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Abstract— In this article we explore a modification in the
problem of controlling the rotation of a two level quantum
system from an initial state to a final state in minimum time.
Specifically we consider the case where the qubit is being weakly
monitored – albeit with an assumption that both the measure-
ment strength as well as the angular velocity are assumed
to be control signals. This modification alters the dynamics
significantly and enables the exploitation of the measurement
backaction to assist in achieving the control objective. The
proposed method yields a significant speedup in achieving the
desired state transfer compared to previous approaches. These
results are demonstrated via numerical solutions for an example
problem on a single qubit.

I. INTRODUCTION

One of the requirements common to many applications of
quantum engineering [1], [2], [3], is that of being able to
create a quantum system in a particular pure quantum state.
Moreover, it is desirable to achieve such a state value in as
short a time as possible. This has motivated research into
this domain of time optimal control of quantum systems;
Although has been a significant amount of research on
optimal control for closed quantum systems [4], [5], [6], [7],
[8], the investigation into the optimal control of monitored
open quantum systems still remains to be developed fully
[9], [10], [11], [12], [13].

In this work we address the problem of transferring the
state of a two level quantum system from an initial pure state
to a final pure state. In particular develop the idea proposed
in [14] on the possible use of measurement backaction for
speeding up the control of a qubit to a greater extent that
that achievable by fixed measurement alone. The framework
for this problem is unique due to the fact that both the
angular rotation as well as the measurement strength for the
continuous measurement being performed are control signals
that can be varied to achieve the desired objective. This
leads to a significant speedup in the time required to reorient
the system between two pure states. Intuitively we use the
fundamental property of measurement backaction, unique to
quantum systems, to help achieve the state transition more
rapidly than that possible using either: static measurement
and feedback or that with no-measurement and a control
driven by a constant rotation (termed the Hamiltonian evo-
lution).

The structure of this article is as follows. In section II
we describe the system model and frame the optimal control
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problem of interest. To solve the problem described above,
we utilize the dynamic programming approach from optimal
control theory in section III. It turns out however, that the
Hamilton-Jacobi-Bellman equations associated with this con-
trol problem may not have classical solutions. We discuss this
issue and indicate a numerical method to obtain the solution
in section III. Two cases of interest in the optimal control
of the state of a quantum system are transition between
states which are: (a) parallel or (b) orthogonal to the axis of
measurement. The solution to the control problem for these
different cases are described in section IV. We then highlight
the performance of the dynamic measurement and control
strategy introduced herein with respect to that achieved using
either only static measurement strength or with pure rotation
alone (with no measurement). We conclude with a discussion
of further interesting questions that arise from these results,
in section VI.

II. SYSTEM DESCRIPTION AND FURTHER BACKGROUND

A. The model

We now explain the model for the system of interest - the
continuous measurement and feedback control of a single
qubit. A more comprehensive introduction to continuous
quantum measurements can be found in [15], [16]. The
state of such a system may be represented by a vector in
a 3 dimensional real unit sphere (termed the Bloch sphere).

Consider a quantum spin system subject to measurement
along the z axis1, with control signals that induce a rotation
around the three axis. Let γ denote the measurement strength
– a parameter that determines the rate at which the informa-
tion is extracted from a system. A larger value of γ leads
to a greater rate of information extraction and therefore a
higher rate at which the system is projected on to one of
the eigenstates of the observable used [in this case it is the
Pauli matrix σz = diag(1,−1)]. For the particular choice of
measurement considered herein, these eigenstates correspond
to the up (+z) direction and the down (−z) direction on the
Bloch sphere. The goal of the feedback is to take the initial
state (say |0〉 i.e., the +z direction) and control it to the
orthogonal state (say |1〉 i.e., the −z direction) in a time
optimal manner. We assume that:

1) the initial state is pure and that measurements are
efficient. This implies that the evolution of the state

1i.e., this measurement is of the observable σz.
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vector is confined to the surface of the Bloch sphere.
2) the available control is equal in strength (isotropic)

about all 3 axes.
Under the above assumptions, by using the symmetry of the
problem the Bloch representation reduces (after a change of
variables) to a lower dimensional model; Herein the state is
constrained to lie on the unit circle i.e., the x-z plane. The
control signal causes the state to rotate around the y axis.
The control problem for this system involves moving the
state between any two states on the unit circle.

The system described above is modeled using a stochastic
differential equation (SDE) of the form

dθ(t) = α(t)dt−2γ(t)sin(2θ(t))dt−2
√

2γ(t)sin(θ(t))dW.
(1)

where θ ∈ [−π,π]. The term α denotes the control signal
applied. To ensure that the control problem is well posed
we apply a bounded strength control, i.e., the controls are
constrained to a closed compact set V := [−Ω,Ω]. Here
the maximum and minimum values that the control signal
can take up at any time instant are symmetric and have a
magnitude Ω. We denote the set of piecewise continuous
angular velocity signals by the term V .

