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Mixed Integer Optimal Compensation: Decompositions and Mean-Field

Approximations

Dario Bauso, Quanyan Zhu and Tamer Başar

Abstract— Mixed integer optimal compensation deals with
optimizing integer- and real-valued control variables to compen-
sate disturbances in dynamic systems. The mixed integer nature
of controls might be a cause of intractability for instances of
larger dimensions. To tackle this issue, we propose a decompo-
sition method which turns the original n-dimensional problem
into n independent scalar problems of lot sizing form. Each
scalar problem is then reformulated as a shortest path one and
solved through linear programming over a receding horizon.
This last reformulation step mirrors a standard procedure
in mixed integer programming. We apply the decomposition
method to a mean-field coupled multi-agent system problem,
where each agent seeks to compensate a combination of the
exogenous signal and the local state average. We discuss a
large population mean-field type of approximation as well as
the application of predictive control methods.

I. INTRODUCTION

Mixed integer optimal compensation arises when opti-

mizing integer- and real-valued control variables in order

to compensate for disturbances in dynamic systems. Mixed

integer control in a receding horizon has been formulated

in [3]. Mixed integer control is considered a specific sub-

field of optimal hybrid control [5]. Optimal integer control

problems have been receiving growing attention and are often

categorized under different names (e.g. alphabet control [7],

[15]). Integer control requires more than standard convex

optimization techniques. It is known that new structural prop-

erties of the problem play important roles in mixed integer

control. As an example, see multimodularity presented as

the counterpart of convexity in discrete action spaces [6].

We should note that there is vast literature on mixed integer

programming [13], and it is in this context that we cast the

problem addressed in this paper.

This paper is in the spirit of [14], which surveys solution

methods for mixed integer lot sizing models. The paper

has three main contributions. First, we formulate the mixed

integer optimal compensation problem. Second, we provide

a performance analysis of the decomposition method that

reformulates the n-dimensional mixed integer problem as n

independent uncertain lot sizing systems. Third, we view

each mixed integer problem as a shortest path problem
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and solve the latter through linear programming. The con-

servativeness arising from the robust decomposition and

approximation can be reduced if we operate in accordance

with the predictive control technique: i) optimize controls for

each independent system based on the prediction of other

states, ii) apply the first control, iii) provide measurement

updates of other states and repeat the procedure.

This paper differs from [3] as we focus on a smaller class

of problems that can be solved exactly by simply relaxing the

integer constraints. The lot sizing like model used here has

much to do with the inventory example briefly mentioned

in [5]. There, the authors simply include the example in

a large list of hybrid optimal control problems but do not

address the issue of how to fit general methods to this

specific problem. On the contrary, in this work we emphasize

the computational benefits that can be derived from the

“nice structure” of the lot sizing constraints matrix. Binary

variables, used to model impulses, match linear programming

in [4]. There, the linear reformulation is a straightforward

derivation of the (inverse) dwell time conditions that have

first appeared in [10]. Analogies with [4] are, for instance,

the use of total uni-modularity to prove the exactness of

the linear programming reformulation. Differences are in

the procedure itself upon which the linear program is built

up. The shortest path model is an additional element which

distinguishes the present approach from [4].

We also provide a discussion on a special case of interest

where each agent seeks to compensate a combination of the

exogenous signal and the local state average. In this case,

our decomposition idea is similar to mean-field methods in

large population consensus [9], [19], [18].

The theory of mean field games, as formulated by J. M.

Lasry and P. L. Lions in [12] aims at studying situations with

a large number of (indistinguishable) agents whose strategies

are influenced by the mass of the other agents. This theory is

very versatile and is attracting an ever increasing interest with

several applications in economics, physics and biology (see

[1], [8], [11]). From a mathematical point of view, the Mean

Field approach leads to a study of a system of PDEs, where

the classical Hamilton-Jacobi-Bellman equation is coupled

with a Fokker-Planck equation for the density of the players,

in an interesting forward-backward way. The decomposition

method proposed here requires that each agent i computes in

advance the time evolution of the local average (see, e.g., the

Fokker-Planck-Kolmogorov equation in [2], [12], [16], [17]).

