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Noise Analysis of Closed–Loop Vibratory Rate Gyros

Dennis Kim∗ and Robert M’Closkey†

Mechanical and Aerospace Engineering Department
University of California, Los Angeles

Abstract— This paper presents detailed noise analysis of
closed–loop MEMS vibratory gyros whose noise characteristics
are dominated by the mechanical–thermal noise of the sensor’s
vibrating structure as well as the electrical noise associated
with the pickoff signal conditioning electronics in the sense
channel. The mechanical–thermal noise and the electrical noise
are represented as uncorrelated additive wideband disturbances
dominant at the sensor’s input and output, respectively. A
comprehensive spectral density model of the closed–loop rate–
equivalent noise is derived to explain the effects of various
sensor parameters including the resonator quality factor, the
closed–loop bandwidth, and the modal frequency split. Experi-
mental results with a Disk Resonator Gyro (DRG) are presented
to support the analysis.

I. INTRODUCTION

Vibratory rate gyros detect angular rate of rotation by
exploiting two lightly damped Coriolis–coupled modes in
the sensor’s vibrating structure. Tuned, open–loop, vibra-
tory gyros yield the optimum noise performance, however,
the sensor’s bandwidth is limited in devices with high Q
resonators. Thus, closed–loop operation is an effective way
to extend the sensor bandwidth, and our book chapter [4]
provides extensive and detailed derivation of open– and
closed–loop gyro noise spectra with respect to electrical
noise introduced by the pickoff signal conditioning electron-
ics. The present paper extends the analysis of [4] to include
both signal conditioning noise and mechanical–thermal noise
of the resonator. The results are interesting for two reasons.
First, mechanical-thermal noise can often be measured in
vibratory gyros, especially those categorized as “MEMS”
devices, so this noise source should be included in any anal-
ysis. Second, from the perspective of modeling, mechanical–
thermal noise enters into the system in a different location
than the signal conditioning or “electronic” noise and, thus,
cannot be accounted for by simply perturbing the intensity of
the electronic noise. Analysis of the angular rate noise was
performed in [6] considering only mechanical-thermal noise,
however, a complete analysis must necessarily include both
noise sources. Indeed, both noise sources are quite evident
in the open-loop noise spectra associated with Boeing’s Disk
Resonator Gyro (DRG) discussed in Sec. III.

The paper is organized as follows. Section II presents
a detailed spectral density model of the closed–loop rate–
equivalent noise and discusses effects that various sensor
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parameters such as modal quality factor, bandwidth, and
modal frequency detuning, have on the rate–equivalent noise
as well as the angle random walk. Experimental results with
the Boeing DRG are provided in Section III and Section IV
concludes the paper.

II. NOISE ANALYSIS

The fundamental model of a vibratory gyro is two degree–
of–freedom resonator with a Coriolis coupling term modu-
lated by the sensor’s angular velocity. When the equations of
motion are written in the sensor fixed coordinates, denoted
x = [x1,x2]

T where x1 and x2 represent the generalized
coordinates of the resonator, the linear mechanics can be
described by the following two degree–of–freedom model,

Mẍ+Cẋ+αΩSẋ+Kx = f (1)

where f = [ fexc, freb]
T are generalized forces, M, C, and K are

real, positive definite 2–by–2 mass, damping, and stiffness
matrices, respectively. S is a skew–symmetric matrix

S =

[
0 −1
1 0

]
that couples the angular rate of rotation, Ω, between the two
vibratory modes with the coupling strength α . In closed–
loop operation, a feedback loop, called an excitation loop,
establishes a stable oscillation of the x1 degree–of–freedom
and a second feedback loop, called the force–to–rebalance
loop, nulls the x2 degree–of–freedom and rejects the distur-
bance injected by the Coriolis coupling. The angular rate
of rotation is then estimated by demodulating the rebalance
feedback signal with respect to a phase-shifted copy of the
excitation signal. Measurement of x1 is call the “drive”
signal, and measurement of x2 is called the “sense” signal.
Noise in the demodulated signals, whether running the sensor
open– or closed–loop, limits the accuracy of the estimated
angular rotation rate. For the noise analysis in this paper, the
following assumptions are made,

