessary condition, we need 0 ≤ ǫn < 1 in (9). �
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4 Sufficient Condition

In this section, we present a sufficient condition for the existence of a stabilizing feedback control scheme.
When we consider a practical quantization scheme, we cannot choose the quantization levelN as a noninteger.
Therefore, we assume N ∈ Z and N ≥ 2 in this section.

Given a certain data rate R, or N , we employ the control law for the scaling parameter as

σk =µ(Y−
k ), (24)

and that for the control input as

uk =−
n∑

i=1

(a∗i ŷk−i+1) , (25)

where ŷk−i+1 := (Yk−i+1 + Yk−i+1)/2. Notice that we select the minimum scaling parameter σk satisfying
(6), and take the state feedback control using the nominal values a∗i and the centers of Yk−i+1.

For i = 1, 2, . . . , n, we introduce the following random variables θi,k:

θi,k :=





|a∗i |+ ǫi if γk−i+1=0,
|a∗

i |+ǫi(N−1)
N

if γk−i+1=1 and Ai 6∋0,

max
{

|a∗

i |+ǫi
N

, ǫi

}
if γk−i+1=1 and Ai∋0.

(26)

This can be used to bound the interval AiYk−i+1 as

µ(AiYk−i+1) ≤ θi,kσk−i+1.

Moreover, define the random variable matrix HΓk
containing the random variables θ1,k, . . . , θn,k by

HΓk
:=




0 1 · · · 0
...

. . .
. . .

...
0 0 · · · 1

θn,k θn−1,k · · · θ1,k


 ,

where Γk := {γk, γk−1, . . . , γk−n+1}. Here, the process Γk is a Markov chain which has 2n states given by

Γ(1) := {0, . . . , 0, 0}, Γ(2) := {0, . . . , 0, 1}, . . . , Γ(2n) := {1, . . . , 1, 1},

and the transition probability matrix P ∈R
2n×2n is given by

P :=




p 1− p
p 1− p

. . .
. . .

p 1− p
p 1− p



,

where the (i, j) element is equal to the transition probability from Γ(i) to Γ(j). Furthermore, we define the
matrix F using HΓk

and P :

F := F1F2,

where

F1 := PT ⊗ In2 , F2 := diag (HΓ(1) ⊗HΓ(1) , . . . , HΓ(2n) ⊗HΓ(2n)) .

Here, diag(·) denotes a block diagonal matrix and ⊗ is the Kronecker product. The following theorem holds
by applying results from the Markov jump linear systems theory [18].
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Theorem 2 Given the data rate R = log2 N and the loss probability p ∈ [0, 1), if

ρ(F ) < 1, (27)

then under the control law using (24) and (25), the system depicted in Fig. 1 is MSS, where ρ(·) represents
the spectral radius of a matrix.

Remark 2 For the special case of scalar plants (n = 1), the condition (27) is equal to the following condi-
tions:

R > R(1)
nec, p < pnec, 0 ≤ ǫn < 1.

This shows that if the necessary condition in Theorem 1 holds and the data rate satisfies 2R = N ≥ 2, then
the sufficient condition is also satisfied. Thus, Theorems 1 and 2 are necessary and sufficient for the case
n = 1.

Remark 3 In [12] and [13], sufficient conditions for stabilization of uncertain plants via lossless channels
(p = 0) are given. For the case n = 1, the condition in [12] is

R > RP := log2
|λA∗| − ǫ1(|λA∗|+ ǫ1)

1− ǫ1(2|λA∗|+ 2ǫ1 + 1)
, (28)

and the one from [13] becomes

R > RM := log2
|λA∗|
1− ǫ1

. (29)

By Remark 2, our sufficient condition (27) on the data rate equals R > R
(1)
nec for the case n = 1. It is easy

to verify that R
(1)
nec < RP, RM. Thus, our sufficient condition is less conservative than (28) and (29). For

general order plants, it is difficult to compare Theorem 2 with the bounds in [12] and [13] because the types
of plant uncertainties are different.

