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Robust Stability of Uncertain Quantum Systems

lan R. Petersen, Valery Ugrinovskii and Matthew R James

Abstract— This paper considers the problem of robust stabil- set of Hamiltonian3/. The set of perturbation Hamiltonians
ity for a class of uncertain quantum systems subject to unkne@n )4 corresponds to the set of exosystems considered in [16].
perturbations.inthe system Hamiltonian. Some gengral staibty For this general class of uncertain quantum systems, a
results are given for different classes of perturbations tothe - .
system Hamiltonian. Then, the special case of a nominal lire numt_)er of Stablllty_resul.ts are obtqlned. Th.e paper then
guantum system is considered with either quadratic or non- considers the case in which the nominal Hamiltonianis
quadratic perturbations to the system Hamiltonian. In thiscase, a quadratic function of annihilation and creation opersator
robust stability conditions are given in terms of strict bounded  gnd the coupling operator vector is a linear function of
real conditions. annihilation and creation operators. This case correspond
to a nominal linear quantum system; e.g., see [3], [4], [8],
[10], [15]. In this special case, robust stability resulte a

An important concept in modern control theory is theobtained in terms of a frequency domain condition.
notion of robust or absolute stability for uncertain noahn The remainder of the paper proceeds as follows. In Section
systems in the form of a Lur'e system with an uncertaififf we define the general class of uncertain quantum systems
nonlinear block which satisfies a sector bound conditioninder consideration. In Sectidnllll, we consider a special
e.g., see [1]. This enables a frequency domain condition fefass of quadratic perturbation Hamiltonians and obtain a
robust stability to be given. This characterization of r&bu robust stability result for this case. In Sectiof IV, we ddes
stability enables robust feedback controller synthesibdo g general class of non-quadratic perturbation Hamiltaian
carried out usingiZ>° control theory; e.g., see [2]. The aim |n Section¥, we specialize to the case of a linear nominal
of this paper is to extend classical results on robust $twabil quantum systems and obtain a number of robust stability
to the case of quantum systems. This is motivated by a desisults for this case in which stability conditions are give
to apply quantumi > control such as presented in [3], [4]in terms of a strict bounded real condition. In Section VI,
to nonlinear and uncertain quantum systems. we present an illustrative example and in Secfion VII, we

In recent years, a number of papers have considered tpeesent some conclusions.
feedback control of systems whose dynamics are governed
by the laws of quantum mechanics rather than classical 1. QUANTUM SYSTEMS

mechamc_s; e.g., see [3]-{15]. In particular, the pape_z&f, [1_ We consider open quantum systems defined by parameters
[16] con3|der_ a framework of quar_1tum systems deflngd 'E‘S,L,H) where H = H, + Hy. e.g., see [12], [16]. The
terms of a triple(S, L, H) where S is a scattering matrix
L is a vector of coupling operators arifl is a Hamiltonian
operator. The paper [16] then introduces notions of dissipa G(X) = —i[X,H] + L(X) (1)
tivity and stability for this class of quantum systems. listh

paper, we build on the results of [16] to obtain robust sigbil Where £(X) = 3L'[X, L] + 3[LT, X]L. Here, [X, H] =
results for uncertain quantum systems in which the quantushff — HX denotes the commutator between two operators
system Hamiltonian is decomposed & = H, + H, andthe notatiori denotes the adjoint transpose of a vector

where H, is a known nominal Hamiltonian andl, is a Of operators. Alsof; is a self-adjoint operator on the under-
perturbation Hamiltonian, which is contained in a specifiedying Hilbert space referred to as the nominal Hamiltonian
and H- is a self-adjoint operator on the underlying Hilbert
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|. INTRODUCTION

' corresponding generator for this quantum system is given by
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Fig. 1. Block diagram representation of an open quantunesy$iteracting
with an exosystem.

