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Improving Convergence Rate of Distributed Consensus

Through Asymmetric Weights

He Hao, Prabir Barooah

Abstract

We propose a weight design method to increase the convergence rate of distributed consensus.

Prior work has focused on symmetric weight design due to computational tractability. We show that

with proper choice ofasymmetricweights, the convergence rate can be improved significantlyover even

the symmetric optimal design. In particular, we prove that the convergence rate in a lattice graph can

be made independent of the size of the graph with asymmetric weights. We then use a Sturm-Liouville

operator to approximate the graph Laplacian of more generalgraphs. A general weight design method

is proposed based on this continuum approximation. Numerical computations show that the resulting

convergence rate with asymmetric weight design is improvedconsiderably over that with symmetric

optimal weights and Metropolis-Hastings weights.

I. INTRODUCTION

In distributed consensus, each agent in a network updates its state by aggregating the in-

formation from its neighbors so that all the agents’ states reach a common value. Distributed

consensus has been widely studied in recent times due to its wide ranging applications such as

multi-vehicle rendezvous, data fusion in large sensor network, coordinated control of multi-agent

system and formation flight of unmanned vehicles and clustered satellites, etc. (see [1]–[5] and

references therein).

The topic of this paper is the convergence rate of distributed consensus protocols in graphs

with fixed (time invariant) topology. The convergence rate is extremely important; it determines

practical applicability of the protocol. If the convergence rate is small, it will take many iterations
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before the states of all agents are sufficiently close. Compared to the vast literature on design of

consensus protocols, however, the literature on convergence rate analysis is meager. Convergence

rate of distributed consensus in time-varying graphs have been studied in [6]–[8]. The related

problem of mixing time of Markov chains is studied in [9]. In [10], convergence rate for a

specific class of graphs, that we call L-Z geometric graphs, are established as a function of the

number of agents. In general, the convergence rate of consensus algorithms tend to be slow, and

decreases as the number of agents increases. It is shown in [11] that the convergence rate can

be arbitrarily fast in small-world networks. However, networks in which communication is only

possible between agents that are close enough are not likelyto be small-world.

One of the seminal works on this subject is convex optimization of weights on edges of the

graph to maximize the consensus convergence rate [12], [13]. Convex optimization imposes the

constraint that the weights of the graph must be symmetric, which means any two neighboring

agents put equal weight on the information received from each other. The convergence rate of

consensus protocols on graphs with symmetric weights degrades considerably as the number of

agents in the network increases. In a D-dimensional lattice, for instance, the convergence rate is

O(1/N2/D) if the weights are symmetric, whereN is the number of agents. This result follows

as a special case of the results in [10]. Thus, the convergence rate becomes arbitrarily small if

the size of the network grows without bound.

In [14]–[16], finite-time distributed consensus protocolsare proposed to improve the per-

formance over asymptotic consensus. However, in general, the finite time needed to achieve

consensus depends the number of agents in the network. Thus,for large size of networks,

although consensus can be achieved in finite time, the time needed to reach consensus becomes

large.

In this paper, we study the problem of how to increase the convergence rate of consensus

protocols by designingasymmetricweights on edges. We first consider lattice graphs and derive

precise formulae for convergence rate in these graphs. In particular, we show that in lattice

graphs, with proper choice of asymmetric weights, the convergence rate of distributed consensus

can be bounded away from zero uniformly inN . Thus, the proposed asymmetric design makes

distributed consensus highly scalable. In addition, we provide exact formulae for asymptotic

steady-state consensus value. With asymmetric weights, the consensus value in general is not

the average of the initial conditions.
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We next propose a weight design scheme for arbitrary 2-dimensional geometric graphs, i.e.,

graphs consisting of nodes inR2. Here we use the idea of continuum approximation to extend the

asymmetric design from lattices to geometric graphs. We show how a Sturm-Liouville operator

can be used to approximate the graph Laplacian in the case of lattices. The spectrum of the

Laplacian and the convergence rate of consensus protocols are intimately related. The discrete

weights in lattices can be seen as samples of a continuous weight function that appears in the

S-L operator. Based on this analogy, a weight design algorithm is proposed in which a node

i chooses the weight on the edge to a neighborj depending on the relative angle betweeni

andj. Numerical simulations show that the convergence rate withasymmetric designed weights

in large graphs is an order of magnitude higher than that with(i) optimal symmetric weights,

which are obtained by convex optimization [12], [13], and (ii) asymmetric weights obtained by

Metropolis-Hastings method, which assigns weights uniformly to each edge connecting itself

to its neighbor. The proposed weight design method is decentralized, every node can obtain

its own weight based on the angular position measurements with its neighbors. In addition, it

is computationally much cheaper than obtaining the optimalsymmetric weights using convex

optimization method. The proposed weight design method canbe extended to geometric graphs

in R
D, but in this paper we limit ourselves toR2.