1) The open-loop dynamics of the sensor can be viewed
as a 2-input/2-output system, i.e. from f to x. Cross–
channel coupling between the excitation and sense
channels is ignored since the cross–channel peak gain
is typically a few orders of magnitude smaller than the
diagonal term when the sensor is effectively decoupled.
Furthermore, cross–channel coupling is more related
to longer–term trends in the zero–rate rate bias that is
not correlated with the noise. Thus, the x/ f transfer
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Fig. 1. Block diagram of closed–loop sense channel. Also shown is the demodulation which produces the estimated rate, denoted Ωest . The excitation
control loop (not shown here) establishes x1 (t) = acos(ω0t) [m]. The force–to–rebalance loop nulls the measurement of the x2 degree–of–freedom whether
produced by an angular rate “disturbance” (labeled Ω) or the noise sources (labeled as nd2 and ns2 ). The fundamental sensor mechanics of the rebalance
channel is denoted H and the input and output signal conditioning dynamics are represented as simple conversion constants, Kd2 and Ks2 , respectively. The
rebalance control element is also represented as a simple constant Kreb for the noise analysis. The input noise, nd2 , whose intensity is ν [V/rt-Hz] represents
the voltage-equivalent mechanical–thermal noise, and the output noise, ns2 , whose intensity is µ [V/rt-Hz] represents the electrical noise associated with
the pickoff electronics. The estimated angular rate, denoted Ωest , is determined by demodulating d2 with respect to a phase-shifted copy of s1. Ks1 is the
conversion constant associated with the output signal conditioning dynamics in the excitation channel and φ , “LPF”, and γs f denote the phase shift, Low
Pass Filter, and scale factor, respectively.

function is assumed to be essentially diagonal. The
x1/ fexc diagonal term is called the drive channel and
x2/ freb transfer function is called the sense channel.
The drive and sense channel transfer function mag-
nitudes are much larger than the x1/ freb and x2/ fexc
transfer function magnitudes under our assumption.

2) The excitation feedback loop perfectly regulates the x1
degree–of–freedom to a constant amplitude sinusoidal
response x1 (t) = acos(ω0t), where a is the amplitude
and ω0 is the excitation frequency. The excitation
frequency, which is primarily dictated by the drive
channel transfer function, may be different from the
modal frequency associated with the sense channel, i.e.
the dominant mode in x2/ freb. Due to the relatively
large amplitude and stability of x1, the noise contribu-
tion of this excitation signal to the demodulated signal
is ignored and only the noise associated with the sense
channel signal is considered in the analysis.

3) Signal conditioning noise is represented as an additive
wideband disturbance at the sense channel output. For
sensors like the DRG, in which a transresistance am-
plifier is used to provide the buffering of the electrode
charge into a low impedance voltage, the electrical
noise is dominated by the Johnson noise [3] of the
feedback resistor across the op amp. The square root
spectral density of this source is given by√

4kBT R [V/rt-Hz]

where kB is Boltzmann’s constant, T is the absolute
temperature in Kelvin, and R is resistor’s value in
ohms. We use µ , expressed in V/rt-Hz, to represent
this constant spectral density.

4) The spectral density of mechanical–thermal noise [2]
is given by √

4kBT c [N/rt-Hz]

where c is the mechanical–resistance or damping as-
sociated with the sense channel mode, expressed in
N/m/s. This noise source can be viewed as a distur-
bance force located at the input to the resonator. Due
to the difficulty in predicting the damping in MEM
resonators, though, an empirical approach is adopted in
which the mechanical-thermal noise is represented as
a wideband, flat spectrum, disturbance voltage located
at the input of the measured sense channel’s transfer
function. The spectral density is denoted ν and is
expressed in V/rt-Hz. In practice, ν is calculated by
selecting its value so that |Hg|ν matches the measured
open-loop noise spectrum of the sense channel in a
neighborhood of the sense channel modal frequency
(see Fig. 1 for notation).

