
Temporal Logic Control of Switched Affine Systems with an
Application in Fuel Balancing

Petter Nilsson, Necmiye Özay, Ufuk Topcu and Richard M. Murray

Abstract— We consider the problem of synthesizing hier-
archical controllers for discrete-time switched affine systems
subject to exogenous disturbances that guarantee that the
trajectories of the system satisfy a high-level specification
expressed as a linear temporal logic formula. Our method
builds upon recent results on temporal logic planning and
embedded controller synthesis. First, the control problem is
lifted to a discrete level by constructing a finite transition
system that abstracts the behavior of the underlying switched
system. At the discrete level, we recast the problem as a two
player temporal logic game by treating the environment driven
switches as adversaries. The solution strategy for the game (i.e.
the discrete plan) is then implemented at the continuous level by
solving finite-horizon optimal control problems that establish
reachability between discrete states and that compensate the
effects of continuous disturbances. We also extend the earlier
work by making efficient use of propositions in the temporal
logic formula to drive the abstraction procedure and to facilitate
the computation of continuous input at implementation time.

An aircraft fuel system example is formulated; and solved
using the proposed method. This sample problem demonstrates
the applicability of the abstraction procedure and correct-by-
construction controllers to regulate the fuel levels in multiple
tanks during interesting operations like aerial refueling.

I. INTRODUCTION

Temporal logics provide a formal means to specify and
verify the correct behavior of systems and have been exten-
sively used in digital circuit design and software engineering
[1], [2]. Due to their expressive power, there has been a
recent interest in the use of temporal logics as specification
languages for dynamical systems (see, for instance, [3],
[4], [5], [6]). Leveraging recent results on temporal logic
planning and embedded controller synthesis [7], [8], [9], in
this paper we present a method for automatic synthesis of
controllers for switched affine systems. The controllers are
correct-by-construction in the sense that any execution of the
system is guaranteed to fulfill a given linear temporal logic
(LTL) specification.

In order to enable discrete planning we lift the problem to
the discrete level, which requires computing a finite transition
system. The ability to construct a controller depends on
how many possible transitions that are established in this
finite transition system. The first contribution of the present

This work was supported in part by Caltech Summer Undergraduate
Research Fellowship, the FCRP consortium through the Multiscale Systems
Center (MuSyC) and the Boeing Corporation.

P. Nilsson is with the Royal Institute of Technology (KTH), Sweden.
email: pettni@kth.se

N. Ozay, U. Topcu and R. M. Murray are with Control
and Dynamical Systems, California Institute of Technology,
Pasadena, CA 91125, USA. emails: {necmiye, utopcu,
murray}@cds.caltech.edu

paper is to enhance the performance of the discretization
method proposed by Wongpiromsarn et al. [7] by relaxing
the requirements for allowed transitions between discrete
states, while still ensuring system correctness. By allowing
more transitions it is possible to synthesize controllers for a
wider range of systems and at the same time get a system
performance that is closer to optimal.

Our second contribution is the extension of the temporal
logic planning framework to systems whose dynamical mode
can be changed by the environment, so called switched sys-
tems. Control of switched systems is a challenging problem
and has attracted considerable attention [10]. Although a
thorough survey is beyond the scope of this paper, we give
a very brief overview of existing work. The main body of
results is on stability analysis for certain classes of switching
[11], [12], [13]. Blanchini et al. [14] provide a charac-
terization of all stabilizing controllers for linear switched
systems under arbitrary switching. Tarraf et al. [15] use
finite abstractions to design stabilizing switching controllers
for second order systems. We also use finite abstractions,
but instead of stability we consider controller design for
an expressive subset of LTL specifications. Our framework
can handle arbitrary switching. Moreover, it allows users
to specify a priori assumptions on the switching sequence.
For instance, it is possible to accommodate different time
scales for the switch sequence and the system dynamics or
to restrict certain transitions among different modes with an
LTL formula if such a priori information is available.

Finally, motivated by design challenges in vehicle manage-
ment systems (VMS) that control and coordinate a number
of subsystems of aerial vehicles (e.g., flight controllers, elec-
trical systems, environmental control systems, fuel systems,
deicing units, and landing gear [16], [17], [18]), we apply
the proposed method to a VMS example. In particular, we
demonstrate how a switched system can be controlled with
the proposed technique by synthesizing a controller for the
fuel subsystem. The system is switched between normal
operation, where fuel is consumed at a constant rate, and
aerial refueling mode, where the net inflow of fuel to the
system is positive. The goal is to balance the fuel volumes in
different tanks and to ensure safe operation under all possible
switching sequences in a prespecified class.

The rest of the paper is organized as follows. In section II,
we introduce some definitions and the formal problem set-
ting. Section III details the proposed hierarchical approach.
We present the fuel balancing case study in section IV.
Finally, section V concludes the paper with some remarks
and directions for future research.

II. PRELIMINARIES AND PROBLEM
FORMULATION

This section contains some definitions and background
information that will be used throughout the paper, as well
as a formal definition of the problem considered.

A. Polytopes

A polytope P is a convex set in Rn, usually defined
as the intersection of a finite number of half planes, i.e.,
P = {x ∈ Rn | Ax ≤ b}. The projection of a polytope onto
its first m coordinates is the set pro jm(P) = {x ∈ Rm | ∃y ∈
Rn−m :

[
x y

]
∈ P}. Several algorithms exist for computing

the projection of polytopes, the optimal choice of algorithm
depends on the characteristics of the polytope. In this paper
polytopes are used to define cells in a continuous state space.