The rest of this paper is organized as follows. SectionII presents the problem statement.

Results on size-independent convergence rate on lattice graphs with asymmetric weight are stated

in SectionIII . Asymmetric weight design method for more general graphs appear in SectionIV.

The paper ends with conclusions and future work in SectionV.

II. PROBLEM STATEMENT

To study the problem of distributed linear consensus in networks, we first introduce some

terminologies. The network ofN agents is modeled by a graphG = (V,E) with vertex set

V = {1, . . . , N} and edge setE ⊂ V × V. We use(i, j) to represent a directed edge from

i to j. A node i can receive information fromj if and only if (i, j) ∈ E. In this paper, we

assume that communication is bidirectional, i.e.(i, j) ∈ E if and only if (j, i) ∈ E. For each

edge(i, j) ∈ E in the graph, we associate a weightWi,j > 0 to it. The set of neighbors ofi is

defined asNi := {j ∈ V : (i, j) ∈ E}. The Laplacian matrixL of an arbitrary graphG with
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edge weightsWi,j is defined as

Li,j =























−Wi,j i 6= j, (i, j) ∈ E,

∑N
k=1Wi,k i = j, (i, k) ∈ E,

0 otherwise.

(1)

A linear consensus protocol is an iterative update law:

xi(k + 1) = Wi,i xi(k) +
∑

j∈Ni

Wi,j xj(k), i ∈ V, (2)

with initial conditionsxi(0) ∈ R, wherek = {0, 1, 2, · · · } is the discrete time index. Following

standard practice we assume the weight matrixW is a stochastic matrix, i.e.Wi,j ≥ 0 and

W1 = 1, where1 is a vector with all entries of 1. The distributed consensus protocol (2) can

be written in the following compact form:

x(k + 1) = Wx(k), (3)

wherex(k) = [x1(k), x2(k), · · · , xN (k)]
T is the states of theN agents at timek. It’s straightfor-

ward to obtain the following relationL = I −W , whereI is theN ×N identity matrix andL

is the Laplacian matrix associated with the graph withWi,j as its weights on the directed edge

(i, j). In addition, their spectra are related byσ(L) = 1−σ(W ), i.e.µℓ(L) = 1−λℓ(W ), where

ℓ ∈ {1, 2, · · · , N} andµℓ, λℓ are the eigenvalues ofL andW respectively. The linear distributed

consensus protocol (3) impliesx(k) = W kx(0). We assumeW is strong connected (irreducible)

and primitive. In that case the spectral radius ofW is 1 and there is exactly one eigenvalue on

the unit disk. Letπ ∈ R
1×N be the left Perron vector ofW corresponding to the eigenvalue of

1, i.e. πW = π, πi > 0 and
∑N

i=1 πi = 1, we have

lim
k→∞

W k = 1π, (4)

Therefore, all the states of theN agents asymptotically converge to a steady state valuex̄ as

k → ∞,

lim
k→∞

x(k) = 1πx(0) = 1x̄, (5)

wherex̄ =
∑N

i=1 πixi(0).

One of the most important feature of linear distributed consensus is the rate of convergence

to its steady state value. It’s well known that for a primitive stochastic matrix, the rate of
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convergenceR can be measured by the spectral gapR = 1−ρ(W ), whereρ(W ) is the essential

spectral radius ofW , which is defined as

ρ(W ) := max{|λ| : λ ∈ σ(W ) \ {1}}.

If the eigenvalues ofW are real and they are ordered in a non-increasing fashion such that

1 = λ1 ≥ λ2 ≥ · · · ≥ λN , then the convergence rate ofW is given by

R = 1− ρ(W ) = min{1− λ2, 1 + λN}. (6)

In addition, from Gerschgorin circle theorem, we have thatλN ≥ −1+2maxiWii. If maxi Wii 6=
0, then1+λN is a constant bounded away from0. Therefore, the key to find a lower bound for

the convergence rate ofW is to find an upper bound on the second largest eigenvalueλ2 of W .

Equivalently, we can find a lower bound of the second smallesteigenvalueµ2 of the associated

Laplacian matrixL, sinceµ2 = 1− λ2.

Definition 1: We say a graphG has symmetricweights if Wi,j = Wj,i for each pair of

neighboring agents(i, j) ∈ E. Otherwise, the weights are calledasymmetric. �

If the weights are symmetric, the matrixW is doubly stochastic, meaning that each row and

column sum is1.

