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Control of Delayed Recycling Systems with an Unstable Poleta
Forward Path

J. F. Marquez Rubio, B. del Muro Cuéllar and Olivier Sename

Abstract— Unstable time delay system and recycling system transfer function denominator of a delayed system, such as
pose a challenge problem in their own. When unstable time the method of moments [7], and Pade approximations [8].
delay system have recycle the control problem becomes even Other techniques, such as Taylor series expansion [9], and

more difficult. A control methodology for these systems is th | i . del 161 h b dt
proposed in this paper. The strategy is based on the obseniah e seasonal time-series model [6], have been proposed to

that if some internal system were available, then it would bgos- ~ Obtain an approximate model to represent recycle systems.
sible to decouple the backward dynamics and then a feedback In [10] it is proposed an approximate model to represent

controller could be designed for the forward dynamics. The ley  recycle systems by using discrete-time approach. In turn,
for this strategy to be carried out is the asymptotic observe |- approximate models can be used for stability analysis

predictor proposed to estimate the required internal signds. . 2
Necessary and sufficient conditions to assure convergencé o or control design [11], [12], [4], [13]. A system with time

this observer are given. Then, the strategy is complementedy ~ delay and open-loop unstable poles is notably more difficult
using a PID controller with two degree of freedom in order to  to control than a system with only open-loop stable poles.
track step input references. Robustness to delay uncertaipis  For instance, the classical Smith Predictor can not be used i
also discussed. this situation. Introducing recycle in such system woultle

I. INTRODUCTION to a very difficult (although interesting) problem. Exigin

. . .. modified schemas to Smith Predictor can not directly be
In recycling system the output of a process is partlall%1

lied to this kind of systems. That is the reason why, to
feedback to the input. Recycling processes reuse the enempg)l s y ! Wy

) . : - authors best knowledge, recycle is not used in unstable
and the partially processed matter increasing the efflylen%l:

fth I Th v found in chemi ants with significant transport delay. To partially ovare
of the overall process. They are commonly found in chemicgy,; situation, in this work the problem of recycled system
industry, for instance, in a typical plant formed by reac-

composed of a plant with an unstable pole andtable poles
tor/separator process, where reactants are recycled backa[ direct loop and a stable system of ordein the recycle

the reac';or [1]. ith itive feedb lgop is addressed. Note that the present work intends to deal
Recycling processes are systems with positive feedbagigy, o more generalized recycling plant than the studied in

V;:h'Ch car|1| g(ljve rlsebto”soﬁme qndebswablezje_szeﬁt& Partll;!ula% 4] and [15], where unstable first order plant in forward
the so called snowball effect Is observed In the operation op is considered. Under these conditions, in this work it i

maPy chen}:carllplants- W|th|re<(:jycle _stk;elzams. Snowball m?a Toposed an observer-predictor based control schemadm ord
at a small change In a load variable causes a very 1argg siapjize and control recycling systems with delay tenm i

chan%el:_n th_e flow ra:jes aroundhthe recycle Iogpﬁ AIthour?_ oth paths. Neccesary and sufficient conditions with respec
snowballing Is a steady state phenomenon and has not time delay size at direct path are given for the existence

g)_ dodW|th dynamf|cs, It c;l)eﬂenf(rjs 0?1 thedcontroLstructur_e [2 éoposed observer. Then, estimated internal variables are
Isa vantagef] 0 srllowba e3 ect (?Sd rﬁwnftf € attefntlon ed to eliminate the dynamics of recycle loop and design a
some researchers. Luyben [3], studied the effects of recyc ontrol strategy achieving step tracking.

loops on process dynamics and their implications to plant- In Section Il the problem is formulated and the class of

wide control. Scali and Ferrari [4], analyzed the problem . S . . .
. stems considered in this work is precised. The general ide
under the concept of recycle compensation to recupera . . . ; : . .
of the solutions is also outlined in this Section. Sectidn |l

inherent process dynamics, i.e. dynamics without recycle.r sents the control proposed. In Section IV. a robustness
Similar approaches were extended by Lakshminarayanan a . : proposed. n. ' .
Takada [5], and Kwok et. al [6]. It is known that when recyCIeanaIyS|s is provided. Some simulations results are destrib

: . in Section V. Such results illustrate the performance of
loops and time delays occur, exponential terms appear . .
e control here proposed. Finally Section V presents some
forward and backward paths. In state space representation .
L -conclusions.
recycled system with time delay correspond to systems wit

delays on the input and the state. Model approximation has
been proposed to remove the exponential terms from the Il. PROBLEM FORMULATION
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with,

