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Control of Delayed Recycling Systems with an Unstable Pole at
Forward Path

J. F. Marquez Rubio, B. del Muro Cuéllar and Olivier Sename

Abstract— Unstable time delay system and recycling system
pose a challenge problem in their own. When unstable time
delay system have recycle the control problem becomes even
more difficult. A control methodology for these systems is
proposed in this paper. The strategy is based on the observation
that if some internal system were available, then it would bepos-
sible to decouple the backward dynamics and then a feedback
controller could be designed for the forward dynamics. The key
for this strategy to be carried out is the asymptotic observer-
predictor proposed to estimate the required internal signals.
Necessary and sufficient conditions to assure convergence of
this observer are given. Then, the strategy is complementedby
using a PID controller with two degree of freedom in order to
track step input references. Robustness to delay uncertainty is
also discussed.

I. I NTRODUCTION

In recycling system the output of a process is partially
feedback to the input. Recycling processes reuse the energy
and the partially processed matter increasing the efficiency
of the overall process. They are commonly found in chemical
industry, for instance, in a typical plant formed by reac-
tor/separator process, where reactants are recycled back to
the reactor [1].

Recycling processes are systems with positive feedback
which can give rise to some undesirable effects. Particularly
the so called snowball effect is observed in the operation of
many chemical plants with recycle streams. Snowball means
that a small change in a load variable causes a very large
change in the flow rates around the recycle loop. Although
snowballing is a steady state phenomenon and has nothing
to do with dynamics, it depends on the control structure [2].
Disadvantages of snowball effect has drawn the attention of
some researchers. Luyben [3], studied the effects of recycle
loops on process dynamics and their implications to plant-
wide control. Scali and Ferrari [4], analyzed the problem
under the concept of recycle compensation to recuperate
inherent process dynamics, i.e. dynamics without recycle.
Similar approaches were extended by Lakshminarayanan and
Takada [5], and Kwok et. al [6]. It is known that when recycle
loops and time delays occur, exponential terms appear in
forward and backward paths. In state space representation
recycled system with time delay correspond to systems with
delays on the input and the state. Model approximation has
been proposed to remove the exponential terms from the
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transfer function denominator of a delayed system, such as
the method of moments [7], and Pade approximations [8].
Other techniques, such as Taylor series expansion [9], and
the seasonal time-series model [6], have been proposed to
obtain an approximate model to represent recycle systems.
In [10] it is proposed an approximate model to represent
recycle systems by using discrete-time approach. In turn,
such approximate models can be used for stability analysis
or control design [11], [12], [4], [13]. A system with time
delay and open-loop unstable poles is notably more difficult
to control than a system with only open-loop stable poles.
For instance, the classical Smith Predictor can not be used in
this situation. Introducing recycle in such system would lead
to a very difficult (although interesting) problem. Existing
modified schemas to Smith Predictor can not directly be
applied to this kind of systems. That is the reason why, to
the authors best knowledge, recycle is not used in unstable
plants with significant transport delay. To partially overcome
this situation, in this work the problem of recycled system
composed of a plant with an unstable pole andm stable poles
at direct loop and a stable system of ordern in the recycle
loop is addressed. Note that the present work intends to deal
with a more generalized recycling plant than the studied in
[14] and [15], where unstable first order plant in forward
loop is considered. Under these conditions, in this work it is
proposed an observer-predictor based control schema in order
to stabilize and control recycling systems with delay term in
both paths. Neccesary and sufficient conditions with respect
to time delay size at direct path are given for the existence
proposed observer. Then, estimated internal variables are
used to eliminate the dynamics of recycle loop and design a
control strategy achieving step tracking.

In Section II the problem is formulated and the class of
systems considered in this work is precised. The general idea
of the solutions is also outlined in this Section. Section III
presents the control proposed. In Section IV, a robustness
analysis is provided. Some simulations results are described
in Section V. Such results illustrate the performance of
the control here proposed. Finally Section V presents some
conclusions.