The following theorem summaries the results in [10] on the convergence rate of consensus

with symmetric weights in a broad class of graphs that include lattices. AD-dimensional lattice,

specifically aN1 ×N2 × · · · ×ND lattice, is a graph withN = N1 ×N2 × · · · ×ND nodes, in

which the nodes are placed at the integer unit coordinate points of theD-dimensional Euclidean

space and each node connects to other nodes that are exactly one unit away from it. AD-

dimensional lattice is drawn inRD with a Cartesian reference frame whose axes are denoted by

x1, x2, · · · , xD. We call a graph is aL-Z geometric graphif it can be seen as a perturbation of

regular lattice inD-dimensional space; each node connects other nodes within acertain range.

The formal definition is given in [10].

Theorem 1:Let G be aD-dimensional connected L-Z geometric graph or lattice and let W

be any doubly stochastic matrix compatible withG. Then

c1
N2/D

≤ R ≤ c2
N2/D

, (7)

whereN is the number of nodes in the graphG and c1, c2 are some constants independent of

N . �

January 20, 2020 DRAFT
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The above theorem states that for any connected L-Z geometric/lattice graphG, the convergence

rate of consensus with symmetric weights cannot be bounded away from 0 uniformly with the

sizeN of the graph. The convergence rate of the network becomes arbitrarily slow asN increases

without bound. The loss of convergence rate with symmetric information graph has also been

observed in the vehicular formation [17], [18]. In fact, another important conclusion of the result

above is that heterogeneity in weights among nodes, as long asW is symmetric, does not change

the asymptotic scaling of the convergence rate. At best it can change the constant in front of the

scaling formula (see [9] also). Therefore, even centralized weight optimization scheme proposed

in [12], [13] - that constrain the eights to be symmetric in order to make the optimization problem

convex - will suffer from the same issue as that of un-optimized weights on the edges. Namely,

the convergence rate will decay asO(1/N2/D) in a D-dimensional lattice/L-Z geometric graph

even with the optimized weights. In the rest of the paper, we study the problem of speeding up

the convergence rate by designingasymmetricweights.

III. FAST CONSENSUS OND-DIMENSIONAL LATTICES

First we establish technical results (whose proofs are provided in the appendix) on the spectrum

and Perron vectors ofD-dimensional lattices with asymmetric weights on the edges. We then

summarize their design implications at the end of sectionIII-A .

A. Asymmetric weights in lattices

We first consider distributed consensus on a 1-dimensional lattice. This will be useful in

generalizing toD-dimensional lattices. Each agent interacts with its nearest neighbors in the

lattice (one on each side). Its information graph is depicted in Figure1. The updating law of

agenti is given by

xi(k + 1) = Wi,ixi(k) +Wi,i−1xi−1(k) +Wi,i+1xi+1(k).

wherei ∈ {2, 3, · · · , N−1}. The updating laws of the1-st andN-th agents are slightly different

from the above equation, since they only have one neighbor.

January 20, 2020 DRAFT
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Fig. 1. Information graph for a 1-D lattice ofN agents.

The weight matrixW (1) for the 1-dimensional lattice is tridiagonal:

W (1) =





















W1,1 W1,2

W2,1 W2,2 W2,3

. . . . . .

WN−1,N−2 WN−1,N−1 WN−1,N

WN,N−1 WN,N





















.

The following lemma gives the spectrum and the left-hand Perron vector for the weight matrix

W (1).

Lemma 1:Let W (1) be the weight matrix associated with the1-dimensional lattice with the

weights given byWi,i+1 = c,Wi+1,i = a, wherea 6= c are positive constants anda + c ≤ 1.

Then its eigenvalue are

λ1 = 1, λℓ = 1− a− c+ 2
√
ac cos

(ℓ− 1)π

N
,

whereℓ ∈ {2, · · · , N}, and its left Perron vector is

π =
1− c/a

1− (c/a)N
[1, c/a, (c/a)2, · · · , (c/a)N−1]. �

We next consider consensus on aD-dimensional lattice with the following weights

Wi,id+ = cd, Wi,id− = ad, (8)

where ad 6= cd are positive constants and
∑D

d=1 ad + cd ≤ 1. The notationid+ denotes the

neighbor on the positivexd axis of nodei andid− denotes the neighbor on the negativexd axis

of nodei. For example,21+ and 21− in Figure 2 denote node3 and node1, respectively, and

22+ is node5.
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Fig. 2. A pictorial representation of a 2-dimensional lattice information graph with the weightsW (2)

i,id+
= cd,W

(2)

i,id−
= ad,

whered = 1, 2.

