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Abstract— We present an optimization-based control strategy
for generating whole-body trajectories for humanoid robots
in order to minimize damage due to falling. In this work,
the falling problem is formulated using optimal control where
we seek to minimize the impulse on impact with the ground,
subject to the full-body dynamics and constraints of the robot
in joint space. We extend previous work in this domain
by numerically approximating the resulting optimal control,
generating open-loop trajectories by solving an equivalent
nonlinear programming problem. Compared to previous results
in falling optimization, the proposed framework is extendable
to more complex dynamic models and generate trajectories
that are guaranteed to be physically feasible. These results
are implemented in simulation using models of dynamically
balancing humanoid robots in several experimental scenarios.

Index Terms— Humanoid robot, optimal falling strategy,
pseudospectral optimal control

I. INTRODUCTION

D ynamically balancing humanoid robots are inherently
unstable structures and any humanoid with sufficient

physical capabilities poses a significant safety risk. On the
other hand, humanoid robots are designed to imitate the
manipulative, locomotive, perceptive, communicative, and
cognitive abilities of humans [1] and are compatible with
made-for-human tools and environments. Before we can
expect to move these robots beyond the structured settings of
research and into human populated environments, we must
address the issue of robustness, particularly on how systems
can be designed to gracefully cope with failures.

The robustness of autonomous robots in cluttered and
uncontrolled human environments is a key area in the study
of physical human-robot interaction. The ability to produce
safe and controlled responses should a fault occur is one
of the critical components that enable robots to effectively
assist in physical tasks. In this work, we develop controllers
for bipedal humanoid robots in the event of a fall as these
systems are prone to falling when performing demanding
locomotive movements. When left uncontrolled, falls can
lead to catastrophic physical damage to the robot and its
surroundings.

There is a vast collection of previous work in dynamic
balancing strategies under disturbance for fall avoidance; for
example, planning when and where to take a step [2] and
feed-forward force control that achieves compliance [3]. In
this work, we focus on the scenario where the balancing
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Fig. 1. Controlled fall: a three-link humanoid model falls backwards and
lands at the hip joint. While falling, the torso bends forward until reaching
the joint limit with respect to the thigh joint. At the final configuration, the
torso is almost upright.

control has failed and a fall is inevitable. There are three main
issues that naturally arise in this domain: detecting the fall
(anomaly detection), choosing the optimal direction to fall (in
order to ensure human safety), and choosing how to fall (in
order to minimize damage to the robot). This work lies within
the last category of damage minimization. Section II gives a
summary of related work in each category and summarizes
how they relate to the proposed approach.

Our design philosophy for falling control relies heavily
on the ability of optimization to produce emergent behav-
iors. For a humanoid robot with many degrees-of-freedom,
designing behaviors by hand is a difficult, if not intractable,
task. While there have been attempts to use motion capture
[4] to extract or transfer human motion to robot control
in locomotive scenarios such as tripping recovery [5], the
significant differences in the kinematic structures of humans
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and humanoid robots make this approach difficult to apply
in practice. Instead, optimization is an effective tool by
which we can generate behaviors from a system model using
properly defined objective functions and constraints.

The primary contribution of this work is an optimization-
based falling controller where the whole-body motion of the
robot in joint space is automatically generated by defining
appropriate optimization objectives. We aim to solve the
optimal control problem numerically [6] with direct col-
location using pseudospectral methods [7]. Specifically, a
complex nonlinear optimal control problem is transcribed
into an equivalent nonlinear programming problem (NLP)
by parameterizing the state and control spaces using global
polynomials and collocating the differential-algebraic equa-
tions using nodes obtained from a Gaussian quadrature. The
resulting NLP can be solved by a numerical optimization
solver to produce the locally optimal solution to the optimal
control problem. We show that this approach is a natural
choice for a nonlinear dynamic model with state and input
constraints typical for a humanoid robot.