Proof of Theorem 2: We first prove that if E[σ2
k] → 0 then E[|yk|2] → 0 as k → ∞ under the control

law. By substituting (25) to (1), we obtain

|yk+1| =
∣∣∣∣∣

n∑

i=1

(aiyk−i+1 − a∗i ŷk−i+1)

∣∣∣∣∣

≤
n∑

i=1

(
|ai − a∗i ||ŷk−i+1|+ |ai| |yk−i+1 − ŷk−i+1|

)
. (30)

Regarding the first term in the far right-hand side, we have

|ai − a∗i | ≤ ǫi (31)

from the bound on the uncertainty. Moreover, since ŷk−i+1 is the midpoint of Yk−i+1, we have

|ŷk−i+1| ≤
∣∣∣∣1−

1

N

∣∣∣∣
σk−i+1

2
. (32)

Similarly, the second term |yk−i+1 − ŷk−i+1|, which corresponds to the quantization error, is bounded by
σk−i+1 as

|yk−i+1 − ŷk−i+1| ≤
σk−i+1

2Rγk−i+1+1
≤ σk−i+1

2
. (33)
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Applying these inequalities (31)–(33) to (30), we have

|yk+1| ≤
n∑

i=1

ǫi

∣∣∣∣1−
1

N

∣∣∣∣
σk−i+1

2
+ |ai|

σk−i+1

2

=

n∑

i=1

diσk−i+1, (34)

where di is defined as follows:

di := ǫi

∣∣∣∣1−
1

N

∣∣∣∣
1

2
+

|ai|
2

for i = 1, 2, . . . , n.

By squaring both sides of the inequality in (34) and taking expectations, we obtain

E[|yk+1|2] ≤
n∑

i=1

n∑

j=1

didjE [σk−i+1σk−j+1]

≤
n∑

i=1

n∑

j=1

didj

√
E[σ2

k−i+1]
√
E[σ2

k−j+1].

Here, the second inequality holds by the fact that σk > 0 for all k ≥ 0 and the Schwarz inequality. Hence,
we have that if E[σ2

k] → 0 then E[|yk+1|2] → 0 as k → ∞.
Next, we prove that the condition (27) implies that σk is MSS under (24) and (25). By (24) and the

equality in (12), we have

σk+1 =
n∑

i=1

µ (AiYk−i+1) . (35)

For the ith term µ (AiYk−i+1), it holds that

µ (AiYk−i+1) =





(|a∗i |+ ǫi)µ(Yk−i+1) if Yk−i+1 ∋ 0,

|a∗i |µ(Yk−i+1) + ǫ|Yk−i+1 + Yk−i+1| if Yk−i+1 6∋ 0 and Ai 6∋ 0,

2ǫimax
{
|Yk−i+1|, |Yk−i+1|

}
if Yk−i+1 6∋ 0 and Ai ∋ 0,

by using basic results in interval arithmetics [17] for i = 1, 2, . . . , n. By taking the maximum of µ (AiYk−i+1)
over all possible Yk−i+1, we have

µ (AiYk−i+1) ≤ θi,kσk−i+1,

where θi,k is given in (26). Thus, from (35), it follows that

σk+1 ≤ θ1,kσk + θ2,kσk−1 + · · ·+ θn,kσk−n+1.

This can be expressed as

ζk+1 ≤ Hkζk,

where ζk := [σk−n+1 · · · σk]
T and the inequality is in the element-wise sense. From [18, Theorem 3.9], it

follows that the inequality (27) implies that ζk and hence σk are MSS. �

We now illustrate the theoretical bounds on the data rate obtained in Theorems 1 and 2 by a numerical
example. Consider an uncertain plant of second order, where a∗1 = 1, ǫ1 = 0.05, ǫ2 = 0.05, and p = 0.05.
In Fig. 2, we plot the theoretical bounds on the data rate R versus |λA∗| = |a∗2|. The vertical dash-dot line
represents the supremum of |λA∗| such that p < pnec holds. Hence, the necessary condition (9) does not hold
on the right side of this line. The figure shows a certain gap between the necessary condition (solid line) and
the sufficient condition (dotted line). However, the gap is fairly small when |λA∗| is sufficiently smaller than
the critical vertical line and is about one bit.
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Figure 2: Data rate limitations: The necessary condition (solid), the sufficient condition (dotted), and the
sup |λA∗| s.t. the loss probability p = 0.05 satisfies p < pnec (dash-dot)

5 Limitation on the Average Data Rate

In this section, we introduce a time-sharing protocol, and then study conditions on the average data rate to
stabilize the system. So far, we have considered that the quantization level N must be taken as an integer.
Hence, for a data rate R satisfying the sufficient condition in Theorem 2, the minimum quantization level
is given by N = ⌈2R⌉, where ⌈·⌉ denotes the ceiling function. Thus, the quantization level may be larger
than 2R due to the integer-constraint. In a time-sharing protocol, the observation of the plant output is
m-periodic, where m ∈ N is the duration of the time cycles. Hence, by employing the protocol we can choose
the quantization level Nm = ⌈2R⌉ and hence a noninteger N as the average quantization level.