Lemma 1 (See Lemma 3.4 of [16]Qonsider an open
quantum system defined iy, L, H) and suppose there ex-
ists a non-negative self-adjoint operaiéron the underlying
Hilbert space such that

G(V)+cV <A )

then -
V) < et (V) + 20 s o,
&
Proof: Let V' € P be given and considgy (V') defined in
(@. Then

g(v)

—i[V,Hi] + L(V) —i[V, 21w + iw'[z, V]
(7)
[z, V].

using [3). Now sincel’ is self-adjoint [V, 2]
Therefore,

0 < (Vi) —iwh) (V2] - i)’

[V, 2"z, V] + iV, 21w — iw' [z, V] + wlw.

Substituting this into[{7), it follows that

G(V) < —ilV,H|]|+L(V)+ [V, 21z V] + %zfz +0
(8)

using [@). Hence,[16) implieg](2) holds with = X\ + 4.
Therefore, the result follows from Lemrhé 1. O

B. Alternative Commutator Decomposition

wherec > 0 and A are real numbers. Then for any plant We now consider an alternative set of perturbation Hamil-

state, we have

(V) < e (V) + é V> 0.

HereV (t) denotes the Heisenberg evolution of the operator

V and(-) denotes quantum expectation; e.g., see [16].

A. Commutator Decomposition

Given set of non-negative self-adjoint operatBrand real
parametersy > 0, § > 0, we now define a particular set of
perturbation HamiltoniansV;. This set)V; is defined in
terms of the commutator decomposition

[V, Hs] = [V, zT]w —wf [z, V] 3)

for V' € P wherew and z are given vectors of operators.

tonians W,. For a given set of non-negative self-adjoint
operatorsP and real parameters> 0, 4; > 0, d > 0, this
setW; is defined in terms of the commutator decomposition

[V, Ho]

[V,lz]wf —wq 2", Vi
e Veellu - S s Vi (@

for V € P wherew;, wy and z are given scalar operators.
Here, the notatiori denotes the adjoint of an operator. Also,
the setWW, will be defined in terms of the sector bound
condition )
wiwy < ?zz* + 01 (20)
and the condition
’UJQ’UJ; S 52.

(11)

Here, the notatior{z, V] for a vector of operators and Then we define
a scalar operatol/ denotes the corresponding vector of ’

commutators. Also, this set will be defined in terms of the Wy =

sector bound condition:
1
wiw < —2sz + 4. (4)
v
Indeed, we define
Wy — { H, : 3w, z such that[(®) is SatISer(} G,

and [3) is satisfie/V € P
Using this definition, we obtain the following theorem.

Theorem 1:Consider a set of non-negative self-adjoint

operatorsP and an open quantum systeifi, L, H) where
H = H, + Hy and Hy € W, defined in [5). If there exists
aV € P and real constants> 0, A > 0 such that

— iV, H\|+ L(V) + [V, 2"][2, V] + %ZTZ +cV <A, (6)

Hy : Jwy, wy, z such that[(I0) and(11)
are satisfied and((9) is satisfisd” € P '

{ (12)

Using this definition, we obtain the following theorem.

Theorem 2:Consider a set of non-negative self-adjoint
operatorsP and an open quantum systeifi, L, H) where
H = H, + Hy, and H, € W, defined in [IR). If there
exists aV € P and real constants > 0, A > 0 such that
w=[z,[V,z]] is a constant and

1 -
=iV, Hi] + L(V) + [V, 2][", V] + 22" +cV < A
v
(13)
Then

V(D) < et (v) 4 AF T /AT 0

C

vt > 0.



Proof: Let V' € P be given and considgy (V') defined in
@. Then

G(V) = —i[V,Hi]+ L(V) —i[V, zJw] + iwy[2", V]

—ipws + wou* (14)

using [9). Now[V, z|* = 2*V — Vz* =
self-adjoint. Therefore,

[z*,V] sinceV is

0 < (Vie] —iw) ([V,2] — iwy)”
= [V,2][z*, V] +i[V, 2w}
—iwy[27, V] + wywi
and hence
— [V, zJw] +dwy [2%, V] < [V, 2][z", V] + wiw]. (15)
Also,
0o < (Lu._i Lo
= 2M rw2 2u LW
I .
= ZMM *§wzu +§uw2 + waws
and hence
7 " 7 N 1, .
oWl = 5 Hy < 1M + wows. (16)