The remainder of this paper is organized as follows: Sec-
tion II gives a summary of related work and reviews the state-
of-the-art approaches to optimal falling control. Section III
describes the dynamic model used in the optimization as
well as the formulation of the optimization objective using
an impact model. Section IV presents the pseudospectral
method that transcribes the optimal control problem into an
NLP, as well as the formation of the falling problem using
an impulse-based optimization objective with corresponding
dynamic constraints. Section V details the performance of the
approach on simulated models. Finally, Section VI concludes
the paper and gives future research directions.

II. RELATED WORK

Fall detection for humanoid robot has been addressed in
a number of previous studies, most notably in Renner [8],
Karssen [9], and Kalyanakrishnan [10], where strategies for
instability and fall detection were proposed using probabilis-
tic and machine learning-based methods. In this work, we
assume that the detection problem has been solved and the
switch to falling control is done automatically.

For fall direction selection, Nagarajan [11] and Yun [12]
have developed a class of approaches that utilize stepping
strategies to change the bearing of the robot and falling to
avoid multiple static obstacles in the environment. This line
of research is primarily motivated by human safety and does
not take into account damage minimization for the robot.

A number of strategies have proposed to minimize damage
to the robot during falling, ranging from hand-designed be-
haviors to optimization generated controllers. The application
of falling strategies is popular in the robot soccer domain,
where falling occurs frequently due to the interactions of
multiple robots in a small environment. Ruiz del Solar
[13] utilized realistic simulation tools to hand-design fall
sequences for soccer robots. A number of control designs
based on human heuristic strategies have been proposed,
for example, using techniques from martial arts [14] or

defining desirable regions for impact such as the knee [15]
or the backpack [16]. Optimization-based approaches were
presented in Ogata [17] where a limited model based on the
3D inverted pendulum was used. More complex models can
be found in Fujiwara [18] where variational techniques were
used for optimizing joint trajectories.

We argue that an optimization-based approach encom-
passes heuristics-based techniques since appropriate heuris-
tics can be embedded in the objective function to generate
desired behaviors. The proposed approach is superior to
previous optimization frameworks in several key aspects.
First, we utilize a numerical approach for the optimal control
problem which extends to more complex dynamic models
that cannot be addressed by analytic methods. Second, we
incorporate physical constraints on the robot (such as joint
limits and actuator limits) into the optimization process,
eliminating the need to use a separate viability check to
discard trajectories that are physically infeasible. Finally, we
introduce an alternative impact model based on the effective
mass of the robot at impact, which is easier to model for
more complex, multi-limbed humanoids.

III. MODEL

A. Overview

We model a standing humanoid robot in the sagittal plane
as a three link rigid-body system. The planar diagram for the
system is shown in Fig. 2, with the physical parameters listed
in Table I. In this form, the three links represent the shank,
thigh, and torso, respectively. We refer to the three actuated
joints as the foot, knee, and hip joints, respectively. In this
section, we derive the rigid-body dynamics for this three link
system and the corresponding impact model to determine the
impulse upon impact with the ground.

B. Rigid-body dynamics

To derive the rigid-body dynamics for the robot, we
define the generalized coordinates of the system q(t) =
(q1(t), q2(t), q3(t))

T according to Fig. 2. We treat the three-
link systems as a single kinematic chain and follow a
standard derivation for manipulators, simplifying to a form
that is linear in acceleration and torque

M(q)q̈ + N(q, q̇) = τ (1)

where τ ∈ Rm represents torques while M ∈ Rn×n and
N ∈ Rn are state-dependent matrices. M consists of coeffi-
cients on acceleration and is square, symmetric, and positive
definite. N consists of all other terms including centripetal,
Coriolis and gravitational forces. We can rewrite (1) as a
series of first-order nonlinear equations in the control-affine
form

ẋ(t) = g(x) + w(x)u(t), (2)

that is nonlinear in the states and linear in the control inputs,
where g(x) and w(x) can be written as

g(x) = −M−1(q)N(q, q̇) (3)
w(x) = M−1(q), (4)



x

z

m3

m2

m1q1

q2

q3

r1 l1

r2l2

r3 l3

Fig. 2. Planar model of a legged humanoid robot with three links: shank,
thigh, and torso. The three actuated joints qi are the foot, knee, and hip
defined in generalized coordinates. The parameters for the model is given
in Table I.

