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Abstract— In this paper, we consider a consensus seeking
process based on repeated averaging in a randomly changing
network. The underlying graph of such a network at each time
is generated by a martingale random process. We prove that
consensus is reached almost surely if and only if the expected
graph of the network contains a directed spanning tree. We
then provide an example of a consensus seeking process based
on local averaging of opinions in a dynamic model of social
network formation which is a martingale. At each time step,
individual agents randomly choose some other agents to interact
with according to some arbitrary probabilities. The interaction
is one-sided and results in the agent averaging her opinion with
those of her randomly chosen neighbors based on the weights
she assigns to them. Once an agent chooses a neighbor, the
weights are updated in such a way that the expected values of
the weights are preserved. We show that agents reach consensus
in this random dynamical network almost surely. Finally, we
demonstrate that a Polya Urn process is a martingale process,
and our prior results in [1] is a special case of the model
proposed in this paper.

I. INTRODUCTION

Consensus algorithms based on local averaging have at-
tracted a significant amount of attention in a diverse set
of applications and contexts. These applications range from
parallel and distributed computation [2], distributed control
and coordination [3]–[5] and robotics [6], to opinion dy-
namics and belief formation in social networks [7], [8].
Recently, however, there has been a growing interest in
studying consensus algorithms in a probabilistic setting.
This randomness can be due to the unpredictability of the
environment in which the communication between agents
occurs or due to the inherent probabilistic characteristic of
the communication among agents [9].

Existing results on random consensus include the case of
Erdos-Reyni model (where edges are independent from each
other and also independent over time) [10], as well as [11]
and [12]. In [13], the authors study consensus over randomly
switching networks where the graphs are i.i.d. over time,
but graph edges could be correlated. The authors show that
consensus is reached almost surely in i.i.d. networks if and
only if the graphs of the networks contain a directed spanning
tree in expectation. Closed form formulas for the mean and
the variance of consensus value in i.i.d. networks, in terms of
the first two moments of the i.i.d. weight matrices, is found
in [14].

In all of the studies mentioned above a common crucial
assumption is that the realizations of the network are inde-
pendent and identically distributed over time. This is in fact a
very strong assumption; since in many realistic applications
the realizations of a network at different time steps are
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correlated. For instance, in wireless networks links formed
at each time step are strongly correlated with links formed
at previous time steps. Also in social network settings, the
interactions between people at each time depend on the
social interactions in the past and will influence the future
formation of the social network. Therefore, network models
which allow for correlation in time seem to be more realistic.

In certain special cases (such as the case of an ergodic
stationary process [14] or a Markov process [15]) similar
results can be derived for non-i.i.d. processes. In [14],
the authors show that the independence assumption can be
replaced by ergodicity and stationarity. More recently, the
authors in [15] have shown similar results (albeit under
more stringent conditions) for the average consensus problem
when the network change is governed by a Markov chain.

One property that both i.i.d. and ergodic stationary pro-
cesses have in common is that the expected graph remains
fixed over time. In fact, the necessary and sufficient condition
for consensus in these two settings is provided for this
constant expected graph of the network. Therefore, one is
tempted to conclude that a process which preserves the
expectation over time is likely to reach consensus. For exam-
ple a social network where the interactions between agents
change over time, while the expectation of the interactions
stays constant.

One of the most well known class of stochastic processes
in which the expectation is preserved is a martingale process.
In a martingale process, the realizations of the process can be
correlated over time, although the expectation of the process
does not change. In fact the main property of a martingale
process is that the observed value of the process at each time
step is equal to the expectation of the process at the next time
step with respect to the available information so far.

In this paper we provide a necessary and sufficient condi-
tion for almost sure convergence to consensus in the linear
dynamical system x(k + 1) = W (k)x(k), where the weight
matrices are generated by a martingale stochastic process.
We show that we reach consensus with probability one
if the expected graph of the network contains a directed
spanning tree. Algebraically, this condition is equivalent to
λ2(E(W (k))) < 1. This is easily verifiable and only depends
on the spectrum of the average weight matrix E(W (k)). It
is in fact the same condition for consensus in both i.i.d. and
ergodic-stationary graph processes.