_ —T15 __ « —T18 R
Gqg = Gi(s)e = me , (2a) 1 (5)
G, = Ga(s)e™™° = %e”s, (2b)

whereG,(s), andG..(s) are transfer functions of the forward
(or direct) and backward (or recycle) paths, respectively;
71, T2 > 0 are the time delays associated @& (s), and
Gr(s). a,b € R, with a,b > 0, that isG is unstable;N (s)

and D(s) are polynomials on the complex variableU (s)

Fig. 2. System of Fig. 1 after applying the proposed U(s)

is the process input and (s) is the process output. Gos T
For simplicity of the presentation it is considered a second R(s) R,(s) w,(s) Y(s)
order system with time delay at forward loop (given as in J(s) G, (s) e E >
(2a)) of the recycling plant. However, results with respect ‘ |
to the generalized system at forward path (i@,, being a e
plant with an unstable polep stable poles and time delay)
are also presented. 07)7 G,(s)
w, (s
:Gd(S) Fig. 3. A control structure for the system of Fig. 2

‘ Ill. OBSERVERPREDICTOR BASED CONTROL
S ? A. Preliminary stability results
Consider the unstable input delay system,

Y(s) - g
J— TS — TS 5
Ty ~ e = e (5)
Fig. 1. A process with recycle with @ > 0. As a preliminary result, it is stated the existence
conditions of a static output feedback,
The closed-loop transfer function of system (1) is given U(s) = R(s) — kY (), ©6)

by,
. that ensures the stability of the closed loop system.
Gi(s) = Yis) _ D(s)ae”™ ' Lemma 1. [16] Let us consider the system (5) and the
U(s) (s—a)(s+Db)D(s) —aN(s)e~(1+7)s " proportional control (6). There exist a gainsuch that the

: L () closed loop system,
Note that exponential terms appear explicitly in numerator
Y(s) _ Be ¢

and denominator of7;(s). Stability of (3) is determined by _ ’
the roots of its characteristic equation, R(s) s—a+kBe 7

(rtra)s is BIBO stable if and only ifr < 1.
Q(s) = (s — a)(s +0)D(s) — aN(s)e" ™ "™° = 0. (4) The proof of this result can be easily obtained by con-

. ) ) sidering different approaches as one based on the classical
More_preusely, the overall patti(s) H_Y(S),'S stable if and frequency domain. An alternative simple proof based on a
only if all the roots OfQ(S) are contained in the open left- discrete time approach is presented in [16]. The following
half complex plane. It is well known that the transcendent%sults are similar to Lemma 1, but for a class of unstable

term in Q(s) induces an infinite number of roots preventingOlelayeol systems more complex than the previous one.
the use of classical control design techniques and stabilit Lemma 2: [17] Consider the system

analysis methods. o

Let us describe some ideas behind the methodology pro- G(s)=—F———=e"° @)
posed. With reference to Fig. 1, if signab were known, (s —a)(s +b)
then we could set{/(s) = Ri(s) — wa(s), obtaining the with a,b>0andl—1 > 0. Then, there exist a gaisuch
system shown in Fig. 2. Then it would be possible to desigthat the closed loop system,
Ri(s) as Ri(s) = (R(s) —wi(s))J(s) like in Fig. 3. Y (s) e
Since w; and wy are internal system signals an observer- R(s) = G a)(s £0) T kac—" (8)
predictor scheme to estimate these variables is develaoped i
the following section. is BIBO stable if and only ifr < 1 — 1.

—TSs




Nyquist Diagram

Note that the necessary conditign- + > 0 in Lemma 2 is
derived from a stability analysis of the transfer functi@ (
whenTt = 0.

Proof: Let us consider the Lemma 1. There is a gain
k such that the syste@f—ae—” is closed loop stable if and
only if 7 < % An analysis in the frequency domain confirms
this result. Fig. 4 shows the Nyquist diagram for a system
satisfyingr < % The Nyquist stability criterion states that
when the loop is closed with a gai the system will be
stable iff 0 = N + P, with P the number of pole€:(s) in
the right half plane andvV the number of clockwise round
trips to the point-1 (N negative in counterclockwise) in the
Nyquist diagram. In this case there is a gain that stabilizes
the system since there is one tour counterclockwise to the Fig. 5. Nyquist Diagram when rising thevalue.
point—1. Whenr < % is not satisfied, there is not detour in
counterclokwise. The phase as a function of frequendy m
given by Z/G(jw) = —(m — tg~'%) — wr. It can be shown s stable if and only ifr < L — S~ .L.
that the conditionr < % is equivalent to ask that the angle _ ) i=1" _
path tap at least one point (for some frequency) with a value Proof: Con5|dgr the analy3|s presented in the proof
exceeding—, that is ZG(jw) > —=. Let us now analyze °f Lemma 2. T?en 1|f we consider now = 2, under the
the system under consideration given by (7). It is eviderfSSUmption < & —g-—4-, and withb, large enough, there
that with = < L and the parameter large enough there is IS k that stab|l|z_es the system (Nqust condition remains one
a k that stabilizes the system, since the Nyquist conditioficunterclockwise loop to the pointl). We have now,
remains the same (one counterclockwise detour to the point