We say that two disjoint polytopes P1 = {x ∈Rn | Ax≤ b}
and P2 = {x ∈ Rn | Cx ≤ d} are order 1 neighbors if the
set {x ∈ Rn | [A]ix≤ [b]i + ε}∩{x ∈ Rn | [C] jx≤ [d] j + ε} is
non-empty for some choice of inequalities [A]ix ≤ [b]i and
[C] jx≤ [d] j from the two polytopes, where [A]i denotes the
ith row of A. We generalize the concept of neighbors by
calling neighbors of neighbors order 2 neighbors, and so on.

B. Environment Switched Systems

We consider a switched system, consisting of a plant and
its environment, where the plant has Nd different dynamical
modes it can switch among. We assume that each such
mode Mk is described by an affine dynamical model of the
following form:

Mk :


s(t +1) = Aks(t)+Bku(t)+Ekd(t)+Kk,

u(t) ∈Uk(s(t)),
d(t) ∈ Dk,

(1)

where Uk(s(t)) and Dk are polytopes containing possible
values for input and disturbance, respectively. In particular,
u(t)∈Uk(s(t)) constitutes inequality constraints linear in u(t)
and s(t) that represents the possibility of having the allowable
input values depend on the state. We denote the dimension
of the state space by n and the dimension of the input space
by m. The vector Kk, the affine offset term, has dimension n
and describes constant changes in the state.

An environment switched system is a system where the
dynamical mode is controlled by the environment (i.e., the
switches are uncontrollable). Assume that the environment
controls a variable ed , and that the dynamics of the plant
depend on the value of ed (i.e., we have Med).

C. Linear Temporal Logic

Linear Temporal Logic (LTL) is an extension of the clas-
sical logic by including temporal operators. Apart from the
usual operators negation (¬), disjunction (∨), conjunction
(∧) and implication (→), it provides the possibility to write
statements including the temporal operators next (#), always
(�), eventually (3) and until (U). This makes it possible to
write a wide range of requirements on the desired behavior
of a system.

Definition 1: An atomic proposition is a statement on a
system variable v that has a unique truth value (True or False)
for a given value of v.

Given a set Π of atomic propositions, an LTL formula
is defined inductively as follows: (i) any atomic proposition
p ∈ Π is an LTL formula; and (ii) given LTL formulas ϕ

and ψ , ¬ϕ , ϕ ∨ ψ , #ϕ and ϕ U ψ are also LTL formulas.
Formulas involving other operators can be derived from these
basic ones.

We consider LTL specification for a system S consisting
of a plant and its environment. The set of system variables
in S are V = S∪E, where S is the set of variables controlled
by the plant, i.e. the variables in s(t) in (1), and E is the
set of variables controlled by the environment. The set of
possible states in S is therefore dom(V) = dom(S)×dom(E)
and every state v of the system can be written v = (s,e)
where s ∈ dom(S) and e ∈ dom(E). Here, dom(V) stands for
the domain of V , i.e., the set of valuations of V .

An execution σ of S is an infinite sequence of its states,
i.e., σ = (s(0),e(0)),(s(1),e(1)), LTL formulas are in-
terpreted over state sequences. We say ϕ is satisfied by S if
ϕ is true for all executions of S. We refer the reader to [1]
for exact semantics of LTL.

D. Problem Formulation

We consider a system S together with some specification
ϕ on the system, given in the form

ϕ
.
= (ϕe→ ϕs), (2)

written in LTL. Generally speaking, some assumptions ϕe
on the environment should ensure that the requirements ϕs
on the plant states are satisfied. We denote by Π the set
of atomic propositions from ϕ on the variables in V . In our
setup, the propositions on the plant states s(t) are in the form
of linear inequality constraints that define convex polytopes
corresponding to the regions of interest in the state space.
Environment assumptions, for instance, can be used to define
the a priori information on the possible switching sequences.
Next, we give a formal definition of the problem.

Problem 1: Given a system S (consisting of an envi-
ronment switched system (1) and a set of environment
variables) and an LTL specification, ϕ , of the form (2), find
a control input u(t) such that S satisfies ϕ (i.e., whenever
the assumptions on the environment hold, the trajectories of
(1) will satisfy the requirements).

III. HIERARCHICAL APPROACH

The automatic planner/controller synthesis proposed in [6],
[7], [8], [19] relies on several steps. In this paper, we adopt a
similar hierarchical approach. For the sake of completeness,
we present the overall methodology, highlighting the contri-
butions required for reducing conservatism and for extending
the results to switched systems.

Since the planner synthesis requires a finite number of
states, it is necessary to construct a finite transition system,
which we will denote by D. The finite transition system
contains a partition of dom(S) and dom(E) into a finite

number of equivalence classes (or cells) S and E. The
resulting finite partition is denoted by V = S× E. In the
following we will call s ∈ dom(S) a continuous state for
the plant and ς ∈ S a discrete state.