Lemma 2:Let W (D) be the weight matrix associated with theD-dimensional lattice with the

weights given in (8). Then its eigenvalues are given by

λ~ℓ (W
(D)) = 1−

D
∑

d=1

(1− λℓd(W
(1)
d )),

where~ℓ = (ℓ1, ℓ2, · · · , ℓD), in which ℓd ∈ {1, 2, · · · , Nd} andW (1)
d is theNd×Nd weight matrix

associated with a1-dimensional lattice with the weights given byW (1)
d (i, i+ 1) = cd,W

(1)
d (i+

1, i) = ad andi ∈ {1, · · · , Nd − 1}. Its left Perron vector isπ = π
(1)
D ⊗ π

(1)
D−1⊗ · · ·⊗ π

(1)
1 , where

π
(1)
d is the left Perron vector ofW (1)

d . �

The next theorem shows the implications of the preceding technical results on the convergence

rate inD-dimensional lattices.

Theorem 2:Let G be aD-dimensional lattice graph and letW (D) be an asymmetric stochastic

matrix compatible withG with the weights given in (8). Then the convergence rate satisfies

R ≥ c0, (9)

wherec0 ∈ (0, 1) is a constant independent ofN . �

Remark 1:Recall from Theorem1, for any L-Z geometric or lattice graphs, as long as the

weight matrixW is symmetric, no matter how do we design the weightsWi,j, the convergence

rate becomes progressively smaller as the number of agentsN increases, and it cannot be

uniformly bounded away from0. In contrast, Theorem2 shows that for lattice graphs, asymmetry

January 20, 2020 DRAFT
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in the weights makes the convergence rate uniformly boundedaway from0. In fact, any amount of

asymmetry along the coordinate axes of the lattice (ad 6= cd), will make this happen. Asymmetric

weights thus make the linear distributed consensus law highly scalable. It eliminates the problem

of degeneration of convergence rate with increasingN .

The second question is where do the node states converge to with asymmetric weights? Recall

that the asymptotic steady state value of all agents isx̄ =
∑N

i=1 πixi(0). For a lattice graph,

its Perron vectorπ is given in Lemma1 and Lemma2. Thus we can determine the steady

state valuex̄ if the initial value x(0) is given. This information is particularly useful to find

the rendezvous position in multi-vehicle rendezvous problem. On the other hand, we see from

Lemma1 and Lemma2 that if ad 6= cd, thenπi 6= 1
N

, which implies the steady-state value is not

the average of the initial values. The asymmetric weight design is not applicable to distributed

averaging problem. �

B. Numerical comparison

In this section, we present the numerical comparison of the convergence rates of the distributed

protocol (3) between asymmetric designed weights (Theorem2) and symmetric optimal weights

obtained from convex optimization [12], [13]. For simplicity, we take the1-D lattice as an

example. The asymmetric weights used areWi,i+1 = c = 0.3,Wi+1,i = a = 0.2. We see from

Figure3 that the convergence rate with asymmetric designed weightsis much larger than that with

symmetric optimal weights. In addition, given the asymmetric weight valuesc = 0.3, a = 0.2,

we obtain from Lemma1 that λ2 ≤ 0.5 + 2
√
0.06, λN ≥ 0.5 + 2

√
0.06, which implies

R = min{1− λ2, 1 + λN} ≥ 0.5− 2
√
0.06. (10)

We see from Figure3 that the convergence rateR is indeed uniformly bounded below by (10).

IV. FAST CONSENSUS IN MORE GENERAL GRAPHS

In this section, we study how to design the weight matrixW to increase the convergence

rate of consensus in graphs that are more general than lattices. We use the idea of continuum

approximation. Under some “niceness” properties, a graph can be thought of as approximation

of a D-dimensional lattice, and by extension, of the Euclidean space corresponding toRD [19].

January 20, 2020 DRAFT
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Fig. 3. Comparison of convergence rate of1-D lattice between asymmetric design and convex optimization (symmetric optimal).

These properties have to do with the graph not having arbitrarily large holes etc. Precise

conditions under which a graph can be approximated by theD-dimensional lattice are explored

in [20] (for infinite graphs) and in [10] (for finite graphs). The dimensionD of the corresponding

lattice/Euclidean space is also determined by these properties.

The key is to embed the discrete graph problem into a continuum-domain problem. We use

a Sturm-Liouville operator to approximate the Laplacian matrix of a D-dimensional geometric

graph. A D-dimensional geometric graph is simply a graph with a mapping of nodes to points in

R
D. Based on this approximation, we re-derive the asymmetric weights for lattices described in

the previous section as values of continuous functions defined overRD along the principal axes

in R
D. In a lattice, the neighbors of a node lie along the principalcanonical axes ofRD. For an

arbitrary graph, the weights are now chosen as samples of thesame functions, along directions

in which the neighbors lie.