Imaginary Axis

—1). Now we have, G (jw) = —(m — tgflg) — tgflbi - tgflbi — wrT.
1 2
LG(jw) = —(m — tg_lf) - tg_l% — WrT.
. a o Now, decreasing the value of paramétgfalways satisfying
Decreasing the value of parametefalways satlsfymgClL— - 3

m
1_y1 -
% > 0), the bound that forms the trajectory conterclockwise: i§1 b~ 0), the loop that forms the detour counterclock

also decreses until extinction (See Fig. 5). As for smalvise decreses until extinction. Again considerigg 'wy ~
frequenciestgflwso ~ wp, Starting fromZG(jw) > -7 wp, from ZG(](A}) > —m it is not difficult to conclude the

. g . H 1 1 1 H H H
it is not difficult to conclude the relation < 1 — 1. m relationT < g — - —-. This analysis can be generalizated

to anym € R conl<:ludi2rlg that there is a gainsuch that the
closed loop system given by (10) is BIBO stable if and only

if7'<%—zlb%_ [
iz

Nyaquist Diagram

B. Prediction Strategy

Imaginary Axis

In order to estimatev; and ws in Fig. 1 we propose
the observer-predictor depicted in Fig. 6. Its convergesce
established in the following result.

] Theorem 4: Consider the observer-predictor scheme
T —" : shown in Fig. 6, withG,. a stable transfer function. There
exists constank such thattlilf,lo [wi —@;] =0 fori=1,2,
if and only if ; < L — 7.

Proof: A state space representation of the observer-
Lemma 3: [17] Consider the system, predictor scheme shown in Fig. 6 is

= ’y e—TS
Gls) = (s —a)(s+b1)(s+b2)...(s + bn) ®)

with m € R, a,b; >0Vi=1,2,..,m;andl - ¥ L >0. x(t)

Fig. 4. Nyquist diagram whem < 1

= Ax(t) + A1x(t — 1) + A2x(t — 72) + Bu(t) (11)

Then, there exist a gaik such that the closed ﬁéé system, y(t) = Cx(t —m) (12)
Yls) _ e ith, x(t) = t ) ) @) 1", yi) =
RG) (a5 10 L ba)(s 4 b+ Ryers’ Wit x() = [@a(t) o:(t) Za() Z() ], y(t) =

(10) [y yit)] ,B=[Bs 0 By 0] ,



Recycling Process Note thate, (1) = Cyeq, (t—71) and thate,, (t) = Cre,, (t—

w,(s)

- Y(s) 79). Then, system (13) can be rewritten as,
e e »
€y, (1) = Ademd(t) — BikCyey, (t — 7'1) (24)
G.ls) | +ByCrey, (t —T2),
- Vo én (1) = Apen (t).
[y
\C Since A, is a Hurwitz matrix, the stability of system (14)

can be analyzed by considering the partial dynamics

G.(s) = ba,(t) = Agea, (t) — BakCaeq, (t — 1), (15)

k or equivalently,

Observer { eyé(i dﬂl) ] _ { gz Bk ] { egyd((tt)) ] . (18)

Consider now a state space realization of system (9). It is
easy to see that this dynamics can be written in state space

Fig. 6. Proposed observer schema

) form as,
o0 20 ). [B
0 A4 0 0 v :A[“’d }+[ d}ut 17
A= 0 0 A, 0 | [ y(t+ ) ] f y(t) 0 t), (@7
I 0 0 0 A with,
0 0 0 0 a [ Ad —Bak
A, — | BCa 0 0 0 T=lea o |
B.kCy 0 —BgkCq 0 |’
B.C; 0 0 0 Comparing (17) and (16) it is clear that Lemma 2 can be
0 By,C. 0 0 applied to system (16). Hence the result of the theorem
4 0 0 0 0 Cy; 0 0 0 follows. o |
27| o 0 0 B,C, 0= 0 0 C, o |> Notethatthe proposed prediction strategy can be gener-
o 0 0 0 alizated to recycling systems with an unstable pole and