First, we partition the continuous state space dom(S)
into a coarse partition that is proposition preserving, and
we let each cell in the partition represent a discrete state.
The partition is said to be proposition preserving if, for
any discrete state in the partition, exactly the same atomic
propositions in Π are true for all continuous states inside the
discrete state. We also make sure that the cells in the partition
are convex to be able to do convex optimization calculation
of input signals, as explained in III-D. Any non-convex cell
can be divided into several convex cells, and if the larger non-
convex cell is proposition preserving the smaller convex cells
will also be so. We call this initial proposition preserving
partition P.

Secondly, we need the possible transitions in the finite
transition system, for each dynamical mode Mk. That is, we
need Nd lists of possible transitions between the discrete
states in the partition P. The transitions are established
through the concept of reachability, which is developed in
III-A. In general it will not be possible to establish enough
reachability relations between discrete states in the initial
proposition preserving partition P, since it is too coarse.
Therefore further discretization has to be done to obtain a
finer partition. We present in III-B a procedure that refines
the partition in order to establish reachability relations. The
refined partition together with the lists of possible transitions
is the finite transition system D.

Finally we synthesize a discrete planner for D and imple-
ment the planner by using a continuous controller that moves
the plant between the discrete states, as discussed in III-C
and III-D, respectively. The overall controller has a feedback
structure that takes into account both the current state s(t)
and the current environment dependent mode k (which also
depends on t).

A. Reachability

Assume that S = {ς0,ς1, . . .ςn} is a partition of the con-
tinuous state space dom(S). We define the mapping TS :
dom(S)→ S that takes a continuous state to its corresponding
discrete state. The inverse mapping T−1

S (ςi) describes the set
of all continuous states that are inside the discrete state ςi.

We also assume that there exists another proposition
preserving partition P= {ρ0,ρ1, . . .ρm} of dom(S), such that
S is a refinement of P. In other words, for every ςi ∈ S

there exists a ρ j ∈ P such that T−1
S (ςi) ⊆ T−1

P (ρ j), where
TP : dom(S)→ P is defined in accordance with TS. The two
partitions S and P may be equal.

Now we define the mapping PS : S→ P that takes a dis-
crete state to the cell in the initial proposition preserving par-
tition from which it originates, i.e. PS(ςi) = ρ j⇔ T−1

S (ςi)⊆
T−1
P (ρ j). Then we can define our idea of reachability in a

fixed horizon length N, with respect to some dynamical mode
Mk.

Definition 2: A discrete state ς j is reachable from another
discrete state ςi in N steps if, starting from any contin-
uous state s(0) ∈ T−1

S (ςi), there exists a control sequence
u(0),u(1), . . .u(N−1) that takes the plant to some continuous
state s(N)∈ T−1

S (ς j) in accordance with the system dynamics
Mk. This should be possible for all disturbance sequences
d(0),d(1), . . .d(N − 1) ∈ DN

k . Furthermore, we require that
u(t) ∈Uk(s(t)) for times t ∈ {0,1, . . .N−1}, and that s(t) ∈
T−1
P (PS(ςi)) for times t ∈ {1,2, . . .N−1}.

The last requirement in the definition makes sure that
the trajectory of the plant remains inside the proposition
preserving cell, which is required to ensure correctness when
implementing a correct discrete plan. Roughly speaking, the
same set of atomic propositions will be true during the
whole trajectory from ςi to ς j, which lets the continuous
implementation inherit correctness from the discrete plan.

It is worth emphasizing that our notion of reachability
makes better use of proposition preserving partitions. In
particular, we use a less restrictive definition of reachability
than what has been used in [7], [19]. Instead of enforcing
the plant to remain inside the initial cell, i.e s(t) ∈ T−1

S (ς j),
during a discrete transition, we use the looser constraint
s(t) ∈ T−1

P (PS(ς j)). A relaxed definition of reachability
makes it possible to establish more reachability relations,
something that is crucial in order to make the controller
synthesis realizable.

The partition refinement technique in the next section
relies on solving the following problem:

1) The reachability problem: Given an initial discrete
state ςi and a final discrete state ς j, find the set S0 ⊆ ςi such
that ς j is reachable from S0.

2) Solving the reachability problem: By using the dy-
namics (1) and assuming that the dynamical mode stays
constant up to time t − 1, it can be shown that the
plant state at time t can be written as s(t) = At

ks(0) +
∑

t−1
i=0

(
Ai

kBku(t−1− i)+Ai
kEkd(t−1− i)+Ai

kKk
)

for matri-
ces Ak, Bk, Ek and Kk corresponding to the dynamical mode
Mk. That is, the state at time t depends on the dynamical
mode, the initial state and all disturbances and input signals
up to time t−1. From the definition of reachability, we can
write down the following constraints for a transition from ςi
to ς j in N steps:
• s(0) ∈ T−1

S (ςi),
• s(t) ∈ T−1

P (PS(ςi)) for all t ∈ {1,2, . . .N−1},
• s(N) ∈ T−1

S (ς j),
• u(t) ∈Uk(s(t)) for all t ∈ {0,1, . . .N−1}.
We assume that T−1

S (ςi), T−1
P (PS(ςi)), T−1

S (ς j) and
Uk(s(t)) are all polytopes, i.e. there exists L0, Lt , LN , LU
and M0, Mt , MN , MU such that for example T−1

S (ςi) = {x ∈
Rn | L0x ≤ M0}. By expressing the states as functions of
previous inputs and disturbances, it turns out that all the
constraints above can be stacked and expressed as a system
of inequalities on the form