5) Our final assumption is that the input signal condition-
ing dynamics can be treated as simple noiseless conver-
sion constant. The output signal conditioning dynamics
contribute the Johnson noise mentioned above.

Fig. 1 shows the block diagram corresponding to the closed–
loop sense channel with the aforementioned assumptions. If
m, c, and k are the modal mass, damping, and stiffness
parameters associated with H in Fig. 1, then the sense
channel transfer function including the input and output
dynamics (the gains Ks2 and Kd2 ), denoted Hg, is given by

Hg (s) =
Ks2Kd2

m
s

s2 +2σs+ω2
n

(2)



where ωn =
√

k/m is the undamped natural frequency and
σ = c/(2m) = ωn/(2Q) is the resonator’s mechanical band-
width with the modal quality factor Q. The peak gain of (2)
at ω = ωn is defined as

h =
∣∣Hg ( jωn)

∣∣= Ks2Kd2

2σm
.

Before analyzing the rate–equivalent noise of the estimated
rate signal, it is useful to consider the noise associated with
the rebalance loop feedback signal, d2. The overall noise
density of d2 prior to demodulation, denoted Sd2 , is computed
to be

Sd2 (ω) =

∣∣∣∣ Kreb

1+KrebHg ( jω)

∣∣∣∣
×
√

µ2 + |Hg ( jω) |2ν2

[V/rt-Hz]. (3)

This spectrum displays a deep notch, whose minimum is
located at ωn, when the resonator quality factor is high.

The rate–equivalent noise is determined by demodulating
the noise spectrum of d2 with the phase-shifted copy of s1
and then normalizing by the scale factor. Note that in this
treatment, where the dynamics of input and output buffers
have been ignored, the ideal demodulation phase φ is zero.
As an intermediate step we scale the spectral density (3) by
the s1 amplitude and normalize by the scale factor to produce

Ks1aω0

γs f (ω0)
Sd2 (ω) =

4σm
Ks2αaω0

×

√√√√(ω2
n−ω2

0
2ω0

)2
+σ2

cl p

σ2

×

√√√√√√
(

ω2
n−ω2

2ω

)2
µ2 +σ2

(
µ2 +h2ν2

)
(

ω2
n−ω2

2ω

)2
+σ2

cl p

(4)

where the unit of this spectral density is deg/hr/rt–Hz.
The closed–loop scale factor, denoted γs f , is derived to be
(see [4])

1/γs f (ω0) =
4m

αKs1a2ω2
0 Ks2Kreb

√(
ω2

n −ω2
0

2ω0

)2

+σ2
cl p

where σcl p is the closed–loop bandwidth,

σcl p = σ +Kreb
Ks2Kd2

2m
.

The closed-loop bandwidth is adjusted by the rebalance loop
controller gain Kreb. Expression (4) is useful because it
expresses the spectral density of the sense channel noise with
units of angular rotation rate. Furthermore, the scale factor
is well approximated by

1/γs f (ω0)≈
2Kd2

Ks1αa2ω2
0

assuming σcl p >> σ , i.e. the closed–loop bandwidth is
larger than the open–loop bandwidth, and σcl p > |ω0−ωn|,
i.e. the closed-loop bandwidth is larger than the detuning

frequency ∆ := |ω0 −ωn|. Both of these assumptions are
quite reasonable in practice because the whole point of
using feedback around the sense channel is to achieve a
larger bandwidth than that provided by the open–loop sensor
dynamics, and the detuning frequency is typically small
relative to the σcl p because in “tuned” sensors the objective
is to make ∆ ≈ 0. With regard to the latter condition, high
performance vibratory gyros typically require ∆ < 1 Hz,
which is at least an order of magnitude smaller than σcl p.
Under these two conditions (4) is essentially independent of
ω0 and its minimum value is achieved at frequency ω = ωn
and is given by

4σm
Ks2αaωn

√
µ2 +h2ν2. (5)

In other words, (5) is the value of (4), expressed in deg/hr/rt–
Hz, at deepest part of the notch (see Fig. 6(a)).

