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Abstract— In this paper, we address the problem of selecting
leaders in a network by investigating how much instanta-
neous impact the leaders have on the remaining agents. As
a measurement of the influence of leaders’ inputs, we exploit
the notion of manipulability, which is recently developed for
leader-follower networks driven by a state-dependent weighted
consensus equation. This paper first extends the manipulability
index in order to measure the influence of leaders’ inputs on the
network centroid. We then demonstrate in simulation how the
manipulability index is suitable for selecting effective leaders.

I. INTRODUCTION

Tracking of multiple agents to a given reference point

while preserving interrelation among agents’ states has been

an important problem in robotics fields. For example, in

applications including spacecrafts, unmanned aerial vehicles

(UAVs), and indoor/outdoor mobile robots, it is often re-

quired for the agents to move toward a landmark or target

point in formation.

The leader-follower approach has emerged in order to

address this type of formation control problems [1]. In this

approach, a single agent or multiple agents are selected as

leader(s) that can inject control inputs to the network, while

the remaining agents, which are referred to as followers,

execute a simple protocol based on the states of adjacent

agents. This approach provides a natural link between control

theory and a networked agent with inputs. In particular, if

the networked system is considered as a single system as a

whole, and the followers run a consensus protocol, then the

classical controllability notion in the linear system theory

can be applied in a natural way [2], [3].

While the leader-follower approach has been widely used,

a fundamental question still remains: how one should select

the leaders out of the constituent agents, which is often refer

to as the leader-selection problem. Once a leader or multiple

leaders are selected, there may exist possible leaders’ control

to achieve a given task such as tracking or formation control.

However, since the overall control performance is determined

by the choice of the leaders, it is crucial to establish useful

criteria for selecting the leaders.

Several indices have been recently introduced for leader-

selection problems of networked systems, in particular under

the linear consensus protocol. Some graph properties such as

the degree of a vertex were studied in terms of the relation
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to the leaders’ performance [4]. The notion of network

coherence, measured by the variance of the deviation from

consensus, has been proposed in [5], and is also used for

large-scale networks [6], [7]. A switching policy of leaders

in order to improve the convergence rate of the velocities of

the agents has been introduced for UAV control [8].

Under the nonlinear, state-dependent weighted consensus

protocol, the previous indices are not directly applicable.

An alternative yet straightforward approach could be to

define a cost based on the predicted deviations of control

points (e.g., centroid of agents) from given reference points.

However, the network topology is often time-varying or

state dependent. And, the surrounding environment may also

change dynamically because of newly appeared obstacles or

agents. Thus, leader-selection criteria using a predicted cost

are not entirely appropriate for such dynamic situations.

Motivated by this reason, the present paper explores the

use of an instantaneous measure, which is expected to

be a useful criterion for selecting effective leaders under

dynamic situations. In particular, we focus on using an index

called manipulability, recently proposed in [9]. Similar to the

original notion that measures the impact of the joint-angular

velocities on the end-effectors in robot arms, the manipula-

bility of leader-follower networks measures the instantaneous

impact of leaders’ inputs on the remaining agents. Since

the index takes into account the network topologies, agent

configurations, and input directions, simultaneously, it holds

out promise to be a reasonable index for measuring the

instantaneous effectiveness of leaders depending on a given

situation. In this paper we demonstrate how the notion

of manipulability can be applicable to the leader-selection

problem when driving the centroid of agents to a given target

state via the leaders’ movements.

II. LEADER-FOLLOWER NETWORKS

A. Multi-agent Network with Leaders and Followers

Let xi(t) ∈ R
d (i = 1, ..., N) be the state of agent i at time

t, the overall state (configuration) of the network is given by

x(t) = [xT
1 (t), ..., x

T
N (t)]T ∈ R

Nd. Consider that Nℓ out

of N agents are assigned to be leaders, whose movements

are considered as the inputs to the network. The remaining

Nf (= N −Nℓ) agents are referred to as followers, each of

which obeys a given control law.