II. PROBLEM FORMULATION

Consider the class of recycling system shown in Fig. 1,
which can be described as,

Y (s) =
[
Gd GdGr

] [
U(s)
Y (s)

]
, (1)



with,

Gd = G1(s)e
−τ1s =

α

(s− a)(s+ b)
e−τ1s, (2a)

Gr = G2(s)e
−τ2s =

N(s)

D(s)
e−τ2s, (2b)

whereGd(s), andGr(s) are transfer functions of the forward
(or direct) and backward (or recycle) paths, respectively;
τ1, τ2 ≥ 0 are the time delays associated toGd(s), and
Gr(s). a, b ∈ R, with a, b > 0, that isGd is unstable;N(s)
andD(s) are polynomials on the complex variables. U(s)
is the process input andY (s) is the process output.

For simplicity of the presentation it is considered a second
order system with time delay at forward loop (given as in
(2a)) of the recycling plant. However, results with respect
to the generalized system at forward path (i.e.,Gd being a
plant with an unstable pole,m stable poles and time delay)
are also presented.

Fig. 1. A process with recycle

The closed-loop transfer function of system (1) is given
by,

Gt(s) =
Y (s)

U(s)
=

D(s)αe−τ1s

(s− a)(s+ b)D(s) − αN(s)e−(τ1+τ2)s
.

(3)
Note that exponential terms appear explicitly in numerator

and denominator ofGt(s). Stability of (3) is determined by
the roots of its characteristic equation,

Q(s) = (s− a)(s+ b)D(s) − αN(s)e−(τ1+τ2)s = 0. (4)

More precisely, the overall pathU(s) → Y (s) is stable if and
only if all the roots ofQ(s) are contained in the open left-
half complex plane. It is well known that the transcendental
term inQ(s) induces an infinite number of roots preventing
the use of classical control design techniques and stability
analysis methods.

Let us describe some ideas behind the methodology pro-
posed. With reference to Fig. 1, if signalω2 were known,
then we could set,U(s) = R1(s) − ω2(s), obtaining the
system shown in Fig. 2. Then it would be possible to design
R1(s) as R1(s) = (R(s) − ω1(s)) J(s) like in Fig. 3.
Since ω1 and ω2 are internal system signals an observer-
predictor scheme to estimate these variables is developed in
the following section.

Fig. 2. System of Fig. 1 after applying the proposed U(s)

Fig. 3. A control structure for the system of Fig. 2

III. O BSERVER-PREDICTOR BASED CONTROL

A. Preliminary stability results

Consider the unstable input delay system,

Y (s)

U(s)
= G(s)e−τs =

β

s− a
e−τs (5)

with a > 0. As a preliminary result, it is stated the existence
conditions of a static output feedback,

U(s) = R(s) − kY (s), (6)

that ensures the stability of the closed loop system.
Lemma 1: [16] Let us consider the system (5) and the

proportional control (6). There exist a gaink such that the
closed loop system,

Y (s)

R(s)
=

βe−τs

s− a+ kβe−τs
,

is BIBO stable if and only ifτ < 1
a
.

The proof of this result can be easily obtained by con-
sidering different approaches as one based on the classical
frequency domain. An alternative simple proof based on a
discrete time approach is presented in [16]. The following
results are similar to Lemma 1, but for a class of unstable
delayed systems more complex than the previous one.

Lemma 2: [17] Consider the system,

G(s) =
α

(s− a)(s+ b)
e−τs (7)

with a, b > 0 and 1
a
− 1

b
> 0. Then, there exist a gaink such

that the closed loop system,

Y (s)

R(s)
=

αe−τs

(s− a)(s+ b) + kαe−τs
, (8)

is BIBO stable if and only ifτ < 1
a
− 1

b
.



Note that the necessary condition1
a
− 1

b
> 0 in Lemma 2 is

derived from a stability analysis of the transfer function (8)
whenτ = 0.