The noise spectrum of the estimated angular rate is ob-
tained by demodulating (4) with a unit amplitude sinusoid at
ω0. The low-pass filter, shown as the “LPF” block in Fig. 1,
limits the bandwidth of the demodulated signal. The equiva-
lent effect of the low-pass filter on the spectral density (4) is
to filter this spectrum with a bandpass filter possessing twice
the low-pass filter bandwidth and with center frequency at
ω0. Because ω0 is typically at least an order of magnitude
larger than the low-pass filter bandwidth, the filtered spec-
trum can be treated as a narrowband or quasimonochromatic
process. The demodulated signal’s spectrum is then a simple
function of the narrowband spectrum (see [7]),

SΩ (ω) =

Ks1aω0√
2γs f (ω0)

√
S2

d2
(ω0 +ω)+S2

d2
(ω0−ω) [deg/hr/rt–Hz]

(6)

where it is understood that the frequency variable ω is
constrained from DC to the bandwidth of the low-pass filter.
A further simplification can be made using the fact that ω0
is at least an order of magnitude larger than the low-pass
filter bandwidth,

SΩ (ω)≈ 4σmµ

Ks2αaω0

√
∆2 +σ2

cl p

σ2

×

√√√√√
(

∆2 +ω2 +σ2
cl p

)(
∆2 +ω2 +σ2

e f f

)
− (2∆ω)2[

(∆−ω)2 +σ2
cl p

][
(∆+ω)2 +σ2

cl p

] (7)

where the effective bandwidth, denoted σe f f , is defined as

σe f f = σ

√
1+h2 ν2

µ2 . (8)

In the case when ω0 =ωn, i.e. the demodulation frequency
coincides with the notch in (4), the spectral density of the
closed–loop rate–equivalent noise reduces to

SΩ (ω) =
4σmµ

Ks2αaωn
·

σcl p

σ

√√√√ω2 +σ2
e f f

ω2 +σ2
cl p

(9)
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(a) ν = 0,µ 6= 0,∆ = 0Hz
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(b) ν 6= 0,µ = 0,∆ = 0Hz
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(c) ν 6= 0,µ 6= 0,∆ = 0Hz (black, solid), ∆ = 1Hz (green, dotted)

Fig. 2. (Left) Noise scaling for open–loop (dashed) and closed–loop rate–
equivalent noise (solid) prior to demodulation. (Right) Noise scaling for
post–demodulated closed–loop rate–equivalent noise with σcl p = 10Hz. The
model’s mechanical bandwidth is 0.15Hz with ωn = 15kHz and Q = 50K.

This spectral density possesses a high–pass filter charac-
teristic as long as the closed–loop bandwidth is larger
than the effective bandwidth, i.e., σcl p > σe f f . The low
frequency asymptote, (9) evaluated at ω = 0, matches the
lowest rate–equivalent noise density of the signal prior to
demodulation (5). The flat, low-frequency noise density,
indeed, corresponds to the angle random walk (ARW) of
the angle estimate [4], which is invariant with respect to
the closed–loop bandwidth. When the noise is dominated
by electrical noise, e.g., µ 6= 0 and ν = 0, the ARW is
inversely proportional to the modal quality factor Q, whereas
the ARW only reduces in proportion to

√
Q if mechanical–

thermal noise dominates, e.g., µ = 0 and ν 6= 0. Detuning has

a detrimental effect on the rate–equivalent noise by raising
the low frequency noise floor thereby degrading the sensor’s
ARW figure. When ∆ < σcl p, i.e. the degree of detuning is
less than the closed–loop bandwidth, the ARW is given by