However, since this is practically impossible, we use here the

predictive control method to approximate the computation of

the solution.



The paper is organized as follows. We present the prob-

lem statement in Section II. We then move to present the

decomposition method in Section III. In Section IV, we turn

to introducing the shortest path reformulation and the linear

program. Finally, in Section V, we discuss the case where

the local state average appears in the dynamics.

II. MIXED INTEGER OPTIMAL COMPENSATION

In mixed integer optimal compensation problems, we have

continuous states x(k) ∈ R
n, continuous controls u(k) ∈ R

n

and disturbances w(k) ∈ R
n, and discrete controls y(k) ∈

{0,1}n. Evolution of the state over a finite horizon of length

N is described by a linear discrete-time (difference) equation

in the general form (1), where A and E are matrices of

compatible dimensions and x(0) = ξ0 ≥ 0 is the initial state.

Continuous and discrete controls are linked together by

general capacity constraints (2), where the (scalar) parameter

c is an upper bound on control:

x(k+1) = Ax(k)+Ew(k)+u(k)≥ 0, x(N) = 0, (1)

0 ≤ u(k)≤ cy(k), y(k) ∈ {0,1}n
. (2)

The above dynamics are characterized by one discrete and

one continuous control variable per each state. Starting from

nonnegative initial states, we force the states to remain

confined to within the positive orthant, which may describe

a safety region in engineering applications or the desire

for preventing shortfalls in inventory applications. The final

state, x(N), has to be equal to zero, which corresponds

to saying that the control u(k) has to “compensate” the

cumulative effects of the disturbances Ew(k) and term Ax(k)
over the horizon.

The following assumption helps us to describe the com-

mon situation where the disturbance seeks to push the state

out of the desired region.

Assumption 1 (Unstabilizing disturbance effects):

Ew(k)< 0, (3)

where the inequality is to be interpreted component-wise.

Actually, the control actions push the state away from the

boundaries into the positive orthant, thus counterbalanc-

ing the destabilizing effects of the disturbances. However,

controlling the system has a cost and “over acting” on it

is punished by introducing a cost/objective function. This

function, to be minimized with respect to y(k) and u(k), is

a linear one including proportional, holding and fixed cost

terms expressed by parameters pk, hk, and f k respectively:

N−1

∑
k=0

(

〈pk
,u(k)〉+ 〈hk

,x(k)〉+ 〈 f k
,y(k)〉

)

, (4)

where 〈., .〉 denotes the Euclidean inner product. Conditions

(1)-(4) describe the problem of interest. This can be turned

into a mixed integer linear program by using the standard

method discussed next.

A. Mixed integer linear program and exact solution.

Let us start by collecting states, continuous and discrete

controls, proportional, holding and fixed costs all as appro-

priate vectors as shown below:

x = [x(0)T . . .x(N)T ]T , u = [u(0)T . . .u(N −1)T ]T ,
y = [y(0)T . . .y(N −1)T ]T , p = [(p0)T . . .(pN−1)T ]T ,
h = [(h0)T . . .(hN−1)T ]T , f = [( f 0)T . . .( f N−1)T ]T .

Furthermore, to put dynamics (1) into “constraints” form,

let us define matrices A, B and vector b as below, where I

denotes the identity matrix:

A =























−I 0 . . . 0 0

A −I . . . 0 0

0 A . . . 0 0

0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . A −I

0 0 . . . 0 −I























; B =



















0 0 . . . 0

I 0 . . . 0

0 I . . . 0
...

...
. . .

...

0 0 . . . I

0 0 . . . 0



















;

b =
[

−ξ T
0 − (Ew(0))T

. . . − (Ew(N −1))T
0
]T

Finally, we are in a position to establish that problem (1)-(4)

can be solved exactly through the following mixed integer

linear program:

(MIPC) min
u,y

J(u,y) = 〈pu〉+ 〈hx〉+ 〈 f y〉 (5)

Ax+Bu = b, x ≥ 0, (6)

0 ≤ u ≤ cy, y ∈ {0,1}nN
. (7)

The mixed integer linear program (5)-(7) is the most natural

mathematical programming representation of the problem of

interest (1)-(4). For this reason, throughout this paper, unless

otherwise stated, we will refer to (5)-(7) as the problem of

interest instead of the original problem (1)-(4).