L
[
s(0)T u(0)T u(1)T . . . u(N−1)T]T ≤M− d̂, (3)

a set that defines a polytope of dimension n + Nm. This
polytope contains all combinations of initial states and input

sequences for which the reachability problem is feasible. The
matrix L is built from Ak, Bk, L0, Lt , LN and LU and the vector
M from M0, Mt , MN and MU . An element [d̂]i in the vector d̂
represents, for the corresponding inequality in the polytope,
the effect of the worst possible disturbance sequence for that
inequality. Namely, the ith element of d̂ can be expressed as

[d̂]i = max
d∈DN

k

[G]id, (4)

since this leads to the tightest constraints in the inequality
(3); thus ensuring that the reachability relation holds for all
possible disturbances. The matrix G, representing the effect
of disturbances, is built from Ak, Ek, L0, Lt , LN and LU in a
similar way as L and M. By using the theory of polyhedral
convexity it can furthermore be shown that only the extreme
points DN

k of the polytope DN
k have to be considered in the

maximization, which leaves us with a finite number of points
to check in order to find d̂.

We want to calculate the set S0 of possible starting points
for which a valid control sequence û= u(0),u(1), . . .u(N−1)
exists. This leads to the following solution of the reachability
problem, which is on the form of a projected polytope.

Proposition 1: Suppose L, M, G and d̂ are as above, and
that S0 is the projection of the polytope {x ∈ Rn+Nm | Lx ≤
M− d̂} onto its first n coordinates, i.e,

S0 =

{
s ∈ Rn | ∃û ∈ RNm s.t. L

[
s
û

]
≤M− d̂

}
.

Then, the reachability problem is feasible for any s(0) ∈ S0.
To calculate the initial set S0, we use an iterative idea that

comes from [20]. In the procedure, for which the pseudo
code is given in Algorithm 1, the feasible initial set S0 is
computed by back-propagating the final set ς j one time step
at a time.

Algorithm 1 Reachability calculation
1: syntax: SOLVE_FEASIBLE(System dynamics Mk, dis-

crete state ςi, discrete state ς j, horizon length N, mapping
PS)

2: S0← ς j
3: i = 0
4: while i < N do
5: Build L,M,G and compute d̂, using N = 1 and S0 as

the final set.
6: S0← pro jn({x | Lx≤M−Gd̂})
7: i← i+1
8: end while
9: return: S0

The advantage of this iterative approach lies in how it deals
with disturbances. Instead of calculating the whole sequence
of N input signals at the same time, we recalculate the input
in each time step and can thus take into account additional
information, namely all disturbances up to the current time
step in the iteration. When implementing a controller, it is
accordingly also necessary to recompute the input signal at
every time step, after measuring the latest disturbance. For

each call to Algorithm 1, N projections of a polytope of
dimension n+m are computed.

Remark 1: We assume the mode remains constant in N
steps, which is the fixed time horizon of the abstraction.
Hence, N should be chosen by taking into account the
time scale of the changes in the environment variable ed ,
controlling the switches, and can be set to 1 for arbitrarily
fast switching. Choosing N > 1 requires additional synchro-
nization assumptions (i.e., ed only changes at times t = cN
for integer c). In the context of VMS, environment for a
subsystem is typically the other subsystems [17]. Hence, in
VMS applications it is possible to achieve synchronization
for N > 1, either by using synchronous architectures or
through communication.

B. Specification Guided State Space Discretization

To be able to establish reachability relations between
the discrete states, in general the state space has to be
partitioned further. We do this at the same time as we look
for reachability relations. If it turns out after solving the
reachability problem for a pair of cells that the final cell is
reachable from only a part of the initial cell, the idea is to
divide the initial cell into one feasible and one non-feasible
part. This discretization algorithm can be found in Appendix
I.

We do additional discretization separately for each dynam-
ical mode Mk to obtain Nd different partitions of the original
continuous state space. Then we merge these partitions into
one final single partition S which will have the reachability
characteristics of all Nd partitions. The merging procedure
is given in Algorithm 2 and is essentially making new
discrete states out of all possible intersections. Finally we
recompute the possible transitions for this new partition S

using each dynamical mode. This has to be done since the
reachability relations may not be preserved when cells are
divided. We denote the set of possible transitions for mode
k by the transition relation Rk ⊆ S× S. In particular, for
ςi,ς j ∈ S, (ςi,ς j)∈Rk if ς j is reachable from ςi in the sense of
Definition 2. The partition S together with the Nd transition
relations Rk, k ∈ {1, . . . ,Nd}, is our finite transition system
D.

Proposition 2: Given that each of S1,S2, ...,SNd are par-
titions of dom(S), then, at each iteration of Algorithm 2, S
will also be a partition of dom(S).

Proof: If S and Sk are two partitions of the same space
dom(S), every point in dom(S) will lie in one and only one
state ςi ∈ S and one and only one state ς j ∈ Sk. Therefore
{ςi ∩ ς j|ςi ∈ S,ς j ∈ Sk} is also a partition of dom(S). The
result follows by induction.