B ) stable poles at forward loop,
wherex € RP (wherep = n + m + 1) is the state
«

vector,u € R is the input,y € R? is the output,; > 0 Gy = e TS, (18)
and », > 0 are the time delays present in the system. (s = a)(s +b1)(s + b2)...(s + bm)

(m+1)x (m+1) (m+1)x1 1x(m+1) . .
44 €R m ", Ba € R »andCy € R In such case, the convergence of the observer is assured with
are matrices and vectors parameters that corresponds to mg following result

forward loop in the process, and, € R"*", B, € R"*!,
and C, € R are matrices and vectors parameters th
corresponds to recycling (or backward) path in the procesg,,
Z(t) is the estimation of:(¢). Note that for this analysis

Theorem 5: Consider the observer-predictor scheme
own in Fig. 6, withG,. a stable transfer function an@,
fined as in (18). There exists const&rguch that

m =1 is considered. lim [w; — @] =0, fori =1,2, (19)
Defining the state prediction errots, (t) = Ty (t) —za(t), t=o0
es, (t) = Z,(t) — z,(t), and the output estimatioa, (t) = _ m
J(t)—y(#), itis possible to describe the behavior of the errof and only if 7 < & — Zlbi
signals as, Proof: The proofZ of this Lemma can be stated in a
éa, (1) ea, (1) §imi|ar way that the proof of Lemma 4, by using Lemma 3
éa, (1) A | e (t) 13 instead of Lemma 2 |
ettm) | =W em |0 3
€y (t + T2) Cas (1) C. Proposed Control Scheme
with, Having assured that estimated internal sigralsand 0
A; 0 —Bgk By converge to the original, the ideas depicted in Sectiontl ca
A — 0 A, 0 0 be implemented. In this way, the control law can be depicted
P Cy 0 0 |- as,U(s) = J(s)(R(s) — @1(s) ) — Wa(s). The complete

0
0 C. 0 0 control scheme is proposed in Fig. 7.



Recycling Process

uls) w,(s) , Ay, and Ays,. Then, a state space representation of the
i £ " > controller-observer shown in Fig. 7 can be obtained as,

x(t) = Ax(t) + Aix(t — 1) + Aox(t — 72) (23)
+.A3X(t — 91) + A4X(t — 92)

I with x(t) = [ ex(t) o(t) ], ealt) = B(t) — a(x),
sz Y 'EZK Z_OEK}’AF{E —OGE ZO1 ]7
N NS P
i 4 = 8 %2},61—[/{ 0 1]T7

Fig. 7. Proposed control schema

— N

K=[0 J 0],L=[0 0 C, ].The characteristic
equation of the system (23), is given by,
IV. ROBUSTNESS WITH RESPECT TO TIMES DELAY

UNCERTAINTIES v = det sl —F+GCre”™* GQ - P
-M sI-F+M-P
A control strategy has been presented and knowledge _ det(sI — F + GCre ™) det(sI — F + M)

of the real process is considered. However, in practice,

—1 _
the control strategy should take into account a robustness det(I +47°6(s,0)) =0

analysis. In this case, robustness analysis is done usg pwhere v = det(s] — A—Aje ™ — Age™™%), F =
cedure prosposed in [18]. This analysis is applied under the+ A;e=™% + Aye ™% M = BK + BLe ™° and®y) =
assumption that the observer and controller for the nominal sI — F' + GC1e™™* 0

case have been designed. Consider a state representation of -M sl —F+ M Is the matrix cor-

the open-loop system with recycle in the nominal case (whidiesponding to the combined observer-controller for noinina
can be obtained from the complete state representation $}stem, an®(s;¢) collects the plant uncertainty.
system-observer expressed in equation (11)), If the closed loop quasi polynomialdet(sl — F' +
GCre~™®) anddet(s] — F + M) are stable for a proper
i=Ar+ Ajz(t — 1) + Asz(t — 72) + Bu(t)  (20) choice ofG, K andL then the perturbed loop system remains

y=Crz(t—m) (21) stable ifdet(I +1~10(s;0)) does not change sign when
sweeps the imaginary axis. This yields to the criterion,
_ A, 0 _
= TA = = ~ <~ 1[Ge-P

where L e A [ 0 A " pp = det [I+ [ Qpq @y ] [ CiP H

0 0| — 0 B4Cr | = B _
B.Cy 0 } s {0 0 }’B: [ 0 G= = det[I + Ne(s)De(s)].
Ca 0 ]. where,