We consider the situation where the interaction dynamics

are defined through pairwise interactions. We say that when

follower agents i and j are connected, then they share

relative state information, and their pairwise control task

is to maintain their distance ||xi − xj || to a prespecified,

positive value dij . If one of the agents in a connected pair is



a leader agent and the other is a follower, then the follower’s

dynamics is designed so that it tries to maintain the distance.

Using a graph representation, the agents are described by

nodes V = {v1, ..., vN} and the connections between agents

become edges E ⊆ V × V, where the number of edges is

M = |E| (the cardinality of E). Then, the overall network

is described by graph G = (V,E). In this paper, we assume

networks whose underlying graphs are undirected, static, and

connected.1

B. Notation for Leader and Follower Assignment

To explicitly denote the assignment of leaders and fol-

lowers, we introduce the following notations. Let ℓ :
{1, ..., Nℓ} → {1, ..., N} be an injective function whose

image, {ℓ(i)|i = 1, ..., Nℓ}, is a set of leaders’ indices. Let δi
be a vector whose i-th entry is 1 and all the remaining entries

are 0s. Using the N ×Nℓ matrix ∆ℓ , [δℓ(1), ..., δℓ(Nℓ)], we

can denote an indicator vector of leaders as δ̂ℓ , ∆ℓ1Nℓ
(=

∑Nℓ

i=1 δℓ(i)), where 1p is a p-dimensional column vector with

1s in all its entries. Similarly, we define function f , ∆f ,

[δf(1), ..., δf(Nf )], and δ̂f to indicate followers. P = [∆f |∆ℓ]
becomes a permutation matrix, which satisfies PTP =
PPT = IN , where Ip denotes the p × p identity matrix.

Besides, relations such as ∆ℓ∆
T
ℓ = Diag(δ̂ℓ), ∆

T
ℓ ∆ℓ = INℓ

,

∆T
ℓ 1N = 1Nℓ

, and δ̂Tℓ 1N = Nℓ will be used throughout the

paper, where Diag(a) is the diagonal matrix whose diagonal

is vector a.

Now, the states of leaders and followers can be grouped

and denoted as vectors xℓ(t) ∈ R
Nℓd and xf (t) ∈ R

Nfd,

respectively:

xℓ(t) = [xT
ℓ(1)(t), ..., x

T
ℓ(Nℓ)

(t)]T = (∆T
ℓ ⊗ Id)x(t),

xf (t) = [xT
f(1)(t), ..., x

T
f(Nf )

(t)]T = (∆T
f ⊗ Id)x(t),

(1)

and

x(t) = (∆ℓ ⊗ Id)xℓ(t) + (∆f ⊗ Id)xf (t), (2)

where ⊗ denotes the Kronecker product.

C. Agent Dynamics

To formulate the followers’ dynamics, we use a general,

energy-based definition (e.g., [1]), which enables agents to

achieve a distance-based formation control. Let

E(x) = 1

2

N
∑

i=1

N
∑

j=1

Eij(xi(t), xj(t)) (3)

be the edge-tension energy, which is the summation of

Eij(xi, xj) =

{

1
2{eij(||xi − xj ||)}2 (vi, vj) ∈ E

0 (vi, vj) /∈ E,
(4)

where eij : R
+ → R is a strictly increasing, twice dif-

ferentiable function such that eij(dij) = 0 (dij > 0) and

e′ij(dij) 6= 0, where e′ij(z) ,
deij(z)

dz
.

1The assumption about static networks will only be used instantaneously.
During the actual evolution of the system, the edge set will be allowed to
vary over time.