4σm
Ks2αaωn

√(
∆2

σ2 +1
)(

µ2 +
σ2

σ2 +∆2 h2ν2

)
, (10)

which is always larger than (5). Fig. 2 illustrates the individ-
ual and combined contributions of electrical and mechanical–
thermal noise to the rate–equivalent noise prior to demodu-
lation as well as post–demodulation by plotting the noise
scaling for different cases. The noise scaling is defined as
the noise density normalized by the reference case that is
corresponding to the tuned open–loop case with ν = 0 (noise
density of s2 in the absence of feedback signal, d2 = 0). The
reference case is one for all frequencies and plotted as a
dashed line in 2(a). When both electrical and mechanical–
thermal noise are present in 2(c), the open–loop noise scaling
prior to demodulation shows a flat spectrum with a peak at
the resonant frequency and the deep notch of the closed–loop
noise at the resonant frequency coincides with the peak as
expected. The low frequency floor of the post–demodulated
closed–loop noise scaling also matches the peak. For a 1Hz
detuned case in 2(c), the raised low frequency floor of the
post–demodulated closed–loop noise scaling well matches
the dot marked 1Hz away from the resonant frequency on
the closed–loop noise scaling prior to demodulation.

III. EXPERIMENTAL RESULTS
Boeing’s Disk Resonator Gyro (DRG) is a high–

performance MEMS vibratory gyro whose vibrating structure
has an 8mm diameter disc–shaped resonator that is composed
of a number of thin concentric rings connected by spokes.
The central post of the resonator is rigidly attached to
the baseplate so that the rings are free to vibrate in the
plane of the resonator and electrodes fixed to the baseplate
are embedded in the gaps between the rings for electrical
actuating, sensing, and biasing. A buffered input voltage
applied to an actuating or driving electrode generates a
radial electrostatic force to excite the resonator and a sensing
electrode employing a transresistance amplifier converts the
subsequent in–plane vibration into a buffered output voltage
that is proportional to a radial velocity of the ring. The
sensing and driving electrodes are configured in pairs so as to
exploit the resonator’s fundamental Coriolis–coupled modes.
More details on the DRG may be found in [8].

The ideal sensor is designed to operate in a degenerate
condition in which two Coriolis–coupled modes have equal
resonant frequencies, however, a modal frequency split in
the “native” resonator is unavoidable due to manufacturing
imperfections and process variations. For example, Fig. 3
shows empirical frequency response magnitudes of the two–
input/two–output open–loop sensor dynamics in a neighbor-
hood of the Coriolis–coupled modes for both the native
sensor dynamics and the “tuned” sensor dynamics. The
biasing electrodes are crucial in tuning the sensor dynamics
by providing constant potentials between the resonator and
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Fig. 3. Empirical frequency response of the DRG. Two–input/two–output
magnitude plots of the DRG in its “untuned” native state (black, thin) when
all the tuning bias potentials are equal to the resonator bias suggest that the
modal frequency split is 8.6Hz. The peak gains of diagonal channels are
different since the output signal conditioning dynamics’ gains are optimized
for each loop. When the sensor is electrostatically tuned (red, thick), only
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in volts and only the magnitudes are plotted to keep the figures uncluttered.
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Fig. 4. Empirical frequency response of the DRG. Two–input/two–output
magnitude plots of the DRG when the sensor dynamics are detuned by 1Hz
(green, thick) and 5Hz (blue, thin) to demonstrate the effect of detuning on
the rate–equivalent noise. The modes are still decoupled even though they
are detuned.

the electrodes which electrostatically modifying the sensor’s
stiffness to yield degenerate modal frequencies. The electro-
static tuning algorithm based on parametric model estimation
reported in [5] is quite effective in tuning and decoupling the
sensor dynamics or even detuning the sensor dynamics to a
targeted split while maintaining decoupling. The empirical
frequency response magnitudes of the tuned sensor in Fig. 3
exhibit lower modal frequencies than the native modal fre-
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Fig. 5. Measured open-loop voltage spectrum of the sense channel noise
(red) and the model fit to the data (black). The flat portion of the spectrum
is caused by thermal noise in the buffer amplifier resistor and yields µ =
11× 10−6 Vrms/rt-Hz. The sharp spike is mechanical–thermal noise in the
resonator and yields ν = 0.93×10−6 Vrms/rt-Hz. Computing ν requires the
frequency response data in Fig. 3

quencies because electrostatic biasing introduces a softening
spring effect. Fig. 4 shows two cases of detuned sensor
dynamics with target splits of ∆ = 1Hz and ∆ = 5Hz. These
cases will be used to demonstrate the effect of detuning on
the angular rate noise spectrum.