To overcome the intractability of the mixed integer linear

program (5)-(7), we propose a new method whose underlying

idea is to bring back dynamics (1) to the lot sizing model

[14]. To do this, we introduce some additional assumptions

on the structure of matrix A, which simplify the tractability

and affect in no way the generality of the results.

B. Introducing some structure on A

With regard to (1), we can isolate the dependence of one

component state on the other ones and rewrite (1) in a way

that emphasizes the analogies with standard lot sizing models

[14]:

x(k+1) = x(k)+∆x(k)+Ew(k)+u(k)≥ 0. (8)

Equation (8) is a straighforward representation of (1) once

invoking (9). Let us denote by ai j the dependence of state i

on state j. So, matrix A can be decomposed as

A = I +∆, ∆ =











a11 a12 . . . a1n−1 a1n

a21 a22 . . . a2n−1 a2n

...
...

. . .
...

...

an1 an2 . . . ann−1 ann











. (9)



To preserve the nature of the game which has stabilizing

control actions playing against unstabilizing disturbances

we suppose that the influence of other states on state i is

relatively “weak”.

Assumption 2 (Weakly coupling):

∆x(k)+Ew(k)< 0, (10)

where inequality is again component-wise. Essentially, the

states’ mutual dependence expressed by ∆x(k) only empha-

sizes or reduces “weakly” the destabilizing effects of the

disturbances. In the next section, we present a decomposition

approach that translates dynamics (8) into n scalar dynamics

in “lot sizing” form [14].

III. ROBUST DECOMPOSITION

With the term “robust decomposition” we mean a math-

ematical manipulation through which dynamics (8) are re-

placed by n independent uncertain lot sizing models of the

form (11) where xi(k) is the inventory, di(k) the demand,

ui(k) the reordered quantity and Dk
i ⊂ R denotes the uncer-

tainty set:

xi(k+1) = xi(k)−di(k)+ui(k)≥ 0, di(k) ∈ D
k
i . (11)

Replacing (8) with (11) is possible once we relate the de-

mand di(k) to the current values of all other state components

and disturbances as expressed below:

di(k) = −
[

∑
n
j=1 ai jx j(k)+∑

n
j=1 Ei jw j(k)

]

= − [〈∆i•x(k)〉+ 〈Ei•w(k)〉] ,
(12)

where we denote by ∆i• the ith row of matrix ∆. Same

convention applies to Ei•. To say it differently, we do assume

that the influence that all other states have on state i enters

into equation (11) through demand di(k) defined in (12). Our

next step is to make the n dynamics in the form (11) mutually

independent.

To do this, we introduce Xk as the set of admissible state

vectors x(k) and observe that this set is always bounded for

bounded di(k). Then there always exists a scalar φ > 0 such

that ‖x‖∞ ≤ φ for all x ∈ Xk. In view of this, it is possible to

decompose the system by replacing the current demand di(k)
by the maximal or minimal demand as computed below:

d+
i (k) = max

ξ∈Xk
{−〈∆i•ξ 〉−〈Ei•w(k)〉} (13)

= ∑
j

[∆i j]−φ −〈Ei•w(k)〉

d−
i (k) = min

ξ∈Xk
{−〈∆i•ξ 〉−〈Ei•w(k)〉} (14)

= ∑
j

[∆i j]+φ −〈Ei•w(k)〉,

where [∆i j]+ denotes the positive part of ∆i j, i.e., max{∆i j,0}
and [∆i j]− the negative part. In the following we will write

compactly de
i (k), e ∈ {+,−,nil} to generically address the

maximal demand (13) when e=+, the minimal demand (14)

when e =−, and the exact demand (12) when e = nil. From

the above preamble we derive the uncertainty set as

D
k
i = {η ∈ R : d−

i (k)≤ η ≤ d+
i (k)}.