The second term in the equation above is the quantum
measurement backaction. This can be intuitively understood
by setting the angle to 0 or ±π , so the state vector and
the measurement axis commute and the backaction goes
to zero. Similarly at the point θ = ±π/2 where the state
and measurement axes are maximally non-commuting, the
measurement back-action is largest. The term γ(t) denotes
the measurement strength which is also a control term in this
problem. The values allowed for the measurement strength
belong to the range [0,Γ]. The set of measurement strength
signals is denoted by ℑ. The final term in Eq. (1) indicates
the innovation term arising from measurements.

We denote the control signal pair (α,γ) as η and the
set from which this signal is drawn as Ξ := V ×ℑ. The
solution to the SDE (1) for a trajectory, starting at a point
θ0 (at a time t0) and using a control strategy η ∈ Ξ, at a
time instant t ∈ [t0,∞) is denoted by θ(t;η , t0,θ0). Note that
the this trajectory is a particular sample path of a stochastic
process. In cases where the arguments used in this notation
are clear from the context we represent the solution at time
t by θt .

B. Performance measure: the expected (discounted) hitting
time

In order to capture the time optimality requirement of the
problem, the most intuitive approach is to model the problem
as an optimal control problem with a cost function that
measures the expected hitting time to the target set (denoted
by T ). Define the hitting time as

τ
η

T (θ0) = inf{t|θ(t;η , t0,θ0) ∈T }, (2)

i.e., for each sample path it is the first time at which the
trajectory reaches the target set (and is a random variable).
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Fig. 1. The Bloch sphere with a graphical depiction of our control problem.
We start in the plus eigenstate of the observable σz and rotate to the
orthogonal state −|z〉.

The cost function based on the expected hitting time will
take the form

C(θ0) := inf
η∈Ξ

E
[
τ

η

T (θ0)
]
, (3)

= inf
η∈Ξ

E
{∫ τ

η

T (θ0)

0
ds
}
. (4)

However, as described in the next section, application of
the dynamic programming principle to solve this optimal
control problem leads to an associated Hamilton-Jacobi-
Bellman (HJB) equation whose classical solution may not
exist. Thus we use a revised discounted cost function which
ensures the uniqueness a weak solution in similar classes of
optimal control problems (c.f. [17], [18]) 2

C(θ0) := inf
η∈Ξ

E
{∫ τ

η

T (θ0)

0
exp{−β s}ds

}
. (5)

The parameter β > 0 is called the discount factor. One
interesting aspect of this discounting is that the cost function
remains bounded for any choice of the control signal. The
motivation for and advantages of this discounting will be
discussed in detail below.

III. OPTIMAL CONTROL FOR THE HITTING TIME
PROBLEM

In order to obtain the optimal cost function (Eq. (5)) and
the corresponding control strategy for the system of interest,
we apply the dynamic programming [19], [20] approach from
optimal control theory.

Note that the system dynamics in Eq. (1) is an SDE of
the form

dx = b(x,α,γ)dt +σ(x,γ)dW. (6)

By comparison, the coefficients b,σ can be seen to be

b(x,α,γ) := α−2γ sin(2θ), (7)

σ(x,γ) := 2
√

2γ sin(θ). (8)

2We defer the discussion of the weak solutions and a rigorous justification
of the discounted cost in this problem to the future.



We introduce a differential operator Lv[φ ](y) given by the
expression

Lη [φ ](y) := b(y,η)
∂φ

∂θ

∣∣∣∣∣
θ=y

+
1
2

σ
2(y,γ)

∂ 2φ

∂θ 2

∣∣∣∣∣
θ=y

, (9)

which is the generator of the Itō diffusion process Eq.(1). The
application of dynamic programming to this optimal con-
trol problem yields the following Hamilton-Jacobi-Bellman
equation over the set G := (−π,π):

sup
η∈Ξ

{−1+βφ −Lη [φ ](y)}= 0, ∀y ∈ G (10)

with boundary conditions

φ(Te) = 0. (11)

The classical solution to this partial differential equation
(PDE) yields the discounted cost function in Eq. (5).