Substituting [Ib) and (16) int@_(1L4), it follows that
GgV) < —i[V,Hi]+L(V)+[V,2][z", V]
+%zz*+61 + ppt 4+ 6o a7)
using [10) and[{d11). Then it follows fronh {{13) that
G(V) 4V < A+ 61 + pp* /4 + 6.
Then the result of the theorem follows from Lemfda 13

I11. QUADRATIC PERTURBATIONS OF THEHAMILTONIAN

In this section, we consider a s|t; of quadratic pertur-
bation Hamiltonians of the following form

3
C#

where A € C2m*2m js a Hermitian matrix of the form

o= o]

AT AT
andA; = Al, A, = AT, Also, ¢ = Eja 4 Eya*. Here

m=3[¢ A 18)

(19)

a is a vector of annihilation operators on the underlyin
Hilbert space and* is the corresponding vector of creation

operators. Also, in the case of matrices, the notatiogfers

to the complex conjugate transpose of a matrix. In the case
vectors of operators, the notatigh refers to the vector of
adjoint operators and in the case of complex matrices, this

notation refers to the complex conjugate matrix.

The annihilation and creation operators are assumed to
satisfy the canonical commutation relations:

L)) - [ ]e] T
(2] 1o])

= J (20)
I 0 |,
whereJ = 0 _J l e.g., see [9], [13], [15].
The matrixA is subject to the norm bound
2
1Al < =~ (21)
Y
where || - || denotes the matrix induced norm (maximum

singular value). Then we define

Wa — H, of the form [I8) such that (22)
71 conditions [IP and{21) are satisfiefd’

Using this definition, we obtain the following lemma.
Lemma 2:For any set of self-adjoint operatof

Ws C Ws.
Proof: Given anyH, € Wj, let

_ 1AL A ¢ 1 1] A+ A
YTalar at |l ¢ T2 afcrafc
and

_ ¢ _ FE1  Es a _ a
=l é e e[ ]-ml ]

(23)
Hence,
ngsz:%[aT aT]ETAE[a(;&].

Then, for anyV € P,
1
2

VCTALC+ VT AL CH
< FVCTAYT ¢+ VCTAF ¢ )

|

[V, zT]w =

TVALCH TV A CH >

+(TVALC+CTvAT ¢#
Also,
N
WaV) = ( +§§*TAA;<€%VV++§<TAAQ?%V >
1 CTVALC+CTVASC
2 ( +(TVALCH + TV AT C# >

Hence,

V, 2w — wilz, V]

= 5 (VEACH VT ACH 1 VCTAYC 4 VCTARCH)
1 ( CPACY 4+ ¢TAaf v )
2\ +CTACHV + (TA¥c#Y

= VHy, — H)V = [V, Hy]



and thus[(B) is satisfied. Also, conditidn{21) implies Lemma 3:Suppose the set of self-adjoint operatdps
1 } satisfies Assumptionl 1. Then

1
e e[ §]<hie @[

which implies [#) for anys > 0. Hence,H> € W;. Since,
Hy € W5 was arbitrary, we must havd/)s C W;. O Ve = [V,( 4V

Wy C Ws.
Proof: First, we note that given any € P andk > 1,

IV. NON-QUADRATIC PERTURBATION HAMILTONIANS

In this section, we define a set of non-quadratic pertur-
bation Hamiltonians denoted),. For a given set of non- vk = ZC"%[V, ¢ + ¢ (30)
negative self-adjoint operatof® and real parameters> 0, n=1
01 > 0, 02 > 0, the setW, is defined in terms of the Also for anyn > 1,
following power series (which is assumed to converge in