The rest of this paper is organized as follows: In section II,
we rigorously define a martingale graph process . In sec-
tion III, we introduce the notion of consensus over random
graph processes and we define the coefficient of ergodicity.
In section IV, we study distributed consensus algorithms
over martingale random networks and provide necessary and
sufficient conditions for almost sure consensus. In section V,
we propose a consensus seeking process based on local
averaging of opinions in a dynamic model of social network



formation which is a martingale and also is the generalization
of our proposed model in [1]. Finally, in section VI, we
conclude the paper.

II. MARTINGALE MATRIX PROCESSES

Let (Ω0,B) be a measurable space, where Ω0={set of
stochastic matrices of order n with strictly positive diagonal
entries} and B is the Bored σ-algebra on Ω0. Consider
probability measure P defined on the sequence space (Ω,F)

Ω = {(w1, w2, . . .) : wk ∈ Ω0}
F = B × B × . . .

such that (Ω,F ,P) forms a probability space. Let ϕ :
Ω → Ω be the shift operator defined as ϕ(w1, w2, . . .) =
(w2, w3, . . .) and define the first coordinate map W : Ω →
Ω0 as W (w) = w1. For w ∈ Ω, we define the sequence of
stochastic matrices {Wk(w) : k ≥ 1}, where Wk(w) ,
W (ϕk−1w) = wk. For notational simplicity, we denote
Wk(w) by W (k).

Definition 1: A sequence {Fk, k ≥ 0} of σ-fields is called
a filtration on (Ω,F) if Fk ⊆ Fk+1 ⊆ F for all {k ≥ 0}. A
sequence {W (k)} of random matrices on (Ω,F ,P) is said to
be adapted to the filtration {Fk} if W (k) ∈ Fk for each k. In
other words, an adopted sequence at each time is measurable
with respect to the information of the process so far.

Definition 2: For a sequence of matrices, a submartingale
process is an adapted sequence to the filtration {Fk} satis-
fying the inequality

E(Wij(k + 1)|Fk) ≥Wij(k).

If the inequality holds with strict equality

E(Wij(k + 1)|Fk) = Wij(k),

the sequence of matrices is a martingale process. In other
words, {W (k)} is a martingale process if the observed value
of the process at each time step is equal to the expectation
of the process at the next time step with respect to the
available information so far. Obviously a martingale process
is submartingale as well. By taking conditional expectation
from both sides of a martingale process we have

E(Wij(k + 1)) = E(Wij(k)).

Therefore, the expectation of a martingale process is pre-
served over time. This is in fact a very useful property of a
martingale process and is the same property as that of i.i.d.
and ergodic stationary processes. Having the conservation
of expectation in both i.i.d. and martingale processes, we
can predict that these two processes might have the same
important properties as well, which we will discuss in the
following chapters.

III. CONSENSUS OVER RANDOM NETWORKS

In this section, we present our framework for consensus
algorithms over martingale graph processes. Consider the
discrete-time dynamical system

x(k + 1) = W (k)x(k), (1)

where k ∈ {0, 1, 2, ...} is the discrete time index, x(k) ∈ Rn

is the state vector at time k, and {W (k)}∞k=0 is a martingale

sequence of stochastic matrices with strictly positive diago-
nals, defined in the section II. In social network settings, we
can think of xi(k) ∈ R as the belief or opinion of agent i at
time k, where at each time each agent takes an average of
her belief and the belief of the agents she has access to. In
other words, linear dynamical system (1) can be viewed as a
distributed averaging scheme over the set of n vertices, where
at each time step each agent updates her belief as a convex
combination of the beliefs of her neighbors and her belief at
the previous time step. The neighborhood relation between
different agents at each time step is captured by the weight
matrix W (k) where Wij(k) is the weight that agent i assigns
to agent j. From the graph theory point of view, the weight
matrix W (k) corresponds to the weighted graph G(W (k))
defined on n vertices, where an edge (i, j) from vertex i to
vertex j exists with weight Wji if and only if Wji 6= 0. In
this case, we say vertex j has access to vertex i. We say
vertices i and j communicate if both (i, j) and (j, i) are
edges of G(W (k)). Note that communication relation is an
equivalence relation and defines equivalence classes on the
set of vertices. If no vertex in a specific communication class
has access to any vertex outside that class, i.e. Wir = 0 for
all vertices i inside the communication class and all vertices
r outside the communication class, such a class is called
initial. For communication classes of a stochastic matrix we
have the following lemma (the proof can be found in [16])
which we use in the next section.