Given the leaders’ movements as the inputs to the network:

ẋℓ(t) = [ẋT
ℓ(1)(t), ..., ẋ

T
ℓ(Nℓ)

(t)]T = uℓ(t),

we define the dynamics of the followers such that each of

the followers tries to minimize the related parts of the edge-

tension energy (3) through a gradient descent direction:

ẋi(t) = −
∑

j∈N (i)

∂Eij(xi(t), xj(t))

∂xi

T

(i = 1, ..., Nf ), (5)

where N (i) = {j ∈ {1, ..., N} | (vi, vj) ∈ E} is the neighbor

set of agent i. That is, the dynamics of the followers is

designed such that each of the followers tries to maintain

the desired distances to adjacent agents. Using the facts

that Eij = Eji and ∂E
∂xi

= 1
2

∑

j∈N (i)

(

∂Eij

∂xi
+

∂Eji

∂xi

)

, the

dynamics of all the followers can be denoted as

ẋf (t) = [ẋT
f(1)(t), ..., ẋ

T
f(Nf )

(t)]T = −∂E(x)
∂xf

T

. (6)

Therefore, using this dynamics, the followers try to decrease

(locally) the total energy (3) since Ė = ∂E
∂xf

ẋf + ∂E
∂xℓ

ẋℓ =

−|| ∂E
∂xf

||2+ ∂E
∂xℓ

ẋℓ. In particular, if the leaders are not moving

(i.e., ẋℓ = 0), the energy will not be increased by the

followers, and will be decreased in many cases.

It can be easily shown that

∂Eij(xi, xj)

∂xi

= wij(||xi − xj ||)(xi − xj)
T ,

where wij(||xi − xj ||) , {eij(||xi − xj ||)e′ij(||xi −
xj ||)}/||xi − xj ||. Thus, (5) becomes a state-dependent

weighted consensus equation [1]. Let D ∈ R
N×M be the

incidence matrix of graph G with an arbitrary but consistent

assignment of the orientation on the edges. Let W (x) ∈
R

M×M be the diagonal weight matrix whose k-th element

is [W (x)]kk = wikjk(||xik − xjk ||), where ik and jk are

the agents connected by edge k. Then, the weighted graph

Laplacian of G becomes Lw(x) = DW (x)DT ∈ R
N×N .

Here, the dynamics with assigning all the agents to followers

becomes ẋ = −(Lw ⊗ Id)x. Therefore, noting the relation

(X ⊗ Id)(Y ⊗ Id) = XY ⊗ Id and using (1), we can rewrite

(6) as

ẋf (t) = −((∆T
f Lw)⊗ Id)x(t). (7)

Eventually, the dynamics of overall agents becomes

ẋ = −((Diag(δ̂f )Lw)⊗ Id)x+ (∆ℓ ⊗ Id)uℓ, (8)

which can be denoted as ẋ = Fℓ(x, uℓ). In case the as-

signment of leaders changes dynamically, ℓ becomes a time-

varying function, and the networked system is considered as

a switched system as a whole.

III. LEADER SELECTION FOR TRACKING

A. Closed-Loop Tracking

Consider the task of driving the centroid of the agents,

x̄(t) = 1
N

∑N
i=1 xi(t) = 1

N
(1T

N ⊗ Id)x(t), to a given



reference point, xr ∈ R
d, with the agent dynamics (8). We

here use the input

uℓ(t) = (1Nℓ
⊗ Id)ũℓ(t), (9)

to achieve the proportional regulation of the centroid with

gain k > 0, where every leader has the same input

ũℓ(t) ,
N

Nℓ

k(xr − x̄)− 1

Nℓ

((δ̂Tℓ Lw)⊗ Id)x. (10)

Since it is natural to assume in many applications that

each agent has the limit on its input norm, we constrain

each leader’s velocity as ||ũℓ(t)|| = vc, where vc is a given

constant. Solving this equation, we get k as a function of

x and δ̂ℓ. Therefore, in what follows we denote k as kℓ(x).
Assume that kℓ(x) is obtained as a positive real value. Then,

the dynamics (8) with the closed-loop feedback (9) results

in the autonomous system:

ẋ = F̂ℓ(x) , −
[(

Diag(δ̂f ) +
1
Nℓ

δ̂ℓδ̂
T
ℓ )Lw(x)

)

⊗ Id

]

x

+ N
Nℓ

(δ̂ℓ ⊗ Id)kℓ(x)(xr − x̄).
(11)

Multiplying 1
N
(1T

N⊗Id) from left and noting 1
T
NLw = 0, we

have ˙̄x = kℓ(x)(xr − x̄). In this paper we use this particular

dynamics, while other inputs can also be used to perform the

similar tracking. Since the permutation of the indices in the

image of ℓ does not affect F̂ℓ(x), in what follows we denote

the assignment of leaders with an indicator vector δ̂ℓ.
We now remark several facts regarding the assumption on

the gain kℓ(x). Letting α(x) , − 1
Nℓ

((δ̂Tℓ Lw) ⊗ Id)x and

β(x) , N
Nℓ

(xr − x̄), we rewrite (10) as ũℓ = α(x) + kβ(x).

Thus, k is given by one of the solutions of ||β||2k2 +
2(αTβ)k + ||α||2 − v2c = 0, and it is natural to choose

the larger solution as kℓ(x). If ||α|| < vc, kℓ(x) is always

positive; otherwise, the condition for positive gain is given

by ||α|| | sin θ| ≤ vc ≤ ||α|| with αTβ < 0, where θ is the

angle between α and β; that is, θ needs to be close to π.

Recall that the term α is derived from the weighted con-

sensus; and it thus tries to compensate the increased energy

E . In many situations, there exist some leader assignments

that satisfy the latter condition even when ||α|| ≥ vc. This

is because α can take variety of directions depending on

the assignments of leaders, and some of them may have

roughly the opposite directions to β. However, if none of

the leader sets yields an admissible k, one can run the

original consensus protocol until ||α|| becomes small enough

to satisfy k > 0. The following remark holds in the extreme

situation when α = 0.

Remark 3.1: If all the desired distances are satisfied, i.e.,

||xi − xj || = dij ∀(vi, vj) ∈ E, then kℓ(x) does not depend

on assignment δ̂ℓ under given Nℓ, since kℓ(x) =
Nℓvc

N ||xr−x̄|| .

B. Leader-Selection Problem

Suppose that the autonomous system (11) is used for

the tracking task, we formulate the leader-selection via the

prediction cost

J (δ̂ℓ) =

∫ t+T

t

||xr − x̄(s)||2ds, (12)

as the problem of finding the best leader assignment

δ̂∗ℓ = arg min
δ̂ℓ∈L

J (δ̂ℓ) s.t. ||δ̂ℓ||1 = Nℓ, (13)

where L = {δ̂ℓ | kℓ(x) is positive real}, and ||δ̂ℓ||1 (=
||δ̂ℓ||0) is the number of leaders.

Here, the cost J is defined based on the assumption

that the environment and the network topology will not be

changed during the horizon [t, t + T ]. Therefore, a reliable

prediction becomes difficult under dynamic situations. For

this reason, we take a second approach to select leaders. That

is, we introduce a measurement to evaluate the instantaneous

impact of the leaders’ inputs on the network, which will be

explained in the next section.

IV. LEADER SELECTION VIA MANIPULABILITY

A. Manipulability of Leader-Follower Networks

The manipulability of leader-follower networks [9] is a

measure to evaluate the influence of the leaders’ movements

on the remaining of the network. Similar to the original

notion used in the field of robot-arm manipulators [10],

[11], the manipulability index of leader-follower networks is

defined as the ratio between the norm of response (followers’

motion, in our case) to that of inputs (leaders’ motion):

R(x,E, ẋℓ) =
ẋT
f Qf ẋf

ẋT
ℓ Qℓẋℓ

, (14)

where Qf = QT
f ≻ 0 and Qℓ = QT

ℓ ≻ 0 are positive definite

weight matrices. In what follows, we use Qf = INfd and

Qℓ = INℓd for simplicity.