TABLE I
PHYSICAL PARAMETERS

m (kg) r (m) Iy (kg ·m2) l (m)
Shank (l1) 7.0 0.3 0.10 0.5
Thigh (l2) 17.0 0.3 0.30 0.5
Torso (l3) 53.5 0.35 3.0 0.8

We assume, without loss of generality, that the origin is an
equilibrium of the system.

C. Impact dynamics

In controlled falling, the optimization objective is defined
to provide some measure of “damage” upon impact with the
ground. In this work, the optimization objective is quantified
as the total impulse at impact, i.e., the change in momentum
on the body of the robot as it hits the ground. Based on the
geometry and the initial condition, either the head or the knee
joint will hit the ground first in the forward falling case. For
backwards falls, the hip will hit the ground first. In either
case, we model the collision as inelastic and frictionless
(consisting of a purely vertical force) then attempt to mini-
mize the impulse imparted during the collision. Following
an inelastic collision with the ground, the collision point
will have zero vertical velocity. This means that we know
the vertical change in velocity of the impact point during
the collision, ∆vz , and we need only compute the effective
mass in this configuration, m(q)impact, to determine the total
impulse.

We use the fact that the dynamics are linear in force to
determine m(q)impact. First we compute the vertical accel-
eration at impact resulting from only gravity, centripetal, and
Coriolis forces, az,g . We then compute the same quantity but
with a unit (1 N) vertical force at the impact point, az,f . The
effective mass is then

m(q)impact =
1

az,f − az,g
. (5)

We can now calculate the impact impulse as

I = m(q)impact∆vz. (6)

IV. OPTIMIZATION

A. Overview

We formulate the falling control as an optimal control
problem where the objective function is defined based on the
impact dynamics of the fall. In this approach, we decompose
the optimal control problem into an NLP by the pseudospec-
tral Legendre method [19], a well-established approximation
in trajectory optimization. Once the NLP description is
obtained, we further transcribe it into a sequential quadratic
programming (SQP) problem and solve it using standard
numerical optimization solvers.

B. Optimal control formulation

Consider the finite-horizon optimal control problem where
the objective function,

min J(x(·),u(·), τ0, τf ) = Φ(x(τ0),x(τf ), τ0, τf )

+

∫ τf

τ0

C(x(τ),u(τ)) dτ, (7)

is subject to the state dynamics

ẋ(τ) = f(x(τ),u(τ)), (8)

where x is the state vector, u is the control input, C is the
one step cost integrated over time, and Φ is the terminal cost
at end time. We impose the boundary constraints

e(x(τ0),x(τf ), τ0, τf ) = 0 (9)

for the initial and terminal states, as well as state and input
constraints,

h((x(τ),u(τ)) ≤ 0 (10)

in the form of inequalities. It is assumed that f , Φ, C, e,
and h are nonlinear and smooth functions with respect to x
and u.

C. Pseudospectral discretization

Let N denote the number of collocation points defined for
the closed interval τ ∈ [−1, 1]. The Legendre-Gauss-Lobatto
(LGL) points are obtained from the roots of a N th-order Leg-
endre polynomial, ṖN−1(τ), together with two end points at
-1 and 1. As this group of polynomials are orthogonal when
evaluated by the L2 inner product, their derivatives can be
expressed in terms of the polynomials themselves, resulting
in a convenient and accurate approximation of the differential
equations that make up the dynamics.