C. Planner Synthesis

In this section, we discuss how to synthesize a discrete
plan, given the finite transition system D constructed in the
previous section and a temporal logic specification of the
assume–guarantee form (2). We first recast the problem as a
two player temporal logic game by treating the environment
driven switches as adversaries. This reformulation allows us

Algorithm 2 Merging
1: syntax: MERGE(List of partitions {S1,S2, . . .SNd})
2: S← S1
3: for k ∈ {2,3, . . . ,Nd} do
4: Stemp← /0
5: for ςi ∈ S do
6: for ς j ∈ Sk do
7: if ςi∩ ς j 6= /0 then
8: Stemp←

[
Stemp ςi∩ ς j

]
9: end if

10: end for
11: end for
12: S← Stemp
13: end for
14: return: S

to employ a method due to Piterman et al. [9], [21] for
synthesis of reactive discrete controllers in the presence of
adversarial environment. Synthesis of reactive controllers for
a general LTL formula has prohibitive complexity. However,
as shown in [21], for an expressive subset of LTL, the so-
called Generalized Reactivity(1) (GR(1)) formulas, synthesis
can be achieved in time quadratic in the state space size (i.e.,
|V|). We restrict ourselves to GR(1) formulas in this paper.
Next, we give a very brief overview of the setup in [9], [21]
and show how it relates to the problem we consider in this
paper.

The main idea is to pose the planner synthesis problem as
a two player game between the discrete states S in D and the
set of environment variables, E, that determine the dynamical
mode. Consider the following GR(1) specification:

ϕ
.
= (ϕe→ ϕs), (5)

where for α ∈ {e,s} both ϕα have the following structure :

ϕα

.
= θ

α
init ∧

∧
i∈Itα

�ψ
α
i ∧

∧
i∈Igα

�3Jα
i .

In Eq. (5), ϕe characterizes the assumptions on the environ-
ment and ϕs describes the correct behavior of the system.
In particular, θ α

init is an atomic proposition characterizing
the initial conditions; ψα

i are atomic propositions charac-
terizing invariants that should always be satisfied (e.g. safety
requirements); and Jα

i are atomic propositions characterizing
states that should be attained infinitely often. We assume (5)
does not contain the next operator (#), hence it is stutter
invariant. This technical assumption can be relaxed for the
case when N = 1. From (5) and D we construct an additional
specification that describes all allowable moves:

ϕd
.
= (ϕe→ ϕs∧ϕD), (6)

where ϕD encodes the transition system D. In particular,
ϕD

.
=
∧Nd

k=1
∧

ςi∈S�((ed = k∧ s ∈ ςi)→#
∨

(ςi,ς j)∈Rk
(s ∈ ς j)).

Since we abstract the discrete model with fixed time horizon
N, next operator (#) in (6), corresponds to N steps later for
the continuous dynamics and by construction, the proposi-
tions on s remain unchanged during these N steps. Note that

if (5) is in GR(1) so is (6). Hence, the synthesis method
proposed in [9], which is implemented in JTLV [22], can be
used. If there exists a discrete plan that satisfies (6), we say
the specification (or the synthesis problem) is realizable. In
this case, the output of the synthesis algorithm is a partial
function f : (e(t),ς(t),e(t +N)) 7→ ς(t +N) (possibly with
some finite memory variable as an additional input argument
that we ignore for simplicity of notation), represented by a
finite state automaton, that maps the previous discrete system
state v = (ς ,e) and the current environment value e to the
next discrete plant state in the partition. We call f the planner
for the system.

Remark 2: We gave this simpler description for construct-
ing ϕd in (6) but, strictly speaking, one needs to be careful
about causality unless e(t +N) can be predicted at time t.
In particular, GR(1) synthesis [9] assumes that the plant can
react to the environment changes instantaneously, however
we have N step delay due to discretization. To ensure causal-
ity (i.e., to synthesize a planner f̃ : (e(t −N),ς(t),e(t)) 7→
ς(t+N)), it is possible to define ẽ(t) .

= e(t−N) and construct
a specification ϕ̃d such that, under some mild technical
assumptions, it leads to a GR(1) game between ẽ and s.
The main idea is to replace the appearances of e with #ẽ in
each atomic proposition of ϕd that contains variables from
both S and E; and with ẽ elsewhere. All the examples in this
paper work with this modification, however for the sake of
simplicity, we skip the details of the construction.

D. Implementation and Correctness of the System

The states S in the finite transition system D form a
subpartition of the initial proposition preserving partition P

and thus S is also proposition preserving. A discrete planner
can be synthesized using JTLV [22] by giving D and the
corresponding set of atomic propositions for each discrete
state as input, as described in III-C.

During execution, the planner will control between which
discrete states the plant should move in order to fulfill the
system specifications. In order to perform these discrete
transitions, we need a continuous controller. We do this
with a finite-horizon linear quadratic regulator (LQR), using
the (convex) constraints of reachability in III-A. The cost
function can be chosen to penalize state deviations and/or
input. Like with the reachability algorithm, the final set must
be propagated backwards in time to find the feasible set for
each time step. In order to move from ςi to ς j we calculate
an input sequence u∗ by solving an optimization problem for
a given initial position s(0) ∈ T−1

S (ςi),

u∗ =



argmin{u(t)}N−1
0

∑
N
t=1(s(t)

T Qts(t)+qT
t s(t))+

∑
N−1
t=0 (u(t)T Rtu(t)),

such that s(N) ∈ T−1
S (ς j),

s(1) ∈ S0N−1 ,

s(t) ∈ T−1
P (PS(ςi)) ,

u(t) ∈U(s(t)),
∀ t ∈ {1,2, . . . ,N−1},

(7)

where S0N−1 ⊆ T−1
P (PS(ςi)) is the set calculated by Algorithm

1 for which the reachability problem is feasible in N − 1
steps. Only the first input signal u(0) is used at each time
step. When the plant has moved one step the new disturbance
is taken into account to compute a new input signal, again
using (7) but with the horizon length N decreased by 1.