We here extend the index in order to measure the response

of the centroid to the leaders’ movements.

Definition 4.1: Given a leader-follower network whose

configuration is x and the underlying graph is G = (V,E).

Re(x,E, ẋℓ) =
|| ˙̄x||2
||ẋℓ||2

(15)

is the ensemble manipulability of the network under the

leaders’ motion ẋℓ.

We formulate the leader selection via the ensemble ma-

nipulability as

δ̂∗ℓ = arg max
δ̂ℓ∈L

Re s.t. ||δ̂ℓ||1 = Nℓ, (16)

where similar dynamics and inputs as (13) are assumed.

Noting that
d||xr−x̄||2

dt
= −2(xr − x̄)T ˙̄x = −2kℓ(x)||xr −

x̄||2 < 0, we know that ||xr − x̄||2 is monotonously

decreasing under the input (9). Then, the assignment δ̂ℓ that

achieves min d||xr−x̄||2

dt
is a reasonable choice to the extent

of instantaneous decision. Here the following relation holds:

arg max
δ̂ℓ∈L

Re = arg max
δ̂ℓ∈L

kℓ(x) = arg min
δ̂ℓ∈L

d||xr − x̄||2
dt

.

This implies that we can use the notion of ensemble manipu-

lability for the leader-selection problem since it finds the best

leader assignment in terms of achieving the steepest descent

of ||xr − x̄||2.



Some difficulty arises here. As discussed in [9], since

ẋf = − ∂E
∂xf

T
is a function of xf and xℓ but not ẋℓ,

we need to integrate over time to see the influence of ẋℓ.

However, the leaders’ motion ẋℓ can change on the time

interval of the integration. Moreover, if the desired distances

are perfectly realized, i.e., ||xi − xj || = dij ∀(vi, vj) ∈ E,

it then follows from Remark 3.1 that Re takes the same

value Re =
kℓ(x)

2||xr−x̄||2

Nℓv2
c

= Nℓ

N2 for any leader assignment.

This implies that Re does not provide any information for

selecting leaders when E = 0 is satisfied. In order to evaluate

the instantaneous influence of the leaders’ input ẋℓ without

using any integral action, we introduce the approximation

of the followers’ dynamics and the approximate notion of

manipulability proposed in [9].

B. Approximate Dynamics and Manipulability

Definition 4.2: [9, Definition 4.1] The rigid-link approxi-

mation of the dynamics in a given leader-follower network

is the ideal situation when all the given desired distances

{dij}(vi,vj)∈E are perfectly maintained by the followers (i.e.,

||xi − xj || = dij ∀(vi, vj) ∈ E).

This approximation is reasonable unless leaders move

much faster than followers. Under this approximation, the

following has been proven in [9]. Let R(x) ∈ R
M×Nd be the

rigidity matrix of the given state x and the underlying graph

G [12], [13]. Here, R consists of M×N blocks of 1×d row

vectors, where its (k, ik) and (k, jk) blocks are (xik −xjk)
T

and −(xik − xjk)
T (or −(xik − xjk)

T and (xik − xjk)
T ),

respectively; where, ik and jk are the agents connected

by edge k. Let us define matrices Rf (x) ∈ R
M×Nfd and

Rℓ(x) ∈ R
M×Nℓd as

Rℓ(x) , R(x)(∆ℓ ⊗ Id), Rf (x) , R(x)(∆f ⊗ Id). (17)

Example 4.1: In the case the last indices of {1, ..., N} are

assigned to the leaders, i.e., ℓ(i) = Nf + i (i = 1, ..., Nℓ)
and f(i) = i (i = 1, ..., Nf ), Rℓ and Rf are given by the

submatrices of R such that R = [Rf |Rℓ].