The idea behind (13) is to take for estimated value the

maximal demand, i.e., the demand that would push the state

out of the positive orthant in the shortest time. Likewise,

(14) describes the demand that would push the state out

of the positive orthant in the longest time. To complete the

decomposition, it remains to turn the objective function (4)

into n independent components

Ji(ui,yi) =
N−1

∑
k=0

(

pk
i ui(k)+hk

i xi(k)+ f k
i yi(k)

)

.

Note that because of the linear structure of J(u,y) in (5),

we have J(u,y) = ∑
n
i=1 Ji(ui,yi). Then, we have translated

our original problem into n independent mixed integer

minimization problems of the form (15)-(17). In the spirit

of predictive control, we solve, for τ = 0, . . . ,N − 1, and

e(τ) = nil, e(k) = e, for k > τ , e ∈ {nil,+,−}, and with

ξ τ
i being the measured state at time τ:

(MIPCi)
e

min
ui,yi

N−1

∑
k=τ

(

pk
i ui(k)+hk

i xi(k)+ f k
i yi(k)

)

(15)

xi(k+1) = xi(k)−d
e(k)
i (k)+ui(k)≥ 0, (16)

xi(τ) = ξ τ
i , xi(N) = 0

0 ≤ ui(k)≤ cyi(k), yi(k) ∈ {0,1}. (17)

Denote by (MIPC)r
the relaxation of (MIPC) where 0 ≤

y ≤ 1.

Lemma 1: The following relations hold true:

(MIPCi)
−
, (MIPC)r ≤ (MIPCi)≤ (MIPCi)

+
.

Proof: The conditions (MIPCi)
− ≤ (MIPCi) ≤

(MIPCi)
+

are true as d−
i (k) ≤ di(k) ≤ d+

i (k) for all k =
0, . . . ,N − 1 and the cost (15) is increasing in the demand.

The inequality (MIPC)r ≤ (MIPCi) derives from observing

that in (MIPC)r
we relax the integer constraints on y and

therefore the cost cannot be higher than in (MIPC).

IV. SHORTEST PATH AND LINEAR PROGRAMMING

What we will establish is that, for the problem at hand,

relaxing and massaging the problem in a certain manner,

leads to a shortest path reformulation of the original prob-

lem. Shortest path formulations are based on the notion of

regeneration interval as discussed next.

Let us borrow from [14] the concept of regeneration

interval and adapt it to the generic minimization problem

i expressed by (15)-(17).

Definition 1 (Pochet and Wolsey 1993): A pair of periods

[α,β ] forms a regeneration interval for (xi,ui,yi) if xi(α −
1) = xi(β ) = 0 and xi(k)> 0 for k = α,α +1, . . . ,β −1.

Given a regeneration interval [α,β ], we can define the

accumulated demand over the interval d
αβ
i , and the residual

demand r
αβ
i as

d
αβ
i =

β

∑
k=α

d
e(k)
i (k), r

αβ
i = d

αβ
i −

⌊

d
αβ
i

C

⌋

C. (18)



Our idea is now to translate problem (15)-(17) into new

variables. More formally, let us consider variables y
αβ
i (k)

and ε
αβ
i (k) defined below with the following interpretation.

Variable y
αβ
i (k) is equal to one in the presence of a saturated

control at time k, and zero otherwise. Similarly, variable

ε
αβ
i (k) is equal to one in the presence of a non-saturated

control at time k, and zero otherwise:

y
αβ
i (k) =

{

1 ui(k) = c

0 otherwise.
ε

αβ
i (k) =

{

1 0 < ui(k)< c

0 otherwise.