By allowing the plant to move inside the whole original
proposition preserving cell T−1

P (PS(ςi)) during the transition,
rather than enforcing it to stay inside T−1

S (ςi) like has been
done in earlier work, we optimize over a larger set of
trajectories. Therefore the cost of the optimal trajectory for
this relaxed problem is at least as low as before and in general
lower.

Using this method the following statement can be made
about the system behavior.

Proposition 3: Under the assumption that the switches
only occur at times t = cN for integer c, using the planner f
synthesized for (6) together with the controller (7) guarantees
that the specification ϕ in (5) is satisfied by the system.

Proof: The result follows from Proposition 1 in [6]
together with stutter invariance assumption on ϕ and the
fact that we require that the trajectory of the transitions
between two discrete states should lie inside the parent cell
T−1
P (PS(ςi)) in the original proposition preserving partition.

Hence, the same set of propositions are guaranteed to be sat-
isfied during the transitions. Therefore the planner/controller
system will behave correctly with respect to the specification
ϕ in (5).

IV. EXAMPLES
The proposed strategy for automatic controller synthesis

is illustrated with an academic example and an application
in aircraft fuel system. To build the controllers we use The
Temporal Logic Planning (TuLiP) Toolbox [23], a software
package that is designed to synthesize controllers using the
presented method, including an interface to JTLV.

A. Comparison with Earlier Work on a Simple Example

To illustrate the advantage of the proposed notion of
reachability, we compare our approach with that in [7]. Since
the latter cannot handle switched systems, we use a simple
two-dimensional linear system with the following dynamics:[

s1(t +1)
s2(t +1)

]
=

[
s1(t)
s2(t)

]
+

[
u1(t)
u2(t)

]
+

[
d1(t)
d2(t)

]
,

|u1(t)+u2(t)| ≤ 0.16,
|d1(t)|, |d2(t)| ≤ 0.04.

(8)

The state space is the set {[x y] ∈ R2 | 0≤ x≤ 3,0≤ y≤ 2}
and the initial proposition preserving partition consists of
6 identical square cells. We discretize the state space with
Algorithm 3 in Appendix I, using the notion of reachability
in Definition 2 and the corresponding definition from [7], and
keeping the rest of the parameters the same (i.e., N = 8 and
min_vol = 0.1). The specifications on the system require the
plant to be able to move between the lower left and the upper
right cells in the initial partition. It turns out that with this
set-up, discretizing using the reachability constraints in [7]

uout

uin

v1

v2

Tank T1

Tank T2

uc

Fig. 1. Fuel tank system.

results in 29 possible transitions (including self transitions)
between a total of 23 discrete states, which in this case is not
enough to make the specification realizable. However, using
the new relaxed constraints, a total of 34 discrete states are
created with 93 transitions between them, which makes the
controller synthesis realizable.

B. Application in Fuel Balancing

In this example we consider a switched affine system
and illustrate the application of overall framework. The
dynamical system we look at consists of two fuel tanks T1
and T2 in an airplane and the state variables are the two
fuel volumes v1 and v2 in these tanks. We suppose that the
maximum capacity in both tanks is 10 fuel units. The system
can be controlled by moving fuel from tank T1 to tank T2 by
using a pump, at a maximum rate of 3 fuel units per time
step. This problem has only one control signal but two state
variables, so it is not fully actuated. Such systems are often
hard to control.

We model the system with two dynamical modes, one for
normal operation and one for aerial refueling mode. During
aerial refueling mode a tank plane is flying next to our plane
and fills up fuel in tank T1 at a rate of 3 fuel units per time
step. We assume that the plane consumes 1 fuel unit per time
step and that this fuel is taken from tank T2. This gives the
following model for the dynamics:[

v1(t +1)
v2(t +1)

]
=

[
1 0
0 1

][
v1(t)
v2(t)

]
+

[
−1
1

]
uc(t)+

[
uin(t)
−1

]
, (9)

where uin(t) can be either 0 or 3, depending on the dynamical
mode. The restriction on the input signal can be written on
polytope form as 1 0

−1 0
1 −1

[uc(t)
v1(t)

]
≤

 3
0

uin(t)

 , (10)

where the last inequality makes sure that not more fuel than
what is available can be moved from tank T1.

1) Specifications: What we want to achieve with this
system is to keep the difference between the two fuel levels
low. The motivation for this is that a big difference may cause
instability in the airplane. It is assumed that the refueling

0 2 4 6 8 10
v1

0

2

4

6

8

10

v 2

Fig. 2. Final state space partition, each colored area represents a discrete
state.

mode will be initiated when the levels are too low, so that
the system will never run out of fuel completely, and that
the refueling mode will stop when tank T2 is almost full. We
therefore give the following requirements and specifications
on the system.

Assumptions:
• When v1+v2 ≤ 2 and uin = 0, next step require uin = 3.
• When v2 ≥ 8 and uin = 3, next step require uin = 0.
Requirements:
• Always require that |v1− v2| ≤ 2.
• Always eventually require that |v1− v2| ≤ 1.
The first requirement ensures safe operation, while the

second requirement makes sure that improved performance
is achieved infinitely often.