Note that the HJB equation (10) is an elliptic PDE [21]
with a coefficient for the second order derivative that can
become zero at any point in the domain G – therefore it
is called a degenerate elliptic PDE. The positivity (non-
degeneracy) of this second order term is a sufficient condition
for the existence of a classical solution to this PDE [22],
[17]. Hence, due to the nature of the σ(·, ·) term in the
system dynamics being able to take up a value of zero,
there arises a degeneracy owing to which the HJB equation
is not guaranteed to have a sufficiently smooth solution.
Therefore a rigorous study of the solution to the optimal
control problem necessitates an analysis of the solution to
this equation in a weak sense.

It is interesting to note that an alternate approach used in
the literature to determine the hitting time involves solving
a PDE termed the Fokker-Planck equation [23], [24] . The
solution to this equation is the probability density of the
distribution of the hitting time (from which we can evaluate
the expectation of the hitting time). The degeneracy indicated
above also arises naturally in the Fokker-Planck equation,
thereby giving rise to the same issues of non-existence of
classical solutions.

In this article our focus is on obtaining and analyzing the
optimal control strategy and the improvement obtained in the
time optimality in state transfer compared to that achieved
by other strategies. Hence we defer the analysis of these
questions of existence and uniqueness of the generalized
solutions for this problem to a future publication.

A. Numerical solution

One widely applicable method for computing the solution
to optimal control problems is the Markov chain approx-
imation method [25], [17]. In this approach the system
dynamics are approximated by a controlled Markov chain on
a finite state space. The cost function is then approximated
by a discretization suited to this chain. Thus an iteration
is constructed which converges to the desired cost function
under the limit that the discretization converges towards the
original formulation. For a more detailed introduction to this
approach and other applications to quantum control we refer

the reader to [25], [26], [18] and the references therein. We
now outline the iterative procedure to solve for the cost
function.

Define

a+ := max{a,0}, a− := max{−a,0}. (12)

We denote the spatial discretization interval by ‘h’. In
addition, we use the expression

exp{−β∆t} ≈ 1
1+β∆t

, (13)

to approximate the exponential weighting term. We generate
a grid Gh that approximates the set G (for instance using
a mesh with step-size h). The discretization for the HJB
equation (10) yields

φ
h(x) = min

η∈Ξ

{[
∑
y

ph(x,y|η)φ h(y)+∆th(x,η)
]
×

1
1+β∆th(x,η)

}
, x ∈ G̃ (14)

where the summation is over all points y neighboring x. The
terms ‘p’ in the equation above are functions that are given
by [25].

ph(x,x+h|η) :=
σ2(x,γ)/2+hb+(x,α,γ)

σ∗2(x)+hB∗(x)
, (15)

ph(x,x−h|η) :=
σ2(x,γ)/2+hb−(x,α,γ)

σ∗2(x)+hB∗(x)
, (16)

ph(x,x|η) :=
[σ∗2(x)−σ2(x,γ)]+hB∗(x)−h|b(x,α,γ)|

σ∗2(x)+hB∗(x)
,

(17)

where

B∗(x) := Ω+2Γ|sin(2x)|, σ
∗(x) := 2

√
2Γsin(θ),

(18)

∆th(x,η) :=
h2

σ∗2(x)+hB∗(x)
. (19)

Denoting the RHS of Eq. 14 as an operator ξ acting on
the value function φ(·) we obtain the iteration

φ
h
k+1(x) = ξ (φ h

k )(x), x ∈ Gh, (20)

Under appropriate choices of parameters, this operator ξ can
be shown to be a contraction mapping, thereby yielding the
necessary convergence. The results obtained by applying this
iterative method to the problem of interest will be described
in the following section.

IV. NUMERICAL EXAMPLES

In this section we describe the solution to the optimal
control problem for two cases of interest:

1) when the initial and final states for the control problem
are eigenstates of the observable σz i.e., to move from
|0〉 to |1〉 (ref. Fig. 1).
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Fig. 2. The Bloch sphere with a graphical depiction of our control problem.
We start in the plus eigenstate of the observable σx and rotate to the
orthogonal state −|x〉.

2) when the states are both maximally non-commuting
with respect to the measurement (ref. Fig. 2) with σz
i.e., the problem is to go from +|x〉 to −|x〉.

These two cases are of interest since they help clarify
whether the control problem between two orthogonal states
depends on the nature of the initial and terminal points.
The optimal control problems are solved numerically via the
value iteration approach described in the previous section.

In order to implement this approach we include a stop-
ping criteria for the value iteration algorithm, which in our
approach is obtained from a stopping test function – the
maximum absolute value of the change in the cost function
over all grid points. Once this goes below a fixed threshold,
we stop the value iteration. Note that this is possible due to
the fact that the value iteration operator ξ is a contraction
mapping (if not, there would be no reason for this stopping
test function to remain below the threshold in subsequent
operations).