Variables y
αβ
i (k) and ε

αβ
i (k) tell us on which period full

or partial batches are ordered. Then, we can rely on well

known results from the lot sizing literature which convert

the original mixed integer problem (15)-(17) into a number

of linear programs
(

LP
αβ
i

)

, each one associated to a specific

regeneration interval [α,β ]. Denoting by ek
i = pk

i +∑
N−1
j=k+1 h

j
i

and after some standard manipulation, the linear program
(

LP
αβ
i

)

for fixed regeneration interval [α,β ] appears as:

min
y

α,β
i ,u

α,β
i

β

∑
k=α

(

cek
i + f k

i

)

y
αβ
i (k)+

β

∑
k=α

(

rαβ ek
i + f k

i

)

ε
αβ
i (k)

β

∑
k=α

y
αβ
i (k)+

β

∑
k=α

ε
αβ
i (k) =

⌈

d
αβ
i

c

⌉

t

∑
k=α

y
αβ
i (k)+

t

∑
k=α

ε
αβ
i (k)≥

⌈

dαt
i

c

⌉

, t = α, . . . ,β −1

β

∑
k=α

y
αβ
i (k) =

⌈

d
αβ
i − r

αβ
i

c

⌉

t

∑
k=α

y
αβ
i (k)≥

⌈

dαt
i − rαt

i

c

⌉

, t = α, . . . ,β −1

y
αβ
i (k), ε

αβ
i (k)≥ 0, k = α, . . . ,β .

The above model has been extensively used in the lot

sizing context. The first and third equality constraints tell us

that the ordered quantity over the interval has to be equal to

the accumulated demand over the same interval. This makes

sense as the initial and final states of a regeneration interval

are null by definition. The second and fourth inequality

constraints impose that the accumulated demand in any

subinterval may not exceed the ordered quantity over the

same subinterval. Again, this is due to the condition that the

states are nonnegative in any period of a regeneration inter-

val. Finally, the objective function is simply a rearrangement

of (15) induced by the variable transformation seen above

and specialized to the regeneration interval [α,β ] rather than

on the entire horizon [0,N].

The solutions of (LP
αβ
i ) that are binary are called “fea-

sible”. Then, we are ready to recall the following “nice

property” of (LP
αβ
i ) presented first by Pochet and Wolsey

in [14].

Theorem 1 (Total Uni-modularity): The optimal solution

of (LP
αβ
i ) is feasible.

Proof: Observe that the constraint matrix of (LP
αβ
i ) is

a 0− 1 matrix. We can reorder the constraints in a certain

manner, so that matrix has the consecutive 1’s property on

each column and turns out to be totally unimodular. It follows

that y
α,β
i and ε

α,β
i are 0−1 in any extreme solution.

A. Shortest path

We now resort to well-known results on lot sizing to come

up with a shortest path model which links together the linear

programming problems of all possible regeneration intervals.

So, let us define variables z
αβ
i ∈{0,1}, which yield 1 when

a regeneration interval [α,β ] appears in the solution of (15) -

(17), and 0 otherwise. The linear programming problem (LPi)
solving (15) -(17) takes on the form below. For τ = 0, . . . ,N−
1, solve

min
y

αβ
i ,u

αβ
i ,z

αβ
i

N−1

∑
α=τ+1

N−1

∑
β=α

β

∑
k=α

[(

cek
i + f k

i

)

y
αβ
i (k)

+
β

∑
k=α

(

rαβ ek
i + f k

i

)

ε
αβ
i (k)

]

N

∑
β=τ+1

z
τ+1,β
i = 1

t−1

∑
α=τ+1

z
α,t−1
i −

N

∑
β=t

z
tβ
i = 0 t = τ +2, . . . ,N,

τ +1 ≤ α ≤ β ≤ N

β

∑
k=α

y
αβ
i (k)+

β

∑
k=α

ε
αβ
i (k) =

⌈

d
αβ
i

c

⌉

z
αβ
i , τ +1 ≤ α ≤ β ≤ N

t

∑
k=α

y
αβ
i (k)+

t

∑
k=α

ε
αβ
i (k)≥

⌈

dαt
i

c

⌉

z
αβ
i , t = α, . . . ,β −1,

τ +1 ≤ α ≤ β ≤ N

β

∑
k=α

y
αβ
i (k) =

⌈

d
αβ
i − r

αβ
i

c

⌉

z
αβ
i τ +1 ≤ α ≤ β ≤ N

t

∑
k=α

y
αβ
i (k)≥

⌈

dαt
i − rαt

i

c

⌉

z
αβ
i , t = α, . . . ,β −1,

τ +1 ≤ α ≤ β ≤ N

y
αβ
i (k), ε

αβ
i (k), z

αβ
i ≥ 0, k = α, . . . ,β .