Let Li, i = 1, . . . , N be the Lagrange basis associated
with the collocation points, where

Li(τ) =
N∏
j=1

τ − τj
τi − τj

, 1 ≤ i ≤ N (11)



is the Lagrange polynomial of order N . The integral in the
objective function can therefore be written as∫ 1

−1

C(x(τ),u(τ)) dτ ≈
N∑
i=1

C(x(τi),u(τi))wi (12)

wi =

∫ 1

−1

Li(τ) dτ, (13)

Similarly, the state trajectory is approximated by the vector-
valued polynomial,

xN (τ) =
N∑
i=1

xiLi(τ) (14)

Differentiating the series and evaluating at the LGL points,
τk, k = 1, . . . , N , gives

ẋN (τk) =
N∑
i=1

xiL̇i(τk) =
N∑
i=1

Dkixi, (15)

where Dki = L̇i(τk) is a square matrix called the Lobatto
pseudospectral differentiation matrix [7]. Let XLGL and
ULGL be the state and input approximations at the LGL
points. We can write the original optimal control problem,
(7)-(10), in the form

min J(XN ), (16)

subject to
DXLGL = F(XLGL,ULGL), (17)

with the initial condition

X1 = x0. (18)

This discrete nonlinear programming problem can be solved
by an optimization solver such as SNOPT [20].

V. RESULTS

A. Experimental setup

To optimize the joint motions of the system during a
falling trajectory, we define the objective function to min-
imize the impulse at impact while accounting for the control
effort during the trajectory. This is expressed using a terminal
constraint Φ(x(τ0),x(τf ), τ0, τf ) in (7). We also include
an additional term on the derivative of the control input to
penalizing non-smooth and oscillatory control torques.

J = k1I +

∫ T

0

(
uTWu + u̇TVu̇

)
dt (19)

where k1 is a scalar weight and W and V are positive-
definite weight matrices. The dynamic model is taken in the
form of (1) and incorporate joint and actuator limits in the
form of (10). The values are given in Table II.

TABLE II
STATE AND INPUT CONSTRAINTS

q1 q2 q3 q̇1 q̇2 q̇3 u1, u2, u3

min -90 -150 0 -800 -800 -800 -1000
max 90 150 180 800 800 800 1000

Two simulated experiments are designed to determine the
optimal strategy in both forward and backward directions,
compared to the uncontrolled case. In each scenario, we
examine the joint trajectories for the three links (q1, q2, and
q3). The initial joint angles are set such that the robots are
standing up. Small, non-zero values are used to avoid the
kinematic singularity that occurs when the links are aligned.
Visualization using a simulated robot accompany the joint
trajectories for each scenario. An animated video can be
found at [21].

B. Uncontrolled falling

Fig. 4 shows the joint trajectories for an uncontrolled
fall and and Fig. 3 gives a visualization of the initial and
final joint configurations using a simulated robot. Without
compensating for the fall, the robot lands on its knees and
the upper body falls forward.
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Fig. 4. Uncontrolled falling - joint trajectories move uncontrolled in the
direction of the initial condition until impact. The robot lands on its knees
and the upper body falls forward.

C. Controlled falling - forward direction

Fig. 5 shows the joint trajectories for a controlled fall. The
produced optimized strategy compensates by falling forward
in the positive q1 direction, landing at the knees. The thigh
bends backwards until the joint limit at 150◦ with respect to
the shank while simultaneously bends the torso forward. At
the final configuration, the robot kneels while keeping the
upper body upright. Fig. 3 gives a visualization of the initial
and final joint configurations.