Proof: Let us consider the Lemma 1. There is a gain
k such that the systemβ

s−a
e−τs is closed loop stable if and

only if τ < 1
a
. An analysis in the frequency domain confirms

this result. Fig. 4 shows the Nyquist diagram for a system
satisfyingτ < 1

a
. The Nyquist stability criterion states that

when the loop is closed with a gaink, the system will be
stable iff 0 = N + P, with P the number of polesG(s) in
the right half plane andN the number of clockwise round
trips to the point−1 (N negative in counterclockwise) in the
Nyquist diagram. In this case there is a gain that stabilizes
the system since there is one tour counterclockwise to the
point−1. Whenτ < 1

a
is not satisfied, there is not detour in

counterclokwise. The phase as a function of frequencyω is
given by∠G(jω) = −(π − tg−1 ω

a
) − ωτ. It can be shown

that the conditionτ < 1
a

is equivalent to ask that the angle
path tap at least one point (for some frequency) with a value
exceeding−π, that is ∠G(jω) > −π. Let us now analyze
the system under consideration given by (7). It is evident
that with τ < 1

a
and the parameterb large enough there is

a k that stabilizes the system, since the Nyquist condition
remains the same (one counterclockwise detour to the point
−1). Now we have,

∠G(jω) = −(π − tg−1ω

a
) − tg−1ω

b
− ωτ.

Decreasing the value of parameterb (always satisfying1
a
−

1
b
> 0), the bound that forms the trajectory conterclockwise

also decreses until extinction (See Fig. 5). As for small
frequenciestg−1ωϕ ≈ ωϕ, starting from∠G(jω) > −π
it is not difficult to conclude the relationτ < 1

a
− 1

b
.
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Fig. 4. Nyquist diagram whenτ < 1

a

Lemma 3: [17] Consider the system,

G(s) =
γ

(s− a)(s+ b1)(s+ b2)...(s+ bm)
e−τs (9)

with m ∈ R, a, bi > 0 ∀i = 1, 2, ...,m; and 1
a
−

m

Σ
i=1

1
bi

> 0.

Then, there exist a gaink such that the closed loop system,

Y (s)

R(s)
=

γe−τs

(s− a)(s+ b1)(s+ b2)...(s+ bm) + kγe−τs
,

(10)
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Fig. 5. Nyquist Diagram when rising theb value.

is stable if and only ifτ < 1
a
−

m∑
i=1

1
bi

.

Proof: Consider the analysis presented in the proof
of Lemma 2. Then if we consider nowm = 2, under the
assumptionτ < 1

a
− 1

b1
− 1

b2
, and withb2 large enough, there

is k that stabilizes the system (Nyquist condition remains one
counterclockwise loop to the point−1). We have now,

∠G(jω) = −(π − tg−1ω

a
) − tg−1 ω

b1
− tg−1 ω

b2
− ωτ.

Now, decreasing the value of parameterb2 (always satisfying
1
a
−

m

Σ
i=1

1
bi

> 0), the loop that forms the detour counterclock-

wise decreses until extinction. Again consideringtg−1ωϕ ≈
ωϕ, from ∠G(jω) > −π it is not difficult to conclude the
relationτ < 1

a
− 1

b1
− 1

b2
. This analysis can be generalizated

to anym ∈ R concluding that there is a gaink such that the
closed loop system given by (10) is BIBO stable if and only

if τ < 1
a
−

m∑
i=1

1
bi

B. Prediction Strategy

In order to estimateω1 and ω2 in Fig. 1 we propose
the observer-predictor depicted in Fig. 6. Its convergenceis
established in the following result.

Theorem 4: Consider the observer-predictor scheme
shown in Fig. 6, withGr a stable transfer function. There
exists constantk such that lim

t→∞

[ωi − ω̂i] = 0 for i = 1, 2,

if and only if τ1 < 1
a
− 1

b
.