It is known that when we know the exact plant model (A,B,C), by taking the duration m large enough,
we can achieve the necessary bound in Theorem 1. That is, for any data rate greater than the bound, there
exists a control law with a feasible quantization level [4, 5, 8].

Here, we will see that also when the plant is uncertain, increasing the duration m may help to reduce
the required data rate. However, for the duration above a certain value, we cannot stabilize the system even
with infinitely large data rate. This is because a long duration, i.e., low observation frequency, causes the
accumulation of error in the state estimation due to the uncertainty.

To simplify the discussion, in this section we consider the scalar plant given by

yk+1 − akyk = uk, (36)

ak ∈ A := [a∗ − ǫ, a∗ + ǫ] , ǫ ≥ 0, |a∗| − ǫ > 1.

Here, we introduce the encoding and decoding rules based on a time-sharing protocol. The basic idea is as
follows: Divide the time into cycles of a constant duration m ∈ N as {mj,mj + 1, . . . ,m(j + 1)− 1}, where
j ∈ Z+. The encoder observes the output ymj at time mj, and sends it to the decoder during the cycle from

time mj to m(j + 1) − 1. Over the lossy channel, the decoder receives R
∑m−1

i=0 γmj+i bits in total in this
cycle, and compute the estimation set Ymj of ymj at time m(j + 1)− 1.

More specifically, the encoder and the decoder function as follows. At time mj, the encoder quantizes
ymj with the quantization level Nm. We use the uniform quantizer as in Section 2. The quantized signal
is divided into packets of R bits, and is then transmitted to the decoder. If a packet drops out then the
encoder retries to send the same packet. Notice that the encoder has access to the loss states because of
acknowledgement signals from the decoder.

The scaling parameter σk is taken to be large enough to cover all possible outputs at the next step. In
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this section, since the observation is m-periodic, we slightly change (6) to

σm(j+1) ≥ µ(Y−
m(j+1)), (37)

where Y−
m(j+1) is the one cycle prediction set based on the estimation set Ymj , and is defined as follows:

Y−
m(j+1) :=

{
(a′)my′mj + (a′)m−1umj + (a′)m−2umj+1 + · · ·+ a′um(j+1)−2 : a′ ∈ A, y′mj ∈ Ymj

}
. (38)

Note that we have to take account of the control inputs uk from k = mj to m(j + 1) − 2 since they affect
the length of the prediction set.

We now study a condition for the stabilization of the system under the protocol described above.
As we have shown in the proof of Theorem 1, for limk→∞ E[|yk|2] = 0, it is necessary that limk→∞ E[σ2

k] =
0. To derive a condition for stabilizing σk, we follow an approach similar to that in Section 3. In view of
(37), we evaluate the length of the prediction set Y−

m(j+1). By (38), we have

µ(Y−
m(j+1)) ≥ µ

(
{(a′)my′mj : a

′ ∈ A, y′mj ∈ Ymj}
)

(39)

=

{
|a∗|mµ(Ymj) + δ+|Ymj |+ δ−|Ymj | if Ymj 6∋ 0,

(|a∗|m + δ+)µ(Ymj) if Ymj ∋ 0,

where δ+ and δ− are nonnegative values defined as δ+ := (|a∗|+ ǫ)m− |a∗|m and δ− := −(|a∗|− ǫ)m+ |a∗|m,
respectively. The maximum of the right-hand side of the above equality with respect to Ymj can be expressed
as

max
Ymj

µ
(
{(a′)my′mj : a

′ ∈ A, y′mj ∈ Ymj}
)
=






|a∗|m+δ+
Mmj

σmj if 1 ≤ Mmj < 2,(
|a∗|m−δ−

Mmj
+ δ++δ−

2

)
σmj if Mmj ≥ 2,

(40)

where Mmj is given by

Mmj := N
∑m−1

i=0 γmj+i .