Lemma 1: Suppose that W is a stochastic matrix for
which its corresponding graph has s communication classes
named α1, . . . , αs. Class αr is initial, if and only if the
spectral radius of αr[W ] equals to 1, where αr[W ] is the
submatrix of W corresponding to the vertices in the class
αr.
We say dynamical system (1) reaches consensus asymptot-
ically on some path w ∈ Ω, if along that path, |xi(k) −
xj(k)| → 0 as k → ∞ for all i, j ∈ {1, . . . , n}. In other
words, the system reaches consensus on some path, if the
difference between any two elements of the state vector,
on that path, converges to zero. Almost sure convergence
to consensus can also be defined as follows.

Definition 3: Dynamical system (1) reaches consensus al-
most surely, if for any initial state x0 and all i, j ∈ {1, . . . , n}

P( lim
k→∞

|xi(k)− xj(k)| = 0) = 1.

In other words, the dynamical system reaches consensus
almost surely, if for all sample path w ∈ Ω, the system
reaches consensus asymptotically.
We now define the coefficient of ergodicity which is a useful
tool in dealing with infinite products of stochastic matrices
and as a result with consensus in dynamical systems.

Definition 4: The scalar continuous function τ(.) defined
on the set of n×n stochastic matrices is called a coefficient
of ergodicity if it satisfies 0 ≤ τ(.) ≤ 1. A coefficient of
ergodicity is said to be proper if

τ(W ) = 0, if and only if W = 1nd
T

where d is a vector of size n satisfying dT1n = 1.



Two examples of coefficients of ergodicity are

κ(W ) =
1

2
max
i,j

n∑
s=1

|Wis −Wjs|,

ν(W ) = 1−max
j

(min
i
Wij).

Note that ν(W ) is an improper coefficient of ergodicity,
while κ(W ) is proper, and for any stochastic matrix W , they
satisfy

κ(W ) ≤ ν(W ). (2)

The coefficient of ergodicity is submultiplicative for row-
stochastic matrices, i.e.

τ(W (n) · · ·W (2)W (1)) ≤
n∏

k=1

τ(W (k)). (3)

Therefore, if τ(W (k)) < 1 − ε < 1 for all k and some
constant ε > 0, then limn→∞

∏n
k=1W (k) = 1nd

T and the
dynamical system (1) reaches consensus.

IV. CONVERGENCE OF CONSENSUS ALGORITHMS OVER
MARTINGALE GRAPH PROCESSES

In this section, we provide a necessary and sufficient
condition for linear dynamical system (1) to reach consensus
almost surely, when weight matrix process {W (k)} is gen-
erated according to a martingale process. Our results contain
the result of our previous work in [1] as a special case,
where the number of links for each agent at each time step
is constant. We show that the dynamical system (1) reaches
consensus in three steps. In the first step, we show that a
(sub)martingale sequence of stochastic matrices converges
to a random limit almost surely. In the second step, we
show that if the expected graph of the network contains a
directed spanning tree, then the network’s graph’s random
limit contains a directed spanning tree almost surely as well.
In the third step, utilizing the results of the previous steps, we
show that a dynamical system containing a directed spanning
tree in expectation, and as a result in the random limit,
reaches consensus almost surely.

A. Convergence to a Random Limit

In this subsection, we show that a martingale sequence of
stochastic matrices, and its composition with power function,
converges to a random limit almost surely. For this purpose
and to develop some basic tools for our analysis, we review
the concept of convexity with respect to the non-negative
matrix cone.

Lemma 2: The power of a non-negative matrix is convex
with respect to the non-negative matrix cone.

Proof: We prove by induction that (αX+(1−α)Y )n ≤
αXn + (1− α)Y n. For k = 2 it can be easily seen that the
inequality holds:

(αX + (1− α)Y )2

= α2X2 + (1− α)2Y 2 + α(1− α)(XY + Y X)

≤ α2X2 + (1− α)2Y 2 + α(1− α)(X2 + Y 2)

= αX2 + (1− α)Y 2.