The above constraints have already appeared in
(

LP
αβ
i

)

. The

only difference here is that, now, because of the presence of

z
αβ
i in the right hand term, the constraints referring to a given

regeneration interval come into play only if that interval is

chosen as part of the solution, that is, whenever z
αβ
i is set

equal to one. Furthermore, a new class of constraints appear

in the first line of constraints. These constraints are typical

of shortest path problems and in this specific case helps us

to force the variables z
αβ
i (k) to describe a path from 0 to

N. Finally, note that for τ = 0, the linear program (LPi)
coincides with the linear program presented by Pochet and

Wolsey in [14].

At this point, we are in a position to recall the important

result established by Pochet and Wolsey in [14] and adapt



it to (MIPCi) within the assumption of null final state (high

values of hN
i ).

Theorem 2: The linear program (LPi) solves (MIPCi)
with null final state.

Proof: It turns out that the linear program (LPi) is

a shortest path problem on variables z
α,β
i . Arcs are all

associated to a different regeneration interval [α,β ] and

the respective costs are the optimal values of the objective

functions of the corresponding linear programs (LP
α,β
i ) (cf.

[14]).

B. Receding horizon implementation of (LPi)

The main difference between the lot sizing model [14] and

the (LPi) of the present paper is that in the (LPi) the initial

state is non null. Actually, consecutive linear programs (LPi)
are linked together by the initial state condition expressed in

(16), and which we rewrite below

xi(τ) = ξ τ
i .

To counter this little issue, we need to elaborate more on how

to compute the accumulated demand in (18). Actually, take

for [τ, t] any interval with x(τ) = ξ τ
i > 0. Then, condition

(18) needs to be revised as

dτt
i = max

{

t

∑
k=τ

d
e(k)
i (k)−ξ τ

i ,0

}

. (19)

Actually, the effective demand over an interval is the accu-

mulated demand reduced by the inventory stored and initially

available at the warehouse. From a computational standpoint,

the revised formula (19) has a different effect depending on

the cases where the accumulated demand exceeds the initial

state or not, as discussed next.

1) ∑
β
k=α d

e(k)
i (k)≥ ξ τ

i : the mixed linear program (MIPCi)
with initial state x(τ) = ξ τ

i > 0 and accumulated de-

mand ∑
β
k=α d

e(k)
i (k) is turned into an (LPi) character-

ized by null initial state x(α − 1) = 0 and effective

demand d
αβ
i = ∑

β
k=α d

e(k)
i (k)− ξ τ

i as in the example

below:

(MIPCi)
β

∑
k=α

d
e(k)
i (k) = 12, x(τ) = ξ τ

i = 10

=⇒ (LPi) x(α −1) = 0, d
αβ
i = 2;

2) ∑
β
k=α d

e(k)
i (k)< ξ τ

i : the mixed linear program (MIPCi)
with initial state x(τ) = ξ τ

i > 0 and accumulated de-

mand ∑
β
k=α d

e(k)
i (k) is infeasible. The solution obtained

at the previous period τ −1 applies. A second example

is shown next:

(MIPCi)
β

∑
k=α

d
e(k)
i (k) = 7, x(τ) = ξ τ

i = 10

=⇒ (LPi) unfeasible.

V. MEAN FIELD COUPLING

In this section, we provide a discussion on a special

case of interest where each agent seeks to compensate a

combination of the exogenous signal and the local state

average. In this case, our decomposition idea is similar to

mean-field methods in large population consensus [9], [19],

[18]. We discuss the mean-field approximations as well as

the application of predictive control methods to approximate

the computation.

Consider a graph G = (V,E) with a set of vertices V =
{1, . . . ,n} and a set of edges E ⊆ V ×V . Denote by Ni the

neighborhood of agent i, i.e., Ni = { j ∈V : (i, j)∈E}. We can

associate with the graph G the normalized graph Laplacian

matrix L ∈ R
n×n whose i j-th entry is

li j =

{ −1
|Ni|

j ∈ Ni

1 j = i
.