The method is applicable to arbitrary dimension, but we onlyconsider the 2-D case in this

paper. Graphs with 2-D drawings are one of the most relevant classes of graphs for sensor

networks where consensus is likely to find application.
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Fig. 4. Continuum approximation of general graphs.

A. Continuum approximation

Recall that the convergence rate is intimately connected tothe Laplacian matrix. We will

show that the Laplacian matrix associated with a large 2-D lattice with certain weights can

be approximated by a Sturm-Liouville operator defined on a 2-D plane. Thus it’s reasonable

to suppose that the Sturm-Liouville operator is also a good (continuum) approximation of the

Laplacian matrix of large graphs with 2-D drawing. We start from 2-D lattice graph and derive

a Sturm-Liouville operator. We then use this operator to approximate the graph Laplacian of

more general graphs. The idea is illustrated in Figure4.

For ease of description, we first consider a 1-D lattice, withthe following asymmetric weights

inspired by [21],

Wi,i+1 = c =
1 + ε

2
, Wi+1,i = a =

1− ε

2
, (11)

wherei ∈ {1, 2, · · · , N − 1} andε ∈ (0, 1) is a constant. The graph Laplacian corresponding to

the weights given in (11) is given by

L(1) =





















1+ε
2

−1−ε
2

−1+ε
2

1 −1−ε
2

. . . . . . . . .

−1+ε
2

1 −1−ε
2

−1+ε
2

1−ε
2





















. (12)

Recall that to find a lower bound of the convergence rate of theweight matrixW (1), it’s sufficient

to find a lower bound of the second smallest eigenvalue of the associate Laplacian matrixL(1).
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We now use a Sturm-Liouville operator to approximate the Laplacian matrixL(1). We first

consider the finite-dimensional eigenvalue problemL(1)φ = µφ,




















1+ε
2

−1−ε
2

−1+ε
2

1 −1−ε
2

. . . . . . . . .

−1+ε
2

1 −1−ε
2

−1+ε
2

1−ε
2









































φ1

φ2

...

φN−1

φN





















= µ





















φ1

φ2

...

φN−1

φN





















.

Expanding the equation, we have the following coupled difference equations

−1 + ε

2
φi−1 + φi +

−1− ε

2
φi+1 = µφi,

wherei ∈ {1, 2, · · · , N} andφ0 = φ1, φN+1 = φN . The above equation can be rewritten as

− 1

2N2

φi−1 − 2φi + φi+1

1/N2
− ε

N

φi+1 − φi−1

2/N
= µφi.

The starting point for the continuum approximation is to consider a functionφ(x) : [0, 1] → R

that satisfies:

φi = φ(x)|x=i/(N+1), (13)

such that functions that are defined at discrete pointsi will be approximated by functions that are

defined everywhere in[0, 1]. The original functions are thought of as samples of their continuous

approximations. Under the assumption thatN is large, using the following finite difference

approximations:
[φi−1 − 2φi + φi+1

1/N2

]

=
[∂2φ(x, t)

∂x2

]

x=i/(N+1)
,

[φi+1 − φi−1

2/N

]

=
[∂φ(x, t)

∂x

]

x=i/(N+1)
,

the finite-dimensional eigenvalue problem can be approximated by the following Sturm-Liouville

eigenvalue problem

L(1)φ(x) = µφ(x), L(1) = − 1

2N2

d2

dx2
− ε

N

d

dx
, (14)

with the following Neumann boundary conditions

dφ(0)

dx
=

dφ(1)

dx
= 0. (15)
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Lemma 3:The eigenvalues of the Sturm-Liouville operatorL(1) (14) with boundary condi-

tion (15) for 0 < ε < 1 are real and the first two smallest eigenvalues satisfy

µ1(L(1)) = 0, µ2(L(1)) ≥ ε2/2. �

We see from Lemma3 that the second smallest eigenvalue of the Sturm-Liouvilleoperator

L(1) is uniformly bounded away from zero. This result is not surprising, since it’s a continuum

counterpart of Lemma1, which shows that the second smallest eigenvalue corresponding to the

1-D lattice with designed asymmetric weights is uniformly bounded below.

We now consider the distributed consensus on D-dimensionallattices. In particular, we consider

the following weights on the graph

W
(D)

i,id+
= cd =

1 + ε

2D
, W

(D)

i,id−
= ad =

1− ε

2D
, (16)

whereε ∈ (0, 1) is a constant.