Proof: A state space representation of the observer-
predictor scheme shown in Fig. 6 is

ẋ(t) = Ax(t) +A1x(t− τ1) +A2x(t− τ2) +Bu(t) (11)

y(t) = Cx(t − τ1) (12)

with, x(t) =
[
xd(t) xr(t) x̂d(t) x̂r(t)

]T
, y(t) =[

y(t) ŷ(t)
]T
, B =

[
Bd 0 Bd 0

]T
,



Fig. 6. Proposed observer schema

A =




Ad 0 0 0
0 Ar 0 0
0 0 Ad 0
0 0 0 Ar


 ,

A1 =




0 0 0 0
BrCd 0 0 0
BrkCd 0 −BdkCd 0
BrCd 0 0 0


 ,

A2 =




0 BdCr 0 0
0 0 0 0
0 0 0 BdCr

0 0 0 0


 , C =

[
Cd 0 0 0
0 0 Cd 0

]
,

where x ∈ R
p (where p = n + m + 1) is the state

vector,u ∈ R is the input,y ∈ R
2 is the output,τ1 ≥ 0

and τ2 ≥ 0 are the time delays present in the system.
Ad ∈ R

(m+1)×(m+1), Bd ∈ R
(m+1)×1, andCd ∈ R

1×(m+1)

are matrices and vectors parameters that corresponds to the
forward loop in the process, andAr ∈ R

n×n, Br ∈ R
n×1,

and Cr ∈ R
1×n are matrices and vectors parameters that

corresponds to recycling (or backward) path in the process,
x̂(t) is the estimation ofx(t). Note that for this analysis
m = 1 is considered.

Defining the state prediction errorsexd
(t) = x̂d(t)−xd(t),

exr
(t) = x̂r(t) − xr(t), and the output estimationey(t) =

ŷ(t)−y(t), it is possible to describe the behavior of the error
signals as,




ėxd
(t)

ėxr
(t)

ey(t+ τ1)
eω2

(t+ τ2)


 = Ap




exd
(t)

exr
(t)

ey(t)
eω2

(t)


 , (13)

with,

Ap =




Ad 0 −Bdk Bd

0 Ar 0 0
Cd 0 0 0
0 Cr 0 0


 .

Note thatey(t) = Cdexd
(t−τ1) and thateω2

(t) = Crexr
(t−

τ2). Then, system (13) can be rewritten as,

ėxd
(t) = Adexd

(t) −BdkCdexd
(t− τ1) (14)

+BdCrexr
(t− τ2),

ėxr
(t) = Arexr

(t).

SinceAr is a Hurwitz matrix, the stability of system (14)
can be analyzed by considering the partial dynamics

ėxd
(t) = Adexd

(t) −BdkCdexd
(t− τ1), (15)

or equivalently,
[

ėxd
(t)

ey(t+ τ1)

]
=

[
Ad −Bdk

Cd 0

] [
exd

(t)
ey(t)

]
. (16)

Consider now a state space realization of system (9). It is
easy to see that this dynamics can be written in state space
form as,

[
ẋ(t)

y(t+ τ1)

]
= Af

[
xd(t)
y(t)

]
+

[
Bd

0

]
u(t), (17)

with,

Af =

[
Ad −Bdk

Cd 0

]
.

Comparing (17) and (16) it is clear that Lemma 2 can be
applied to system (16). Hence the result of the theorem
follows.

Note that the proposed prediction strategy can be gener-
alizated to recycling systems with an unstable pole andm

stable poles at forward loop,

Gd =
α

(s− a)(s+ b1)(s+ b2)...(s+ bm)
e−τ1s. (18)

In such case, the convergence of the observer is assured with
the following result.

Theorem 5: Consider the observer-predictor scheme
shown in Fig. 6, withGr a stable transfer function andGd

defined as in (18). There exists constantk such that

lim
t→∞

[ωi − ω̂i] = 0, for i = 1, 2, (19)

if and only if τ1 < 1
a
−

m∑
i=1

1
bi

.