D. Controlled falling - backward direction

Fig. 6 shows the joint trajectories for a second falling
strategy as the robot falls backwards. In this case, the system
falls backward in the negative q1 direction and lands at
the hip joint. While falling, the torso bends forward until
reaching the joint limit of 180◦ with respect to the thigh
joint. At the final configuration, the is torso almost upright.
Fig. 1 gives a visualization of the initial and final joint
configurations.
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Fig. 3. Top (a)-(c): Uncontrolled fall for a three-link humanoid model where links move uncontrolled in the direction of the initial condition until impact.
Bottom (c)-(d): controlled fall in the forward direction, landing at the knees. The thigh bends backwards until hitting a joint limit with respect to the shank
while simultaneously bends the torso forward. At the final configuration, the robot kneels while keeping the upper body upright.
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Fig. 5. Controlled falling in the forward direction. The system falls forward
in the positive q1 direction, landing at the knees. The thigh bends backwards
until the joint limit at −150◦ with respect to the shank while simultaneously
bends the torso forward. At the final configuration, the robot kneels while
keeping the upper body upright. Fig. 3 gives a visualization of the initial
and final joint configurations using these trajectories.

E. Discussion

Using the two basic scenarios defined above, we experi-
mented with various combinations of initial conditions and
cost parameters. The results show that the impact reduc-
tion strategies that emerges from the optimization process
can reduce the impulse at impact approximately 40%-70%
compared to uncontrolled falling. In reality, these figures are
subject to the accuracy of the impact model, the dynamics
of the robot, as well as other unmodeled effects such as
friction and slippage. For robots with stiff joints due to
heavily geared motors, it is easy to modify the current model
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Fig. 6. Controlled falling in the backward direction. The system falls
backward in the negative q1 direction and lands at the hip joint. While
falling, the torso bends forward until reaching the joint limit of 180◦

with respect to the thigh joint. At the final configuration, the torso is
almost upright. Fig. 1 gives a visualization of the initial and final joint
configurations using these trajectories.

to include motor inertias and reflected inertias in (1). The
control-affine form (2) and the subsequent derivations can
be used without modification.

Where in typical collocation-based algorithms, the initial
condition plays an important role in converging to an opti-
mum, the scenarios tested here converge given almost any
initial trajectory. While we do incorporate input constraints
in our formulation, the feasible trajectories generated are far
from the boundaries of constraints indicating that the optimal
falling strategies do not involve pushing against the actuator
limits. For robots of similar configurations and power, we



expect that actuators are adequate for maintaining the final
configuration of the fall.

We note that while the approach presented is only guar-
anteed to produce locally optimal solutions, the results
generated are consistent with the optimal results presented
in [18], which suggest that the “knee landing” strategy for
the forward case is likely to be a global optimum for legged
systems of this configuration.

All experimental results are generated on a 32-bit system
using a Core 2 Duo 2.4GHz machine with 4GB of RAM. For
all cases, the results can be generated in under 15 seconds
using 40 collocation points. The number of points was
determined through several experiments, in which increasing
the number of collocation points beyond this value produced
little increase in accuracy. While it still cannot be imple-
mented online in a closed-loop sitting, this approach can be
used as a basis for trajectory libraries [22], where a group of
trajectories are computed offline and interpolated as needed.
With a uniform grid sampling the possible configurations
before the fall, we expect that a library of trajectories will
be easy to compute offline and executed online.

VI. CONCLUSIONS

We have presented an optimal control formulation for the
humanoid falling problem where we aim to minimize the
damage inflicted on the robot during impact. By transcrib-
ing the optimal control problem into an NLP, the solution
is obtained through numerical optimization. Compared to
previous work in this domain, our approach gives a consis-
tent formulation, where the impact dynamics and physical
constraints are incorporated naturally into the numerical
optimization framework, making it extendable to different
models with varying complexity.

Immediate future research will focus on implementing
the proposed optimization in a trajectory library setting as
well as experimenting with more complex dynamic models,
using multiple links for the upper body including head and
arms. The proposed optimization framework can be extended
to protect specific parts of the body such as computers,
sensors, and weakest structural components by assigning
higher penalty to important components. Developing a more
accurate impact model can significantly improve the perfor-
mance of the falling strategy as well.
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