The decoupled sensor dynamics, whether tuned or de-
tuned, means the off–diagonal channels can be ignored in the
noise analysis and feedback compensators can be indepen-
dently synthesized for each diagonal channel. For the DRG,
a nonlinear automatic gain control (AGC) is implemented for
the excitation loop to maintain a stable harmonic oscillation
of the s1 signal. The oscillation frequency, which is the
demodulation frequency, is equal to the modal frequency in
the “s1/d1” channel in Fig. 3. This frequency was denoted
ω0 in the previous analysis. A high gain feedback filter is
used for the rebalance channel to regulate s2. The modal
frequency of the “s2/d2” channel in Fig. 3 was denoted ωn
in the previous analysis. The reader is referred to [1] for a
detailed analysis on the controller design. A PC-based DSP
board is used for the real–time filter implementation as well
as the signal processing for the angular rate estimation. These
details are secondary to the objectives of this paper and are
not presented.

The noise analysis requires the open–loop spectral density
of the sense channel noise (shown in Fig. 5) and the transfer
function of the sense channel. The noise spectrum yields

µ = 11×10−6 Vrms/rt-Hz,

ν = 0.93×10−6 Vrms/rt-Hz
ωn = 13879Hz
σ = 0.10Hz

The transfer function is obtained by fitting a model to the
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Fig. 6. (Left) Rate–equivalent noise densities of open–loop (red) and closed–loop (cyan) sense channel prior to demodulation. Model predictions are
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is very close to the value marked by its corresponding circle in (a). Model predictions are plotted with solid, dotted, and dashed traces for tuned, 1Hz
detuned, and 5Hz detuned cases, respectively.

“s2/d2” data associated with the tuned case in Fig. 3. This
model is given by

Hg(s) =
54.1s

s2 +2(2π×0.1035)s+(2π×13879)2 (11)

Scaling the open–loop voltage spectrum by the demodu-
lation amplitude and DRG scale factor (both are empirically
determined) yields the open–loop rate–equivalent spectral
density as well as the closed–loop rate–equivalent spectral
density that is given by (4). For the closed–loop case, Kreb =
7 yields σcl p = 30Hz. These spectra are shown in Fig. 6(a).
Small perturbations to ω0 do not change these spectra, while
small perturbations to ωn only shift the frequency where
the spike/notch occurs. Fig. 6(b) shows the corresponding
closed–loop rate–equivalent noise densities of the angular
rate estimate (post-demodulation) for the cases when ∆ =
{0,1,5}Hz (from Figs. 3 and 4). The important parameter
is ∆, which determines the demodulation frequency relative
to the notch in Fig. 6(a). When ∆ = 0 the demodulation
frequency coincides with the deepest part of the notch in
Fig. 6(a) –this imparts the lowest possible noise floor in the
angular rate spectrum at low frequencies. If the sensor modes
are detuned, however, the demodulation frequency moves to
a part of the spectrum in Fig. 6(a) where the spectral density
has a higher value thereby producing a higher noise floor
in the angular rate spectrum. These trends are evident in
Fig. 6(b). Note that these figures also show the prediction of
the model based on the values of µ , ν , Hg, Kreb and ∆. The
model agreement with the data is extremely good.

IV. CONCLUSIONS

We have presented a comprehensive spectral density model
of the closed–loop rate–equivalent noise for vibratory rate

gyro whose dominant noise sources are pick–off noise and
mechanical–thermal noise in the sense channel. The spectral
density approach is very useful in explaining the effects of
sensor parameters on the angular rate noise spectrum. This
paper focused on modal detuning, however, perturbations to
the resonator quality factor and closed-loop bandwidth can
also be explored with this noise model. Details of the impact
of the sigmoid-shaped angular rate noise spectrum on the
integrated angular rate noise spectrum, especially with regard
to the sensor’s angle random walk figure, will be reported in
future papers.
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