the sense of the induced operator norm on the underlying vidl = Vidd+
Hilbert space) :
i oo o0 n—1 V, _ ‘/, n—1 + 1 n—2 ) 31
k=0 £=0 k=0 £=0 (24) Therefore using[{30) an@(B1), it follows that
Here Sye = S}, Hpe ¢F(¢*)%, and ¢ is a scalar k . -
operator on the underlylng Hilbert space. It follows from  V¢* = > [V,¢J¢" ¢ + (n = 1)¢"2¢F "
this definition that n=1
+¢kv
S 9) SLAUSTEED 3 SEN(S SN | |
k=0 (=0 =0 k=0 = Z[V,C]CkflJr(n*l)Ck*QMﬁLCkV
and thusH, is a self-adjoint operator. Note that it follows =t k(k—1)
from the use of Wick ordering that the forfn{24) is the most = K[V, (¢t A2 4 ¢fy
general form for a perturbation Hamiltonian defined in terms 2
of a Sing|e scalar Operatqzr which holds for anyk’ > 0. Slmllarly
Also, we let ok k1% k(k—1) k2
0 oo (V= k()T VI = ()
=3 ) kSk¢EN(C, (25) FV(C)*.
k=1 £=0
o oo Now given anyH, € Wy, k>0, £ > 0, we have
// k—2 14
(¢.¢) ZZk —1)Ske¢F ()" (26) , k(k —1
i V. Hie] = K[V.CICH(C)" + %uc’“*(c*ﬁ
and consider the sector bound condition +CRV(¢)*
* 0\ * * 1 * s\ k— * k(k—1 * *\k—
FEETFGE) < 56+ 27) —kCH(C)HC V] - %u ¢t
4 *
and the condition —¢ V(Ck )1 , , s
= K[V, ¢ () = kC(C)TTC, V]
f//(gac*)*f”(C7§*) S 52- (28) k(k_ 1) [
: =1 ()
Then we define the sét; as follows: k:(k:2 )
Wi = { Ho of the form [24) such that (29) S prCh(CH )2 (32)
471 conditions [2V) and(28) are satisfie]

Therefore,
Note that the conditio(28) effectively amounts to a global

Lipschitz condition on the quantum nonlinearity. V,Hs] = Z Sie[V, Hie]
In this section, the set of non-negative self-adjoint opera 0
tors P will be assumed to satisfy the following assumption: = V¢

|8 Z]fO/(C,C*) = (G V]
Assumption 1:Given anyV e P, the quantity +%Mf”(C7 ) = %M*f”(C, ¢ (33)
p=[G[V.¢]l =¢V.¢] = [V. ()¢ Now letting
is a constant. z=¢ wi = f(¢,¢7)7, andwe = f(¢,¢7)", (34)



it follows that condition [(P) is satisfied. Furthermore, eon Lemma 4:GivenV € P;, H; defined as in[{35) and
ditions [I0), [11) follow from conditiond (27)[_(28) respec defined as in[(36), then

tively. Hence,Hs € W;. Since,Hs € W, was arbitrary, we
must haveWW, C Ws.

a 1 a
V. THE LINEAR CASE [ af aT}P[a#}G[aT aT]M[a# H
We now consider the case in which the nominal quantum

T
system corresponds to a linear quantum system; e.g., see [3]= [ i } [PJM — M JP] [ i } .
[4], [8], [10], [15]. In this case, we assume thd is of the “ “

[V, Hi] =

form ) Also,

i t T a

H1—2[a a }M[a#] (35) LV) =
. " . 1 1
where M € C*"*2" is a Hermitian matrix of the form §LT[V, L]+ Q[LT’ V]L
My Mo } I 0
M= _ t
{MQ# M Tr(PJN [ 0 0 }NJ)
and M, = M{, My = MZ. In addition, we assumé is of 1[ a ' t t a
the form —5 | o (NTJNJP +PINTIN) | o |-
a

L= [ N1 No } { att } (36) Furthermore,

where N; € C"*™ and Ny € C™*", Also, we write a a _ a
' ’ ’[a# [ GT]P([a# =2IP 0
Proof: The proof of these identities follows via straightfor-