The Laplacian matrix of the D-dimensional square lattices with the weights given in (16) is

given byL(D) = I − W (D). Following the similar procedure as the1-dimensional lattice, the

second smallest eigenvalue of the Laplacian matrixL(D) can be approximated by that of the

following Sturm-Liouville operator

L(D) = −
D
∑

ℓ=1

(
1

2DN2
d

d2

dx2
d

+
ε

DNd

d

dxd
), (17)

with the following Neumann boundary conditions

∂φ(~x)

∂xd

∣

∣

∣

xd=0 or 1
= 0, (18)

whered = 1, 2, · · · , D and~x = [x1, x2, · · · , xD]
T .

The continuum approximation has been used to study the stability margin of large vehicular

platoons [21], [22], in which the continuum model gives moreinsight on the effect of asymmetry

on the stability margin of the systems. In this paper, we use the second smallest eigenvalue of

the Sturm-Liouville operatorL(D) to approximate that of the Laplacian matrixL(D).

Theorem 3:The second smallest eigenvaluesµ2(L(D)) of the Sturm-Liouville operatorL(D) (17)

with boundary condition (18) for 0 < ε < 1 is real and satisfies

µ2(L(D)) ≥ ε2

2D
, (19)

which is a positive constant independent ofN . �
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B. Weight design for general graphs

The inspiration of the proposed method comes from the designfor lattices. The4 weights

for each nodei in a 2-D lattice can be re-expressed as samples of a continuous functiong :

[0, 2π) → [1−ǫ
4
, 1+ǫ

4
]:

Wi,i1+ = g(θi,i1+), Wi,i2+ = g(θi,i2+),

Wi,i1− = g(θi,i1−), Wi,i2− = g(θi,i2−)

whereθi,j is the relative angular position ofj with respect toi. Given the angular positions of

i’s neighbors and the values of the weights, we know that the function g must satisfy:

g([0,
π

2
, π,

3π

2
]) = [

1 + ε

4
,
1 + ε

4
,
1− ε

4
,
1− ε

4
]. (20)

Thus, we choose the functiong as shown in Figure5 (b).

For an arbitrary graph, we now choose the weights by samplingthe function according to the

angle associated with each edge(i, j):

Wi,k =
g(θi,k)

∑

j∈Ni
g(θi,j)

, (21)

whereg(·) is the function described in Figure5 (b). The above weight function (21) can be seen

as a linear interpolation of (20). We see from (21) that the weight on each edge is computable in a

distributed manner; a node only needs to know the angular position of its neighbors. This design

method does not require any knowledge of the network topology or centralized computation.
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C. Numerical comparison

In this section, we present the numerical comparison of convergence rates among asymmetric

design, symmetric optimal weights and weights chosen by theMetropolis-Hastings method.

The symmetric optimal weights are obtained by using convex optimization method [9], [12].

The Metropolis-Hastings weights are picked by the following rule: Wi,j = 1/|Ni|, whereNi

denotes the number of nodei’s neighbors. The weights generated by this method are in general

asymmetric. We plot the convergence rateR as a function ofN , whereN is the number of

agents in the network. The amount of asymmetry used isε = 0.5.
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Fig. 6. Examples of2-D L-Z geometric, Delaunay and random geometric graphs.

We first consider a L-Z geometric graph [10], which is generated by perturbing the position of

a square2-D lattice (N1 = N2 =
√
N ) with Gaussian random noise (zero mean and1/(4

√
N)

standard deviation) and connect each nodes with the other nodes that are within2/
√
N of

radius neighborhood. Second, we consider a Delaunay graph [5], which is generated by placing

N nodes on a 2-D unit square uniformly at random and connectingany two nodes if their

corresponding Voronoi cells intersect, as long as their Euclidean distance is smaller than1/3.

Finally, we consider a random geometric graphs [23], which is generated by placingN nodes

on a 2-D unit square uniformly at random and connecting pairsof nodes that are within distance

3/
√
N of each other. Figure6 gives examples of L-Z geometric graphs, Delaunay graphs and

random geometric graphs.
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optimal. For eachN , results from5 sample graphs are plotted.
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Fig. 8. Mean of convergence rates of L-Z geometric, Delaunayand random geometric graphs with asymmetric design (AS)

and Metropolis-Hastings (MH) for largeN computed from10 samples.

Figure 7 shows the comparison of convergence rates among asymmetricdesign, symmetric

optimal and Metropolis-Hastings weights. For eachN , the convergence rate of10 samples of

the graphs are plotted. We see from Figure7 that for almost every sample in each of the three

classes, the convergence rate with the asymmetric design isan order of magnitude larger than the

others, especially whenN is large. In addition, the convergence rates with symmetricoptimal

and Metropolis-Hastings methods are similar. Moreover, weobserve from Figure8 (a) and (c)

that the slopes of the convergence rates with asymmetric design for L-Z geometric graphs and

random geometric graphs are becoming progressively smaller with increasingN , which indicates

that the convergence rate has a potential to be uniformly bounded below whenN becomes

arbitrarily large. The convergence rates with symmetric optimal weights are not included, since

the numerical computations for largeN are extremely expensive.