The last inequality holds since 0 ≤ (X−Y )2, and therefore,
XY +Y X ≤ X2 +Y 2. Now let us assume that it holds for
k = n. Then for k = n+ 1 we have

(αX + (1− α)Y )n+1

≤ (αXn + (1− α)Y n)(αX + (1− α)Y )

= α2Xn+1 + (1− α)2Y n+1 + α(1− α)(XnY + Y nX)

≤ α2Xn+1 + (1− α)2Y n+1 + α(1− α)(Xn+1 + Y n+1)

= αXn+1 + (1− α)Y n+1.

The last step is true since if X ≤ Y then Xn ≤ Y n and as
a result

0 ≤ (X − Y )(Xn − Y n) =>

XnY + Y nX ≤ Xn+1 + Y n+1.

Since the inequality holds for k = n+ 1, the proof is com-
plete by induction. This weighted average can be generalized
to the expectation of matrices since the expectation is simply
the weighted average of the outcomes of a random variable,
where the weights are based on the probabilities of those
outcomes.
From lemma 2 we can easily obtain a matrix inequality,
similar to Jenson’s inequality for the scalar power function,
which is with respect to the non-negative matrix cone

(E(W ))n ≤ E(Wn). (4)

Having defined a martingale and a submartingale process in
section II and using the convexity of power function for the
space of matrices in lemma 2, now we state a lemma for the
composition of a convex function and a martingale process.
The proof of this lemma can be found in [17].

Lemma 3: If {W (k)} is a martingale sequence of ma-
trices with respect to Fk and ϕ is a convex function with
respect to the non-negative matrix cone and E|ϕ(Wij(k))| <
∞ for all k, then the sequence of matrices {ϕ(W (k))} is a
submartingale with respect to Fk.
Note that if a matrix sequence is stochastic, then it is bounded
and therefore satisfies the requirement of lemma 3.
Now in the next theorem (the proof can be found in [17]), we
show that if a sequence of stochastic matrices is a martingale
(or more generally submartingale) process then it converges
to a random limit almost surely.

Theorem 1: If {W (k)} is a (sub)martingale sequence of
matrices with supkE(Wij(k)) <∞, then as k →∞, W (k)
converges almost surely to a random limit matrix W with
E|Wij | <∞.
Lemma 2, lemma 3 and theorem 1 imply the following
corollary.

Corollary 1: A sequence of power of martingale stochas-
tic matrices, i.e. {Wn(k)}, is bounded and submartingale,
therefore, converges to a random limit matrix almost surely.

B. Directed Spanning Tree in the Expected Graph and in the
Random Limit

In this subsection, we show that if the expected graph of
a martingale process contains a directed spanning tree, then
the limit of the process contains a directed spanning tree
almost surely as well. For this purpose, we first introduce
some definitions which we will use later in this subsection.

Definition 5: A directed graph is called strongly con-
nected if there is a path from each vertex in the graph to



every other vertex. A matrix W is irreducible if and only if
its associated graph G(W ) is strongly connected.

Definition 6: Let W be a non-negative matrix. For an
index i the period of i is the greatest common divisor of
all natural numbers k such that (W k)ii > 0. When W is
irreducible, the period of every index is the same and is
called the period of W . If the period is 1, the irreducible
matrix W is aperiodic. It is obvious that if the irreducible
matrix W has positive diagonals, i.e. the strongly connected
graph G(W ) has self loops in all vertices, then the matrix
W is aperiodic.

Definition 7: A matrix W is primitive if it is non-negative
and its n-th power is positive (Wn > 0) for some natural
number n. Note that it can be proved that primitive matrices
are the same as irreducible aperiodic non-negative matrices.
In the next theorem (refer to [16] for its proof) we show the
effect of the primitivity of a matrix on its largest eigenvalue.

Perron Frobenius Theorem: A stochastic, primitive (irre-
ducible with positive diagonals) matrix W has simple leading
eigenvalue of λ1(W ) = 1. Equivalently, λ2(W ) < 1 where
λ2(W ) is the eigenvalue with the second largest modulus.

Definition 8: A sequence of random matrices {W (k)} is
uniformly integrable if for each ij-th entry of matrices

lim
M→∞

(supkE(|Wij(k)|; |Wij(k)| > M)) = 0.

In other words, a sequence of random matrices is uniformly
integrable if its expected value has no mass in infinity. As an
example, a collection of submartingale stochastic matrices,
which are obviously bounded, are uniformly integrable.
Now we define the convergence in `1 norm which is different
from almost sure convergence.