RN
= = | n#E N : : . :
L# a* NG N a? ward but tedious calculations usifg120). m

In addition we assume thaf is of the form . L .
A. Quadratic Hamiltonian Perturbations

a
V= [ at o’ ] P { at } (37) We now specialize the results of Section Il to the case of a
o - o N ~linear nominal system in order to obtain concrete condgion
where P € C*"**" is a positive-definite Hermitian matrix for robust mean square stability. In this case, we use the
of the form relationship [(2B):
p—| Iy I (38)
= PQ# Pl# : B ¢ | E1 Es a - B a
. . LR | E* Ep¥ at | — att |
Hence, we consider the set of non-negative self-adjoint 2 1

, (41)
operatorsPy defined as to show that the following following strict bounded real
P, = { V' of the form [3Y) such thaP > 0 is a } conditions provides a sufficient condition for robust mean
Hermitian matrix of the form[(38) ( square stability whetl; € Ws:
In the linear case, we will consider a specific notion of 1) The matrix
robust mean square stability. F e _iJM— lJNTJN is Hurwitz; (42)
Definition 1: An uncertain open quantum system defined 2
by (S,L,H) where H = H; + H, with H; of the form 2)
(39), H> € W, and L of the form [38) is said to beobustly HE(SI —F)! DH <2 (43)
mean square stablié for any H, € W, there exist constants o 2
c1 >0, cg > 0 andcz > 0 such that whereD = iJE!.
< a(t) f a(t) This leads to the following theorem.
{ a#(t) } { a#(t) } Theorem 3:Consider an uncertain open quantum system

; defined by (S, L, H) such thatH = H; + H, where H;

< —eat a a vt >0 (a0) s of the form [3h),L is of the form [36) andH, € W;s.
= ac <[ i ] [ i }> tes = 0-(40) Furthermore, assume that the strict bounded real condition
(42), (43) are satisfied. Then the uncertain quantum system

Here [ a(t) ] denotes the Heisenberg evolution of thds robustly mean square stable.

# .. - .
a”(t) Proof: If the conditions of the theorem are satisfied, then it
vector of operatori i : e.g., see [16]. follows from the strict bounded real lemma that the matrix
a . .
In order to address the issue of robust mean squa'rr(]aequa“ty

stability for the uncertain linear quantum systems under
consideration, we first require some algebraic identities.

E'E
F'P+ PF+4PJETEJP +

<0 @9



will have a solutionP > 0 of the form [38); e.g., see [2], provides a sufficient condition for robust mean square sta-
[4]. This matrix P defines a corresponding operaiére P;  bility when Hy € Wy:

as in [37). Now it follows from LemmAl4 that 1) The matrix
a 1
[, V] = QEJP[ ot ] (45) F = —iJM = JN'IN is Hurwitz;  (48)
wherez is defined as in[(23) and_(41). Hence, 2)
t HE#E I-F ‘1DH <2 49
[V,ZT][Z,V]ZL{ % ] PJETEJP[ ° ] (sT = F) o 2 (49)
a a
Also, whereD = JYET andy. = [ (I) (I) } :
T
2t = { aiﬁ ] E'E { ai ] . This leads to the following theorem.
Theorem 4:Consider an uncertain open quantum system
Hence using Lemm@l 4, we obtain defined by (S, L, H) such thatH = H; + H, where H;
s is of the form [3h),L is of the form [36) andH, € W,.
—i[V, Hy| 4+ L(V) + [V, 21][z, V] + — +cV Furthermore, assume that the strict bounded real condition
v (48), (49) is satisfied. Then the uncertain quantum system is
B a |’ FIP+ PF . a robustly mean square stable.
N a® +4PJETEJP + EJ—QE a® In order to prove this theorem, we require the following
I 0 lemma.
+Tr (PJNT { 0 0 } NJ) (46) Lemma 5:Given anyV € Py, then
where F = —iJM — JJNTJN. Therefore, it follows from p=lz[ VI =[5 V] = —ESJPJET.