2) State Space Discretization: We run the discretization
algorithm in Appendix I two times to obtain one partition for
each dynamical mode, using time step N = 1 for reachability
in one time step (allowing for the system to switch between
dynamical modes at every time step). Then we merge the two
partitions using Algorithm 2. The resulting final partition of
the state space is shown in Fig. 2. Finally, we make repeated
calls to Algorithm 1 in order to get two lists of possible
transitions between discrete states in this partition, one list
for each dynamical mode. The partition and the possible
transitions can now be plugged into JTLV to synthesize a
discrete planner, and it turns out that the specifications are
realizable for this particular problem. The discrete states that
fulfill the specification are the states that lie at most 2 length
units away from the line v1 = v2. Since the planner synthesis
is successful, we have a way of controlling the system to
always stay inside this area.

For this example, the discretization procedure took 282
seconds on a MacBook Air 1.86 GHz. A planner for the
resulting 277 discrete states could be synthesized in 15
seconds on the same computer.

3) Results: The planner is implemented in a simulation
together with a controller on the form of (7). We put a
weight in the optimization that punishes deviations from
the centers of the cells. The simulation is run in 25 time
steps and the result is shown in Fig. 3. As can be seen,

0 5 10 15 20
0

2

4

6

8

10

Time

V
ol
um
es

v1
v2

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

Time

Fu
el

 m
ov

e
ra

te

Fig. 3. Simulation results. Left: Tank levels. Right: Fuel move rate, uc(t).

the two levels of fuel track each other closely, fulfilling the
system specification. In the beginning of the experiment the
plane is in normal operation mode, which can be seen by the
declining fuel levels. When the fuel levels become low the
system is switched to aerial refueling mode and fuel starts to
be added to tank T1, causing both levels to increase. And we
allow some arbitrary switching consistent with environment
assumptions in the last 5 time steps. Fig. 3 also shows how
much fuel is being moved from tank T1 to tank T2 during
the simulation.

V. CONCLUSIONS AND FUTURE WORKS

We have presented a strategy for automatic synthesis of a
planner and a controller for a switched system that is correct
by construction, in the sense that once synthesized, the plan-
ner/controller is guaranteed to fulfill the specifications. The
strategy can be implemented on systems that are switched,
i.e. whose dynamical mode is controlled by the environment.
Most of the results on switched systems are either only
sufficient conditions or computationally expensive; and the
proposed method is no exception. However, as shown in
the paper, controller synthesis for switched systems from
temporal logic specifications, can be recast as a two-player
game by treating the switching sequence as environment.
This reformulation has enabled using tools from reactive
controller synthesis for linear or piecewise affine systems
with appropriate modifications. An important step in the
procedure is to partition the continuous state space into a
finite number of discrete states, in order to enable planning.
We have shown improved performance in discretization
step by effectively using propositions in the temporal logic
formula while computing reachability relations.

The planner/controller synthesis strategy has been im-
plemented on an example with fuel tanks. The fuel tank
system is under-actuated and is switched by the environment
between two dynamical modes. A planner could successfully
be synthesized and therefore any execution is guaranteed to
fulfill the specification.

Future work includes tuning the discretization procedure
for switched systems by taking into account the a priori
information on the switches to reduce potential conservatism.
We are also interested in investigating the convergence
properties of the approach in the sense that as finer and
finer partitions are considered whether it would be possible
to obtain a control strategy, that satisfies the specification, at
discrete level whenever one exists for the continuous system.

APPENDIX I
DISCRETIZATION ALGORITHM

This appendix summarizes a discretization algorithm pro-
posed in [6], [7], [19] and also used in this paper. The
purpose of this algorithm is to refine a given partition of
the state space and at the same time establish reachability
relations between discrete states in the partition.

An iteration of the proposed algorithm starts with picking
two arbitrary states ςi and ς j in the current partition. Then
the subset S0 ⊆ ςi from which ς j is reachable is computed.
If S0 is found to be non-empty, but not the same as ςi, ςi
is partitioned into ςi∩S0 and ςi\S0, and thus the number of
discrete states increases by 1. By construction the state ς j
will be reachable from the new state ςi∩S0. The idea is to
keep doing this until enough transitions have been established
inside the state space. The pseudo-code of this algorithm
is given in Algorithm 3, where a minimum cell volume
is used as a termination criteria. To improve the speed of
the algorithm, it can be restricted it to check for transitions
between states that are neighbors of some order NNB, using
the notation introduced in II-A.