Before define perturbations for the recycling system, as an ~ 1 — a1
example, let the nominal system be, Qpg = (s = F+ M)™ M(sl — F + GCre™™*) ™,
Qp=(sI—F+ M),
& = Ax(t) + Bx(t — 1), ) ,
which only depends on the nominal system and ob-
and the actual system as above but witmeplaced byr,, Server/controller parameter. By using Rouche’s theorém, i

thenp(z(t)) = Blz(t — 7) — x(t — 70)]. In this way, with  follows that the condition for stability is,
f=m -7 weget INe(5) De(s, 6)]|c < 1. (24)
Py(s,0) = Ble™™% —e "] = Be "*[e 7% —1]. V. SIMULATION RESULTS

Based on previous developments, let define the perturb%—;ct:'Zfsggts'(e)?\’/e?nb::sgecrg'rirﬁl)(asl?aptlg shoxvtiglejs?erf(r)(r)-
tions on both times delay and matri¥d(A; and A,) as, 9y p yp

posed.
P(s,0,8) =A5 + e [A7 (e — 1) + Ay, e ]+ anmple. Qrc])nsider the recycled time delay system of the
e ) + e, (22a) O WM 1
_ v —sTi(,—s01 — —0.5s — —2s
Q(s,0) =Che (e 1). (22b) Gq e 10)6 . Gy P (25)

where, A, A; and A, are the nominal matrix of the recycle Following the procedure above described, it is obtained a
system and the corresponding uncertainties are giveAshy proportional gaink = 12. The free delay direct path can be



stabilized by a two degree of freedom PID [19], obtainingf systems are presented. The observer-prediction syrateg

a general feedback of the fornd/(s) = R(s)Gs(s) — is used to estimate some internal variables of the process
Ge(s)1(s) — Da(s), with G(s) =160 (0.3+ L8 +0.1s)  that are used to: i) remove the dynamics of backward loop
andG.(s) = 160 (1 + % + O.ls). in the recycling process and ii) design a stabilizing cdntro

Fig. 8 shows the stability condition given by (24), wherdaw for the free delay model of the forward path. The basis
the uncertainties in time delays = 0.005 and 6, = 0.23  provided in this work could be useful for extending the kind
are considered. In this case, such combination of uncesf system for which the recycle can be used. Particularly,
tainties gives as result a stable closed loop system sintlee case of one unstable pole with several stable poles and
[INc(s)De(s,8)||,, = 0.9903 < 1. zeros plus significant time delay in the forward path could

Now, in order to evaluate the output signal evolutiorbe addressed.
some numerical simulations are presented. It is considered
positive unit step input and initial conditions in the prese
and the observer of magnitud&4 units and 0.2 units, [l W. L. Luyben, B. D. Tyreus and M. L. LuyberRlantwide control,

. . . . McGraw Hill, New York; 1999.
respectively. In Fig. 9, a continuous line shows the outpub] M. L. Luyben and W. L. Luyben,Essentials of process control,

response when it is considered the exact knowledge of the” McGraw-Hill, 1997.
model parameters; a dashed line presents the output signTé] W. L. Luyben, Temperature control of autorefrigetatexactor, J.

. . Process Control, vol. 9, 1999, pp 301.
when the time delays; and, are increased bg% and [4] C. Scali and F. Ferrari, Performance of control systerased on

15%, respectively. From Fig. 9 it can be seen the observer recycle compensators in integrated plartsProcess Control, vol. 9,

predictor convergence and the well behavior of the control[5] éggékﬁ rﬁﬁ;rayanan and H. Takada, Empirical modelificpro

based on estimated S'gnals' cesses with recycle: some insights via case studibem. Eng. ci.,

vol. 56, 2001, pp 3327.

Hin norm of NeDc [6] K.E.Kwok, M. Chong-Ping and G. A. Dumont, Seasonal mdzkeed

: : j control of processes with recycle dynamibsj. Eng. Chem. Res,, vol.
40, 2001, pp 1633.

[7] A. Papadourakis, M. F. Doherty and J. M. Douglas, Appntie
dynamic models for chemical process systemd, Eng. Chem. Res.,
vol. 28, 1989, pp 546-552.

[8] M. Malek-Zavarei and M. Jamshidilime-Delay systems. Analysis,
optimization and applications, NorthHolland, The Netherlands, 1987.

[9] A. J. Hugo, P. A. Taylor and J. D. Wright, Approximate dynia
models for recycle systeménd. Eng. Chem. Res., vol. 35, 1996, pp
485-487.

[10] B. Del Muro-Cuellar, M. Velasco-Villa, H. Puebla and Alvarez-
Ramirez, Model approximation for Dead-Time Recycling 8wyss,
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