(44) that there exists a constant> 0 such that condition

@) will be satisfied with which is a constant. Hence, the set of operaférsatisfies

Assumptior L.
5 I 0 Proof: The proof of this result follows via a straightforward
A=Tr(PJNT NJ | >o0.
( [ 0 0 } ) - but tedious calculation using_(20). O
Hence choosing — 0, it follows from Lemma®, Theorem Pro_of_ of Theor_enEI4lf the condltlon_s of the theorem are
satisfied, then it follows from the strict bounded real lemma
@ andP > 0 that L ;
: that the matrix inequality
a(t) (t) o 1 g
a#(t) a#(t) F'P+PF+4PJSETE#*SJP+—SETE#S <0. (50)
Y
PO | |
S lP] will have a solutionP > 0 of the form [38); e.g., see [2],
e - [4]. This matrix P defines a corresponding operatore P;
—a (V) A .
< e ¢ + as in m)
Amin[P]  cAmin | P] It follows from (417) that we can write
< €7Ct a(()) f a(()) )\maz [P] a
= a#(0) a®(0) | / Amin[P] 2 = Efa*+Efa=[ Ef EF] { o }
A
— Wt >0. — E# “
JrcAmm[P] - - { a® } '
Hence, the conditio (40) is satisfied with = i’%:[[;] >0, Also, it follows from Lemmd# that
02:c>0and03:m20. |

[2*,V] = QE#EJP{ % ] .
B. Non-quadratic Hamiltonian Perturbations a

We now specialize the results of Sectlod IV to the case dfience,
a linear nominal system. In this case, we define
a

f
* =T 7 a
2 = (=FEa+ Ead IV, 22", V] :4[ o } PJEETE#ZJP{ o } (51)

a ~ a
| By B | { o ] = E{ ot ] (47)  Also, we can write

wherez is assumed to be a scalar operator. Then, we show P SiTp#y | @ (52)
that the following following strict bounded real condition | o a* |-



Hence using Lemmia 4, we obtain

VIlI. CONCLUSIONS

In this paper, we have considered the problem of robust
stability for uncertain quantum systems with either quédra
and non-quadratic perturbations to the system Hamiltonian
The final stability results obtained are expressed in terms
of strict bounded real conditions. Future research will be

directed towards analyzing the stability of specific noadin
guantum systems using the given robust stability results
for the case of non-quadratic perturbations to the system

Hamiltonian.

. N zz
—i[V, Hi] + L(V) + [V, 2][z", V] + 7
t F'P+ PF
— [ “#] +4PJSETE#2JP { ‘1’4
“ LS ETE#Y, “
+os
10
+Te (PINT| o | NS (53)
whereF = —iJM — £ JNTJN.

From this, it foIIows using[(50) that there exists a constant
¢ > 0 such that condition (13) is satisfied with 1

(2]
}NJ) >0

(3]
Hence, it follows from Lemm@l5, Lemnfid 3, Theoren 2 andy,

I 0

\ = T
)\—Tr(PJN [0 0

P > 0 that
a(ty 1M a(t) ]
R
/T a0) 17 a0) 7\ AmazlP] 6]
= [a#m)] [a#m)] -
A Yt >0 54 )
TP )

El
[10]

where\ = \ + 8, + pup* /4 + 8. Hence, the conditior (40)
is satisfied withe; i”#:[[ﬁ]] >0,c0=c>0andcs =
> 0. |

Amin [P]
[11]

VI. I LLUSTRATIVE EXAMPLE

. 12
We consider an example of an open quantum system WIH’l]

2 [13]

1
S—=1, H =0, H2=§i((aT) —a2), L = Jra,

which corresponds an optical parametric amplifier; see. [17@14]
This defines a linear quantum system of the form consideregg;

in TheoremB withM; = 0, My = 0, Ny = /K, No =
0, B, =1, By, =0, Ay =0, Ay = 4. Hence,M = 0, 16
[V T e[ 2R 0 ] which is Humis,
N = 0 il F=10 s which is Hurwitz,
E =1,andD = J. In this case, [17]
0 = 0 = 1 0
sa=| %% 0]=10 1]

Hence, we can choose= 1 to ensure thaf(21) is satisfied
and Hy € Wjs. Also,

1 _ 9 )
PR
o0 str oo

Hence, it follows from Theorerml 3 that this system will be
mean square stable f < 1;ie., x> 4.
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