V. CONCLUSIONS AND FUTURE WORK

We studied the problem of how to design weights to increase the convergence rate of distributed

consensus in networks with static topology. We proved that on lattice graphs, with proper choice

of asymmetric weights, the convergence rate can be uniformly bounded away from zero. In

addition, we propose a distributed weight design algorithmfor 2-dimensional geometric graphs

to improve the convergence rate, by using a continuum approximation. Numerical calculations

show that the resulting convergence rate is substantially larger than that optimal symmetric
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weights and Metropolis Hastings weights.

An important open question is a precise characterization ofgraphs for which theoretical

guarantees on size-independent convergence rate can be provided with the proposed design. In

addition, characterizing the asymptotic steady state value for more general graphs than lattices

is also on-going work.
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APPENDIX

Proof of Lemma1. The stochastic matrixW (1) has a simple eigenvalueλ1 = 1. Following

Theorem 3.1 of [24], the other eigenvalues ofW (1) are given by

λℓ = 1− a− c+ 2
√
ac cos θℓ, ℓ ∈ {2, · · · , N},

whereθℓ (θ 6= mπ,m ∈ Z, Z being the set of integers) is the root of the following equation

2 sin(Nθ)cos(θ) = (a+ c)

√

1

ac
sinNθ,

which implies

sin(Nθ) = 0, or cos θ =
(a+ c)

2

√

1

ac
.

Sincea > 0, c > 0 anda 6= c, we have(a+c)
2

√

1
ac

> 1, thuscos θ 6= (a+c)
2

√

1
ac

. In addition, we

have thatθ 6= mπ, which yields

θℓ =
(ℓ− 1)π

N
, ℓ = {2, · · · , N}. (22)
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We now obtain the eigenvalues ofW (1), which is given by

λℓ = 1− a− c+ 2
√
ac cos

(ℓ− 1)π

N
, ℓ = {2, · · · , N}.

Let π = [π1, π2, · · · , πN ] be the left Perron vector ofW (1). From the definition of Perron vector,

we haveπW (1) = π. Thanks to the special structure of the tridiagonal form ofW (1), we can

solve forπ explicitly, which yields

πi = (c/a)i−1π1, (23)

wherei ∈ {2, 3, · · · , N}. In addition, we haveπi > 0 and
∑N

i=1 πi = 1. Therefore,

1 =

N
∑

i=1

πi =

N
∑

i=1

(c/a)i−1π1 ⇒ π1 =
1− c/a

1− (c/a)N
.

Substituting the above equation into (23), we complete the proof.

Proof of Lemma2. With the weights given in (8), it is straightforward - through a bit tedious - to

show that the graph LaplacianL(D) associated with theD-dimensional lattice has the following

form:

L(d) = INd
⊗ L(d−1) + L

(1)
d ⊗ IN1N2···Nd−1

, 2 ≤ d ≤ D,

whereL(1) = L
(1)
1 andL

(1)
d = 1 −W

(1)
d is the Laplacian matrix of dimensionNd × Nd, which

is given by

L
(1)
d =





















cd −cd

−ad ad + cd −cd
. . . . . . . . .

−ad ad + cd −cd

−ad ad





















. (24)

Since aD-dimensional lattice is the Cartesian product graph ofD 1-dimensional lattices, the

eigenvalues of the graph Laplacian matrixL(D) are sum of the eigenvalues of theD 1-dimensional

Laplacian matrixL(1)
d . Thus, we have

µℓ1,...,ℓD(L
(D)) =

D
∑

d=1

µℓd(L
(1)
d ).
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In addition, we have thatW (D) = IN − L(D) andW (1)
d = INd

−L
(1)
d , thus the eigenvaluesλ~ℓ of

W (D) are given by

λ~ℓ (W
(D)) = 1− µ~ℓ (L

(D)) = 1−
D
∑

d=1

µℓd(L
(1)
d )

= 1−
D
∑

d=1

(1− λℓd(W
(1)
d )).

To seeπ = π
(1)
D ⊗ π

(1)
D−1 ⊗ · · · ⊗ π

(1)
1 is the left Perron vector ofW (D), we first notice that

π
(1)
d W

(1)
d = π

(1)
d , π

(1)
d L

(1)
d = 0,

whered ∈ {1, · · · , D}. The rest of the proof follows by straightforward inductionmethod, we

omit the proof due to space limit.