Using these notations, the dynamics of the followers under

the rigid-link approximation becomes

ẋf = Jẋℓ = −R†
fRℓẋℓ, (18)

where J(x) , −R†
fRℓ, and R†

f is the Moore-Penrose

pseudo inverse of Rf . We also assumed that the motions

of the leaders, ẋℓ(1), ..., ẋℓ(Nℓ), are properly constrained so

as not to breakdown the rigid-link approximation.2 Note that

R,Rf , Rℓ, and J also depend on the network topology E.

Substituting (18) into (14) yields

m̂(x,E, ẋℓ) =
ẋT
ℓ J

TJẋℓ

ẋT
ℓ ẋℓ

. (19)

This index is referred to as the approximate manipulability in

[9]; in particular, the identity matrices are used here for Qf

2This condition is shown and referred to as a feasible leader motion in
[9], which can be derived from the notion of feasible motion given in [14].
For example, ẋℓ = (1Nℓ

⊗ Id) ˙̃xℓ is always a feasible leader motion.

and Qℓ. The approximate manipulability provides a short-

term estimate of the influence of the leaders’ motion ẋℓ on

the followers’ motion. Here, its maximum value with respect

to ẋℓ can be obtained as the maximum eigenvalue of JTJ
since (19) has a form of the Rayleigh quotient.

Similar to the approximation of the manipulability, the

approximate ensemble manipulability can be derived by

substituting (18) into (15). Here, we assume that all the

leaders take the same motion, i.e., ẋℓ = (1Nℓ
⊗ Id) ˙̃xℓ,

since we will use the particular leaders’ input given in (9).

Moreover, as shown in the following, this assumption also

leads to a form of the Rayleigh quotient.

Proposition 4.1: Given the leaders’ motion ẋℓ = (1Nℓ
⊗

Id) ˙̃xℓ, the approximate ensemble manipulability under the

rigid-link approximation (Definition 4.2) is given by

m̂e(x,E, ẋℓ) =
˙̃xT
ℓ (J̃

T J̃ +NℓId)
2 ˙̃xℓ

N2Nℓ
˙̃xT
ℓ
˙̃xℓ

, (20)

where J̃ , −R†
fRℓ(1Nℓ

⊗ Id) = R†
fRf (1Nf

⊗ Id).

Proof: Using (2), (18), and x̄ = 1
N
(1T

N ⊗ Id)x, we get

˙̄x =
1

N
((1T

Nf
⊗ Id)ẋf + (1T

Nℓ
⊗ Id)ẋℓ)

=
1

N
(−(1T

Nf
⊗ Id)R

†
fRℓẋℓ + (1T

Nℓ
⊗ Id)ẋℓ)

=
1

N
((1T

Nf
⊗ Id)R

†
fRf (1Nf

⊗ Id) +NℓId) ˙̃xℓ.

The last equality follows from the assumption ẋℓ = (1Nℓ
⊗

Id) ˙̃xℓ and the fact that Rℓ(1Nℓ
⊗ Id) = −Rf (1Nf

⊗ Id),
which can be shown from the definition of the rigidity matrix.

Using the fact that (R†
fRf )

2 = R†
fRf , we obtain (1T

Nf
⊗

Id)R
†
fRf (1Nf

⊗ Id) = J̃T J̃ , and (20) follows.

Example 4.2: If Nℓ = 1, then J̃ = J, ˙̃xℓ = ẋℓ, and

m̂e(x,E, ẋℓ) =
ẋT
ℓ (J

TJ + Id)
2ẋℓ

N2ẋT
ℓ ẋℓ

. (21)

Using (20), we can derive the following property.