Proof: The proof of this Lemma can be stated in a
similar way that the proof of Lemma 4, by using Lemma 3
instead of Lemma 2

C. Proposed Control Scheme

Having assured that estimated internal signalsω̂1 and ω̂2

converge to the original, the ideas depicted in Section II can
be implemented. In this way, the control law can be depicted
as, U(s) = J(s)(R(s) − ω̂1(s) ) − ω̂2(s). The complete
control scheme is proposed in Fig. 7.



Fig. 7. Proposed control schema

IV. ROBUSTNESS WITH RESPECT TO TIMES DELAY

UNCERTAINTIES

A control strategy has been presented and knowledge
of the real process is considered. However, in practice,
the control strategy should take into account a robustness
analysis. In this case, robustness analysis is done using pro-
cedure prosposed in [18]. This analysis is applied under the
assumption that the observer and controller for the nominal
case have been designed. Consider a state representation of
the open-loop system with recycle in the nominal case (which
can be obtained from the complete state representation of
system-observer expressed in equation (11)),

ẋ = Ax+A1x(t − τ1) +A2x(t − τ2) +Bu(t) (20)

y = C1x(t− τ1) (21)

Where x = [ xd xr ]T A =

[
Ad 0
0 Ar

]
, A1 =

[
0 0

BrCd 0

]
, A2 =

[
0 BdCr

0 0

]
, B =

[
Bd

0

]
, C1 =

[
Cd 0

]
.

Before define perturbations for the recycling system, as an
example, let the nominal system be,

ẋ = Ax(t) +Bx(t − τ),

and the actual system as above but withτ replaced byτ0,
then p(x(t)) = B[x(t − τ) − x(t − τ0)]. In this way, with
θ = τ0 − τ , we get,

P1(s, θ) = B[e−τ0s − e−τs] = Be−τs[e−θs − 1].

Based on previous developments, let define the perturba-
tions on both times delay and matrix (A, A1 andA2) as,

P (s, θ, δ) =Aδ + e−sτ1 [A1(e
−sθ1 − 1) +A1δ1

e−sθ1 ]+

e−sτ2 [A2(e
−sθ2 − 1) +A2δ2

e−sθ2 ], (22a)

Q(s, θ) =C1e
−sτ1(e−sθ1 − 1). (22b)

where,A, A1 andA2 are the nominal matrix of the recycle
system and the corresponding uncertainties are given byAδ,

A1δ1
and A2δ2

. Then, a state space representation of the
controller-observer shown in Fig. 7 can be obtained as,

ẋ(t) = Ax(t) + A1x(t − τ1) + A2x(t − τ2) (23)

+A3x(t − θ1) + A4x(t − θ2)

with x(t) =
[
ex(t) x(t)

]
, ex(t) = x̂(t) − x(x),

A =

[
A 0
BK A−BK

]
,A1=

[
A1 −GC1 0

0 A1

]
,

A2 =

[
A2 0
BL A2 −BL

]
,A3=

[
0 A1 −GC1

0 A1

]
,

A4 =

[
0 A2

0 A2

]
, G =

[
k 0 1

]T
,

K =
[

0 J 0
]
, L =

[
0 0 Cr

]
. The characteristic

equation of the system (23), is given by,

γ = det

[
sI − F +GC1e

−τ1s GQ− P

−M sI − F +M − P

]

= det(sI − F +GC1e
−τ1s) det(sI − F +M)

det(I + ψ−1Θ(s, θ)) = 0

where γ = det(sI − A−A1e
−τ1s − A2e

−τ2s), F =
A+A1e

−τ1s + A2e
−τ2s, M = BK + BLe−τ2s and ψ =[

sI − F +GC1e
−τ1s 0

−M sI − F +M

]
is the matrix cor-

responding to the combined observer-controller for nominal
system, andΘ(s; θ) collects the plant uncertainty.