Notice that the right-hand side of (40) can be written as κmjσmj , where the κmj is the random variable
defined as

κmj :=
1

Mmj

(
|a∗|m +max

{
Mmj

2
, 1

}
δ+ +max

{
Mmj

2
− 1, 0

}
δ−

)
.

Thus, by (37), (39), and (40) it follows that

σm(j+1) ≥ κmjσmj . (41)

Since σmj > 0 for all j, and κmj is independent of σmj , σk is MSS only if κ̄ := E[κ2
mj ] < 1. Thus, we

have arrived at a necessary condition for the overall system to be MSS. Note that the expectation κ̄ is
time-invariant because it depends only on the process {γk}∞k=0, which is i.i.d.

As a stabilizing control law, we employ the following:

σm(j+1) = µ(Y−
m(j+1)), (42)

umj+i =

{
0 if i ∈ {0, 1, . . . ,m− 2},
−(a∗)mŷmj if i = m− 1,

(43)

where ŷmj := (Ymj + Ymj)/2.
The proposition below presents a necessary and sufficient condition for the stabilization of the system

employing the time-sharing protocol.
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Figure 3: Limitations on the average quantization levels: The necessary bound (solid), supm s.t. (δ+ +
δ−)/2 < 1 holds (dash-dot), and the sufficient and feasible bound (cross)

Proposition 2 Consider the system depicted in Fig. 1 with the uncertain scalar plant (36), and a control
law under the time-sharing protocol. If the system is MSS, then the following inequality must hold:

κ̄ < 1. (44)

Conversely, if (44) holds then the system is MSS under the control law (42) and (43).

Proof: (Necessity) Refer to the discussion before the proposition.
(Sufficiency) As in the proof of Theorem 2, we have that if limk→∞ E[σ2

k] = 0 then limk→∞ E[|yk|2] = 0
under the control law (42) and (43). Moreover, equality holds in (39) and hence in (41). Thus, for any N
and m that satisfy (44), Nm ∈ Z, and Nm ≥ 2, we have that σk is MSS. �

From Proposition 2, we can obtain the explicit limitation on the data rate when the channel is lossless,
i.e., for the case p = 0. To describe the limitation, let

R(1)
nec :=

1

m
log2

|a∗|m − δ−
1− (δ+ + δ−)/2

.

Then, the condition (44) is equivalent to

R > Rnec := max
{
R(0)

nec, R
(1)
nec

}
, 0 ≤ δ+ + δ−

2
< 1. (45)

Here, R
(0)
nec is the necessary bound defined in Section 3. Clearly, the bound on the average data rate depends

on the duration m, and is equal to Rnec if m = 1. In particular, we cannot stabilize the system even with

large R when m is greater than a certain value; ifm is large enough to satisfy (δ++δ−)/2 ≥ 1 then R
(1)
nec = ∞.

We illustrate the limitation on the average quantization level given in Proposition 2. Consider an un-
certain scalar plant, where a∗ = 3.3 and ǫ = 0.025 with a lossless channel p = 0. In Fig. 3, we plot the
limitations on the average quantization level N versus the duration m of the cycles. The vertical dash-dot
line represents the supremum of m such that the condition (δ+ + δ−)/2 < 1 in (45) holds. The necessary
bound (solid line) increases with respect to the duration and becomes infinitely large as it reaches the dash-
dot line. The cross marks represent the sufficient and feasible average quantization levels, i.e., the levels
satisfying (45), Nm ∈ Z, and Nm ≥ 2. We can find that the necessary bound on N takes its minimum at
m = 1. However, as the cross marks show, when we take account of the feasibility the duration m = 2 is the
best.
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6 Conclusion

In this paper, we have studied the stabilization problem of uncertain networked control systems under the
presence of data rate constraints and packet losses. In particular, we have derived a necessary condition and
a sufficient condition for the stability of the closed-loop system. These conditions highlight limitations on
the data rate, the loss probability, and the uncertainty bounds, and generalize existing results on nominal
plants to the case with parametric uncertainties.
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