Proposition 4.2: Under the same assumption as in Propo-

sition 4.1, the approximate ensemble manipulability m̂e takes

0 < m̂e ≤
1

Nℓ

. (22)

Proof: Let P , 1
N2Nℓ

(J̃T J̃ + NℓId)
2. m̂e ≥

minẋℓ
m̂e = λmin(P ) > 0 follows from the facts that

(20) has the form of the Rayleigh quotient with P and

that P is positive definite. Similarly, m̂e ≤ maxẋℓ
m̂e =

λmax(P ). Meanwhile, λmax(J̃
T J̃ +NℓId) = λmax((1

T
Nf

⊗
Id)R

†
fRf (1Nf

⊗Id)+NℓId) ≤ λmax((1
T
Nf

⊗Id)(1Nf
⊗Id)+

NℓId) = λmax(NfId + NℓId) = N . Thus, λmax((J̃
T J̃ +

NℓId)
2) ≤ N2, and λmax(P ) ≤ 1/Nℓ follows.

We will use this approximate ensemble manipulability m̂e

instead of me for the leader selection formulated in (16).

V. EXAMPLES

This section demonstrates how the approximate ensemble

manipulability finds a reasonable leader assignment in terms
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Fig. 1. Networks used in the example. The circles depict the agents’ states
and the lines depict the connections between agents. The numbers in the
brackets are agent indices. The reference point is xr = [0, 0]T , depicted
by a cross in each figure.

of driving the centroid of the agents to a given reference

point. In the following examples, we focus on the case of

Nℓ = 1 for the sake of illustrating the basic characteristics

of the proposed index. We first compare the manipulability

index with the cost defined in (12) in terms of how consistent

the selected leaders are. Then, we show examples of the

tracking task when the leader is allowed to be switched

dynamically.

In the simulation, d = 2 was used for the dimensionality of

the state space. Thus, in this example, the states of agents are

depicted as points on the 2-d plane. The followers’ dynamics

were given by (6) with eij(||xi − xj ||) = c(||xi − xj || −
dij), where c = 5

√
2 was used to ensure that the rigid-

link approximation is almost valid. Meanwhile, the leaders’

dynamics was given by (9) with constraint vc = 1. The

reference point was set to xr = [0, 0]T for all the examples.

A. Comparison of Predicted Cost J and Manipulability m̂e

Four networks with different underlying graphs G3, G4,

G5, and G7 were prepared. Fig. 1 shows their configurations

(i.e., state x) and network topologies (i.e., edge set E).

Throughout this example, we use the name of the under-

lying graph to refer each network. The desired distances,

dij ∀(vi, vj) ∈ E, were satisfied in the configurations de-

picted in the figures. In each of these networks, we calculated

the cost J (i) given in (12) and the approximate ensemble

manipulability m̂e(i) for each agent i ∈ {1, ..., N}, where

we simply use the index of the agent in the arguments of

J and m̂e, since we assumed Nℓ = 1. A short enough time

horizon, T = 0.2, was chosen to calculate J (i) as we focus

on evaluating short-term effects of leaders’ inputs.

Table I shows the comparison between J (i) and m̂e(i)
in each of the networks. In each table, the values in the

TABLE I

COMPARISON BETWEEN J (i) AND m̂e(i)

Network G3

Agent J (i) [×10−2] (ascending) m̂e(i) (descending)

1 8.858 (3) 0.315 (3)
2 8.186 (1) 0.974 (1)
3 8.650 (2) 0.489 (2)

Network G4

Agent J (i) [×10−2] (ascending) m̂e(i) (descending)

1 6.751 (2) 0.989 (2)
2 7.538 (4) 0.189 (4)
3 6.734 (1) 0.993 (1)
4 7.379 (3) 0.259 (3)

Network G5

Agent J (i) [×10−2] (ascending) m̂e(i) (descending)

1 9.618 (4) 0.375 (4)
2 9.115 (1) 0.999 (1)
3 9.261 (2) 0.727 (3)
4 9.318 (3) 0.751 (2)
5 9.755 (5) 0.214 (5)

Network G7

Agent J (i) [×10−2] (ascending) m̂e(i) (descending)

1 5.740 (5) 0.604 (4)
2 5.628 (1) 0.997 (1)
3 5.728 (4) 0.514 (5)
4 5.815 (6) 0.152 (7)
5 5.832 (7) 0.170 (6)
6 5.712 (3) 0.728 (3)
7 5.705 (2) 0.793 (2)

parentheses denote the rank of each value in the ascending

order of J (i) or in the descending order of m̂e(i). Therefore,

the agent that has the first rank will be selected as the leader.