Now, a special case of interest is when ∆ =−εL for any

small enough scalar ε > 0. In this case dynamics (8) turns

into:

x(k+1) = x(k)− εLx(k)+Ew(k)+u(k)≥ 0.

Essentially, the above dynamics together with the constraint

xN = 0 is paradigmatic of all those situations where each

agent i = 1, . . . ,n tries to compensate a combination of the

exogenous signal w(k) and the local state average

m̄i(k) =
1

|Ni|
∑
j∈Ni

(x j(k)− xi(k)).

Elaborating along the line of the robust decomposition

(11), we then can compute the disturbance taking into

account the influence of the local average on the exogenous

signal as follows:

di(k) =− [εm̄i(k)+ 〈Ei•,w(k)〉] .

Note that Assumption (2) means that the exogenous signal is

dominant if compared to the weak influence from neighbors.

In principle, for the decomposition method to be exact,

each agent i should know in advance the time evolution of

the local average m̄i(k) for k = 0, . . . ,N. However, this may

not be tractable. One way to approximate the mean m̄i(k) is

through mean-field methods. Under the further assumption

that the number of agents is large and the agent dynamics

are symmetric, the mean can be characterized through the

finite-difference approximation of the continuity or advection

equation that describes the transport of a conserved quantity

[19]. Another way to deal with the problem is to use the

predictive control method to approximate the computation.

More specifically, when we solve the problem over the

horizon from k̃ ≥ 0 to N, we assume that neighbor agents

communicate their state and so at least the first sample

m̄i(k̃) is exact. In the later stages of the horizon each agent

approximates the local average by specializing (13)-(14)

to our case. Actually, observe that maximal and minimal



demand can be obtained by assuming that all agents j 6= i

are in 0 or φ respectively, and so we have for agent i:

d+
i (k) = εxi −〈Ei•,w(k)〉

d−
i (k) = − [ε(φ − xi)+ 〈Ei•,w(k)〉] .

Alternatively, this also corresponds to assuming for the

uncertain set Dk
i the following expression:

D
k
i = {η ∈R : −ε(φ −xi)−〈Ei•,w(k)〉≤η ≤ εxi−〈Ei•,w(k)〉}.

The above set up introduces the following numerical exam-

ple.

Consider a complete network of n = 10 agents. The local

state average is the same for all i and also equal to the global

average, i.e., for all i it holds m̄i(k) =
1
n ∑ j∈V, j 6=i(x j(k)−

xi(k)). The horizon length is N = 15, the scalar ε = 0.1,

the initial state is x(0) = [4 . . .13], and the disturbance is

Ei•w(k) = 1 if k is odd and Ei•w(k) = 2 otherwise for all

agents i. The bound on input is C = 3 and the objective func-

tion is displayed below where 1n indicates the n-dimensional

row vector on 1’s:

J(u,y) =
N−1

∑
k=0

(〈1n
,u(k)〉+ 〈1n

,x(k)〉+100〈1n
,y(k)〉) . (20)

We also take φ = 13. We plot in Fig. 1 the time evolution of

the state x(k). As expected, the state is non-negative for all

Fig. 1. Time evolution of state x(k).

k. Also, the state x(k) converges to a neighborhood of zero

of size c−mink{d−
i (k)}= 2.

VI. CONCLUSIONS AND FUTURE DEVELOPMENTS

In a nutshell, we have proposed a robust decomposition

method which reframes an n-dimensional problem into n

independent tractable scalar problems of lot sizing form.

Through an example, we have illustrated the mean-field

coupling in a multi-agent system problem, where each agent

seeks to compensate a combination of the exogenous signal

and the local state average. We have discussed a large

population mean-field type of approximation as well as the

application of predictive control methods.

There are at least three possibilities for future develop-

ments. First, we will analyze connections between regener-

ation intervals and reverse dwell time conditions developed

in hybrid/impulsive control. Second, we would like to zoom

in on the exploitation of cutting planes methods to increase

the efficiency of linear relaxation approximations. Third, we

need to investigate the mean-field large population approx-

imations that arise from the decomposition of the mixed-

integer optimal compensation problem.
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