If the closed loop quasi polynomialsdet(sI − F +
GC̄1e

−τ1s) and det(sI − F + M) are stable for a proper
choice ofG,K andL then the perturbed loop system remains
stable ifdet(I + ψ−1Θ(s; θ)) does not change sign whens
sweeps the imaginary axis. This yields to the criterion,

pp = det

[
I +

[
Q̃pq Q̃p

] [
GQ− P

−P

]]

= det [I +Nc(s)Dc(s)] ,

where,

Q̃pq = (sI − F +M)−1M(sI − F +GC1e
−τ1s)−1,

Q̃p = (sI − F +M)−1,

which only depends on the nominal system and ob-
server/controller parameter. By using Rouche’s theorem, it
follows that the condition for stability is,

‖Nc(s)Dc(s, θ)‖∞ < 1. (24)

V. SIMULATION RESULTS

In this section, an academic example show the perfor-
mance of observer based control strategy previously pro-
posed.
Example. Consider the recycled time delay system of the
form (1) with,

Gd =
1

(s− 1)(s+ 10)
e−0.5s, Gr =

1

s+ 1
e−2s. (25)

Following the procedure above described, it is obtained a
proportional gaink = 12. The free delay direct path can be



stabilized by a two degree of freedom PID [19], obtaining
a general feedback of the form,U(s) = R(s)Gff (s) −
Gc(s)ω̂1(s)− ω̂2(s), with Gff (s) = 160

(
0.3 + 1.6

s
+ 0.1s

)

andGc(s) = 160
(
1 + 1.6

s
+ 0.1s

)
.

Fig. 8 shows the stability condition given by (24), where
the uncertainties in time delaysθ1 = 0.005 and θ2 = 0.23
are considered. In this case, such combination of uncer-
tainties gives as result a stable closed loop system since
‖Nc(s)Dc(s, θ)‖∞ = 0.9903 < 1.

Now, in order to evaluate the output signal evolution
some numerical simulations are presented. It is considereda
positive unit step input and initial conditions in the process
and the observer of magnitude0.4 units and 0.2 units,
respectively. In Fig. 9, a continuous line shows the output
response when it is considered the exact knowledge of the
model parameters; a dashed line presents the output signal
when the time delaysτ1 and τ2, are increased by8% and
15%, respectively. From Fig. 9 it can be seen the observer
predictor convergence and the well behavior of the control
based on estimated signals.
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Fig. 9. Output signal with different initial condition in process and observer.

VI. CONCLUSIONS

Using recycle in unstable processes with significant time
delay leads to a challenging control problem. In this work
this problem has been addressed for the general case of an
unstable pole,m stable poles with significant delay in the
forward path. Explicit conditions for the construction of an
stabilizing observer based controller scheme for such class

of systems are presented. The observer-prediction strategy
is used to estimate some internal variables of the process
that are used to: i) remove the dynamics of backward loop
in the recycling process and ii) design a stabilizing control
law for the free delay model of the forward path. The basis
provided in this work could be useful for extending the kind
of system for which the recycle can be used. Particularly,
the case of one unstable pole with several stable poles and
zeros plus significant time delay in the forward path could
be addressed.
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Cortés-Rodrı́guez, ”Observer scheme for linear recycling systems with
time delays”, American Control Conference, San Francisco, USA,
2011.

[15] J.F. Marquez-Rubio, B. del Muro-Cuéllar, M. Velasco-Villa, D. Corts-
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Cuéllar, Stabilization of High Order Systems with Delay Using a
Predictor Schema,52nd. MWSCAS IEEE, Cancun Mex., 2009.

[18] E. Verriest, O. Sename and P. Pepe, ”Robust observer controller for
delay-differential system”,Proc. of the IEEE International Conference
on Desicion and Control, Las Vegas, USA, December, 2002.

[19] K. J. Astrom and T. Hagglund,PID Controllers, theory, design and
tuning, International Society for Measurement and Control, New York,
1995.