A. Optimal transition between eigenstates

In this case the states take up values from the set G :=
(−π,+π). Assume a control bound of Ω = 5, a discount
factor of β = 0.1 and a measurement strength of Γ = 1. Ap-
plying the value iteration procedure, we obtain the solution
to the HJB PDE (10) subject to the boundary condition of
C(±π) = 0. The result obtained is as indicated in Fig. 3: the
corresponding optimal control is as shown in Fig. 4(a) and
measurement strength is indicated in Fig. 4(b). Hence it turns
out that the optimal control is consistent with the intuition of
exercising a clockwise rotation when starting at any point to
the right of the +|z〉 (up) state and counterclockwise rotation
to the left of this state. Note that the optimal measurement
strategy in this case is to turn off measurement till arriving
at the state θ = π/2.

B. Optimal transition between non-eigenstates

We now study the optimal control problem of taking
the initial state θ0 = π/2 to the target state of Tne =
{−π/2,3π/2} as depicted in Fig. 2. In this case the region
of interest is G := (−π/2,3π/2) and the HJB equation as-
sociated with this problem is (10) with a boundary condition
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Fig. 3. Discounted hitting time cost function to the target Te := {−π,π},
starting from various possible initial states with Ω = 5, β = 0.1 and Γ = 1.
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Fig. 4. Transition between eigenstates.

of C(Tne) = 0. The value iteration approach for this problem
yields the solution (ref. Fig. 5). This control strategy in
this case involves an angular rotation of +Ω for all states
corresponding to angles between (π/2,3π/2) and counter-
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clockwise control for states in the domain (−π/2,π/2).

V. INTERPRETATION

In this section we analyze and compare the performance
of the variable measurement strength approach proposed
herein to two alternate control approaches - pure Hamiltonian
rotation and fixed strength control. The strategy used as the
base line for these comparisons is the case of pure rotation
with no measurement. We now analyze the salient features
of these strategies.

A. Fixed measurement strength

For the case of rotation between eigen states, from Fig. 3
it can be seen that for angles from [0,π/2) the fixed
measurement strength strategy performs worse than the pure
rotation approach; However for angles between (π/2,π)
the backaction from the fixed measurement helps project
the state towards the target thereby outperforming the pure
rotation strategy. This is in contrast to the control between
non-eigen states ±|x〉 where the fixed measurement strategy
performs better than the fixed rotation close to the starting
point but worse for all points further away (except at the
target).

B. Dynamic measurement strength

As can be observed from Figures 3, 5 the time for the
dynamic measurement approach is always smaller than that
for both: the pure rotation strategy (in fact they are equal only
at the boundary), and for the case of a static measurement.
For θ ∈ [0,π/2] the time to reach θ = π is substantially
different. Hence using a dynamic control and measurement
scheme shortens the hitting time to the desired state by
a significant margin. In the case of the transfer between

the states orthogonal to |z〉 (i.e., |x〉) we have that this
strategy does better than the pure rotation strategy only for
starting points from (0,π) and equal to the rotation strategy
at all other points. This is intuitive as the the dynamic
measurement strategy leads to the measurement signal being
switched off for points between (−π/2,0) and (π,3π/2) -
leading to the use of only the maximum magnitude of the
available angular rotation.

VI. CONCLUSION AND FUTURE WORK

In this article we described an approach for the time
optimal rotation of a quantum two level system. The dynamic
measurement and velocity control strategy led to a speedup in
the hitting time compared to strategies used previously in the
literature. Numerical solutions to certain example problems
were indicated and the analysis of the solutions led to the
following interesting avenues for future investigation.

The special form of the nonlinear dynamics in the system
under consideration, leads to a degenerate Hamilton-Jacobi-
Bellman equation associated with the optimal control prob-
lem – this necessitates a weak (viscosity) solution interpre-
tation for the solution to these control problems. Hence this
remains to be investigated in greater detail. Another aspect of
note in this problem is the fact that the optimal measurement
and control strategy are not separable3; i.e., the observation
strategy depends on a knowledge of the angular velocity con-
trol. Certain aspects of this problem appear to parallel those
in the well known Witsenhausen counterexample [27], [28],
[29]. Inspired by these ideas, we note that in the quantum
control problem, one possible viewpoint is to analyze this
problem as a combination of two interrelated controllers (i)
rotational velocity control; (ii) measurement control, with an
overall time optimal strategy depending on two controllers
in a distributed control paradigm. In this arrangement, the
knowledge of the state from the first controller is passed to
the second controller. This potentially gives rise to a non-
classical information pattern. The analysis of the impact of
this on optimal control and measurement and its relationship
to the foundations of decentralized control also offers a
fruitful topic for future work.
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