Proof of Lemma 3. Multiply both sides of (14) by 2N2e2εNx, we obtain the standard Sturm-

Liouville eigenvalue problem

d

dx

(

e2εNxdφ(x)

dx

)

+ 2N2µe2εNxφ(x) = 0. (25)

According to Sturm-Liouville Theory, all the eigenvalues are real, see [25], [26]. To solve the

Sturm-Liouville eigenvalue problem (14)-(15), we assume solution of the form,φ(x) = erx, then

we obtain the following equation

r2 + 2εNr + 2µN2 = 0,

⇒ r = N(−ε ±
√

ε2 − 2µ). (26)

Depending on the discriminant in the above equation, there are three cases to analyze:

1) µ < ε2/2, then the eigenfunctionφ(x) has the following formφ(x) = c1e
N(−ε+

√
ε2−2µ)x+

c2e
N(−ε−

√
ε2−2µ)x, wherec1, c2 are some constants. Applying the boundary condition (15),

it’s straightforward to see that, for non-trivial eigenfunctionsφ(x) to exit, the following

equation must be satisfied

−ε+
√

ε2 − 2µ

ε+
√

ε2 − 2µ
= e2N

√
ε2−2µ−ε +

√

ε2 − 2µ

ε+
√

ε2 − 2µ
.

Thus, we haveµ = 0.

2) µ = ε2/2, then the eigenfunctionφ(x) has the following form

φ(x) = c1e
−εNx + c2xe

−εNx.
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Applying the boundary condition (15) again, it’s straightforward to see that there is no

eigenvalue for this case.

3) µ > ε2/2, then the eigenfunction has the following formφ(x) = e−εNx(c1 cos(N
√

2µ− ε2x)+

c2 sin(N
√

2µ− ε2x). Applying the boundary condition (15), for non-trivial eigenfunctions

to exit, the eigenvaluesµ must satisfyµ = ε2

2
+ ℓ2π2

2N2 , whereℓ = 1, 2, · · · .
Combining the above three cases, the eigenvalues of the Sturm-Liouville operator areµ ∈
{0, ε2

2
+ ℓ2π2

2N2 }, where ℓ ∈ {1, 2, · · · }. The second smallest eigenvalueµ2(L) of the Strum-

Liouville operatorL is then given by

µ2(L) =
ε2

2
+

π2

2N2
≥ ε2

2
,

which is a constant that is bounded away from0.

Proof of Theorem2. According to Lemma1, the eigenvalues ofW (1)
d are given by:

λ1(W
(1)
d ) = 1,

λℓ(W
(1)
d ) = 1− ad − cd + 2

√
adcd cos

(ℓd − 1)π

Nd
.

From Lemma2, the second largest eigenvalueλ2(W
(D)) and the smallest eigenvalueλN (W

(D))

of W (D) are given by

λ2(W
(D)) = 1− max

d∈{1,··· ,D}
(1− λ2(W

(1)
d ))

≤ 1− max
d∈{1,··· ,D}

(ad + cd − 2
√
adcd), (27)

λN(W
(D)) = 1−

D
∑

d=1

(1− λNd
(W

(1)
d ))

= 1−
D
∑

d=1

(ad + cd − 2
√
adcd cos

(Nd − 1)π

Nd
)

≥ 1−
D
∑

d=1

(ad + cd − 2
√
adcd). (28)

Recall thatR = min{1−λ2, 1+λN}. In addition,ad, cd are fixed constants and satisfyad 6= cd,
∑D

d=1 ad + cd ≤ 1, therefore the lower bounds of1 − λ2(W
(D)) and 1 + λN(W

(D)) are fixed

positive constants. We then have that the convergence rate of W (D) satisfyR = 1−ρ(W (D)) ≥ c0,

wherec0 is a constant independent ofN .
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Proof of Theorem3. By the method of separation of variables [25], [26], the eigenvalues of the

Sturm-Liouville operatorL(D) is given by

µ(L(D)) =
D
∑

d=1

µ(L(1)
d ), (29)

whereL(1)
d is the1-dimensional Sturm-Liouville operator given by

L(1)
d = − 1

2DN2
d

d2

dx2
d

− ε

DNd

d

dxd

,

with Neumann boundary conditions. Following Lemma3, we have that the smallest eigenvalue

of L(1)
d is 0 and the second smallest eigenvalue ofL(1)

d is bounded below byL(1)
d ≥ ε2/2D.

Therefore, we have from (29) that the second smallest eigenvalue is

µ2(L(D)) = min
d

{µ2(L(d))} ≥ ε2

2D
.
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