Algorithm 3 State space discretization
1: syntax: DISCRETIZE(Proposition preserving partition

P, dynamic mode Mk, neighbor order NNB, horizon
length N, minimum volume min_vol)

2: Initialize transition matrix T R← zeros(n×n).
3: Initialize new partition S← copy(P).
4: Build a neighbor matrix NB from S s.t NB(i, j) = 1 if ςi

and ς j are neighbors.
5: Build matrix of transitions to check IJ← (NBNNB > 0).
6: while sum(IJ)> 0 do
7: Pick (i, j) such that IJ(j, i) = 1, then set IJ(j, i) = 0.
8: S0← SOLVE_FEASIBLE(Mk, ςi, ς j, N, P)
9: if (vol(ςi ∩ S0) > min_vol) AND (vol(ςi\S0) >

min_vol) then
10: S(i)← ςi∩S0
11: S←

[
S ςi\S0

]
12: Add row and column of zeros to TR, NB and IJ.
13: Update NB(end, :), NB(:,end), NB(i, :), NB(:, i)
14: T R(:,end)← T R(:, i)
15: if i 6= j then
16: T R(j, i)← 1
17: end if
18: #Update IJ matrix with transitions to check:
19: IJ(i, :)← (NBNNB(i, :)−T R(i, :)> 0)
20: IJ(:, i)← (NBNNB(:, i)−T R(:, i)> 0)
21: IJ(end, :)← (NBNNB(end, :)−T R(end, :)> 0)
22: IJ(:,end)← (NBNNB(:,end)−T R(:,end)> 0)
23: else if vol(ςi\S0) = 0 then
24: T R(j, i)← 1
25: end if
26: end while
27: return: New partition S, transition matrix T R.

REFERENCES

[1] Z. Manna and A. Pnueli, The temporal logic of reactive and concurrent
systems. Springer-Verlag, 1992.

[2] A. Pnueli, “Applications of temporal logic to the specification and
verification of reactive systems: a survey of current trends,” Current
Trends in Concurrency. Overviews and Tutorials, pp. 510–584, 1986.

[3] P. Tabuada and G. J. Pappas, “Linear time logic control of linear
systems,” IEEE Trans. on Automat. Contr., vol. 51, no. 12, pp. 1862–
1877, 2006.

[4] M. Kloetzer and C. Belta, “A fully automated framework for control
of linear systems from temporal logic specifications,” IEEE Trans. on
Automat. Contr., vol. 53, no. 1, pp. 287–297, 2008.

[5] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Temporal
logic motion planning for dynamic robots,” Automatica, vol. 45, no. 2,
pp. 343–352, 2009.

[6] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning for dynamical systems,” in Proc. IEEE CDC,
Shanghai, China, Dec. 2009.

[7] ——, “Automatic synthesis of robust embedded control software,”
in AAAI Spring Symposium on Embedded Reasoning: Intelligence in
Embedded Systems, 2010, pp. 104–111.

[8] ——, “Receding horizon control for temporal logic specifications,” in
HSCC, 2010, pp. 101–110.

[9] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of reactive(1) de-
signs,” in VMCAI, 2006, pp. 364–380.

[10] D. Liberzon, Switching in systems and control, ser. Systems & control.
Birkhäuser, 2003.

[11] M. S. Branicky, “Multiple lyapunov functions and other analysis tools
for switched and hybrid systems,” IEEE Trans. on Automat. Contr.,
vol. 43, no. 4, pp. 475 –482, apr 1998.

[12] J. P. Hespanha, “Uniform stability of switched linear systems: Ex-
tensions of LaSalle’s invariance principle,” IEEE Trans. on Automat.
Contr., vol. 49, no. 4, pp. 470–482, Apr. 2004.

[13] P. A. Parrilo and A. Jadbabaie, “Approximation of the joint spectral
radius using sum of squares,” Linear Algebra and its Applications,
vol. 428, no. 10, pp. 2385 – 2402, 2008, special Issue on the Joint
Spectral Radius: Theory, Methods and Applications.

[14] F. Blanchini, S. Miani, and F. Mesquine, “A separation principle
for linear switching systems and parametrization of all stabilizing
controllers,” IEEE Trans. on Automat. Contr., vol. 54, no. 2, pp. 279
–292, feb. 2009.

[15] D. C. Tarraf, A. Megretski, and M. A. Dahleh, “Finite approximations
of switched homogeneous systems for controller synthesis,” IEEE
Trans. on Automat. Contr., vol. 56, no. 5, pp. 1140 –1145, may 2011.

[16] I. Moir and A. Seabridge, Aircraft Systems: Mechanical, Electrical,
and Avionics Subsystems Integration. AIAA Education Series, 2001.

[17] N. Ozay, U. Topcu, and R. M. Murray, “Distributed power allocation
for vehicle management systems,” in Proc. IEEE CDC and ECC,
Orlando, FL, USA, Dec. 2011.

[18] P. Derler, E. A. Lee, and A. S. Vincentelli, “Modeling cyber-physical
systems,” Proceedings of the IEEE, vol. 100, no. 1, pp. 13 –28, jan.
2012.

[19] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning,” 2010, submitted to IEEE Transactions on
Automatic Control.

[20] F. Borrelli, Constrained Optimal Control of Linear and Hybrid Sys-
tems. Springer, Lecture Notes in Control and Information Sciences,
vol 290, 2003.

[21] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar,
“Synthesis of reactive(1) designs,” Journal of Computer and System
Sciences, vol. 78, no. 3, pp. 911 – 938, may 2012.

[22] A. Pnueli, Y. Sa’ar, and L. D. Zuck. (2010) JTLV : A framework for
developing verification algorithms. 22nd International Conference on
Computer Aided Verification. [Online]. Available: http://jtlv.ysaar.net

[23] T. Wongpiromsarn, U. Topcu, N. Özay, H. Xu, and R. M. Murray,
“TuLiP: a software toolbox for receding horizon temporal logic plan-
ning,” in HSCC, 2011, software available at http://tulip-control.sf.net/.