We see that, in each network, the same leader is selected

with both criteria. In addition, not only the first rank but

the ordering of the values is almost consistent between J
and m̂e. While the orders were switched between rank 2

and 3 in G5, between rank 4 and 5 in G7, and between

rank 6 and 7 in G7, the values corresponding to these

pairs of ranks are relatively close each other in the both

criteria. Hence, these examples indicate that the approximate

ensemble manipulability m̂e can be an alternative of the

predicted cost J that involves an integral action.

Recall that the original ensemble manipulability me can-

not be used in these configurations to compare the agents;

that is, me takes the same value for every agent, since all the

desired distances are satisfied here (Remark 3.1). Therefore,

this result illustrates the advantage of the approximation

introduced in Section IV.

B. Online Leader Selection

In this experiment, the approximate ensemble manipulabil-

ity m̂e(i) was calculated and compared continually in order

to perform the online selection of leaders. Specifically, the

agent that gave the maximum m̂e at each time point was

selected as the leader. The desired distances were set based

on the initial configuration.

Fig. 2 (a) shows an example, in which no leader switch

occurred. Here, the selected leader is depicted by a filled

circle. Fig. 2 (b) shows the temporal change of m̂e(i) (i =
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(a) Agent motion (t = 0, 0.2, 0.4, 0.6, from left to right). Filled circle depicts the selected leader.
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(b) Approximate ensemble manipulability m̂e(i)

Fig. 2. Example of agent motion with dynamic leader selection. Agent 2 always stayed as the leader and no leader switching occurred.
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(a) Agent motion (t = 0, 0.2, 0.4, 0.6, from left to right). Filled circle depicts the selected leader.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

A
p

p
ro

x.
 e

n
se

m
b

le
 m

a
n

ip
.

t

 

 

Agent 1

Agent 2

Agent 3

(b) Approximate ensemble manipulability m̂e(i)

Fig. 3. Example of agent motion with dynamic leader selection. The switching of leaders from agent 2 to agent 3 occurred around t = 0.32.

1, ..., 5) during the agents’ motion shown in Fig. 2 (a). The

final time was chosen as the time when ||xr − x(t)||2 = ǫ
was achieved, where ǫ = 0.01 was used. We see that all

the values take between 0 and 1, which is in accord with

Proposition 4.2, and in particular the agent 2, selected as the

leader, takes almost R̂e = 1 all the time in this example.

When agent i was not able to satisfy the constraints ||ẋℓ|| =
vc, i.e., does not yields a positive real gain ki(x), we set the

manipulability of agent i to m̂e(i) = 0. From the figure, we

see that two agents (agent 4 and 5) could not achieve this

constraints from around t = 0.27.

Fig. 3 (a) shows another example, in which the leaders

was once switched from agent 2 to agent 3. From the value

m̂e(i) (i = 1, 2, 3) shown in Fig. 3 (b), we observe that

m̂e(2) decreased in the first part and that finally the leader

was switched to agent 3 around t = 0.32. This example

shows the characteristics of the proposed index that it can

take into account the difference of agent configurations and

adaptively change the leader assignment depending on the

situations.

VI. CONCLUSION

This paper addressed the problem of selecting leaders in

leader-follower networks by using the notion of manipulabil-

ity, an index to estimate how injected leaders’ inputs influ-

ence the network in short-term. We introduced the ensemble

manipulability as an extended index to measure the influence

on the centroid of the agents, and we demonstrated the

manipulability-based leader selection for driving the centroid

of agents to a given reference point in simulation.
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