Definition 9: A sequence of random matrices {W (k)}
converges to a random matrix W in `1 norm if for each
ij-th entry of matrices we have

lim
k→∞

E(|Wij(k)−Wij |) = 0.

Introducing basic definitions for our analysis, we state a
lemma (the proof can be found in [17]) relating the uniform
integrability (e.g. a bounded process) and convergence in `1.

Lemma 4: For a submartingale sequence of matrices
{W (k)}, uniform integrability and convergence in `1 are
equivalent.

Remark 1: If we have almost sure convergence for a
bounded process, then convergence in `1 can be concluded
from dominated convergence theorem as well.
Dominated Convergence Theorem: If Xk → X a.s., |Xk| ≤
Y for all k, and E(Y ) < ∞, then E(Xk) → E(X).
Therefore, if we have a submartingale sequence of stochastic
matrices (which is obviously bounded), from theorem 1 we
know that the sequence converges almost surely, and as a
result of dominated convergence theorem the convergence
in `1 occurs as well. However, if we don’t have uniform
integrability (or boundedness), we may not have convergence
in `1, even if almost sure convergence occurs. Constructing
all necessary steps, we state a theorem for our main result
in this subsection.

Theorem 2: For a martingale sequence of non-negative,
stochastic matrices {W (k)}, if λ2(E(W (k))) < 1 (the
expected graph contains a directed spanning tree), then
λ2(W ) < 1 almost surely, where W = limk→∞W (k).

Proof: We prove for both cases where E(W (k)) is
irreducible and reducible. First suppose E(W (k)) is irre-
ducible. Since W (k) has positive diagonals, E(W (k)) is
primitive. Therefore, (E(W (k)))n > 0. We now prove by
contradiction that W = limk→∞W (k) is primitive as well.
Let us define Z(k) , Wn(k). Note that W (k) ≥ 0,
hence, Z(k) ≥ 0. Corollary 1 implies that the sequence
{Z(k)} is submartingale and converges to the random limit
Z = Wn = limk→∞Wn(k) almost surely. Also, since
stochastic matrices are bounded and as a result uniformly
integrable, by lemma 4 the submartingale sequence {Z(k)}
also converges in `1. Now let us assume Z = Wn > 0 does
not hold. Therefore, for some ij-th entry we have Zij = 0.
From convergence in `1 for the sequence {Z(k)} we have

lim
k→∞

E(|Zij(k)− Zij |) =

lim
k→∞

E(|Zij(k)|) = lim
k→∞

E(Zij(k)) = 0.
(5)

However, if we have (E(W (k)))n > 0, then from equation
(4) we have

E(Zij(k)) = E((Wn(k))ij) ≥ (E(W (k)))nij > 0, (6)

and since the expectation is preserved in a martingale pro-
cess, by taking the limit we have

lim
k→∞

E(Zij(k)) > 0,

which is a contradiction with equation (5). Therefore, W
is primitive and Perron Frobenius theorem implies that
λ2(W ) < 1 almost surely. This proves the result for the
case when E(W (k)) is irreducible.

Now suppose E(W (k)) is reducible. Without the loss of
generality, one can label the vertices such that E(W (k)) gets
the following block triangular form

E(W (k)) =


Q11 0 · · · 0
Q21 Q22 · · · 0

...
...

. . .
...

Qs1 Qs2 · · · Qss

 (7)

where each Qii is an irreducible matrix and represents the
vertices in the i-th communication class of E(W (k)). Since
λ2(E(W (k))) is subunit, lemma 1 from section III implies
that G(E(W (k))) has exactly one initial class. Assume α1

(the class corresponding to submatrix Q11 ) is the only initial
class of G(E(W (k))). Therefore, there exists a directed path
from a vertex in α1 (e.g., say, vertex labeled 1) to any vertex
of G(E(W (k))), such that the length of the path is at most
some positive integer m < n. In other words, any vertex of
G(E(W (k))) is at most an m-hop neighbor of vertex 1. This
combined with the fact that E(W (k)) has strictly positive
diagonals guarantees that the first column of (E(W (k)))m is
strictly positive. Since equation (6) holds element-wise, it can
be seen that the first column of Z = Wn = limk→∞Wn(k)
should be strictly positive as well. Therefore, σ(Wn) =
1 − ν(Wn) = maxj(miniW

n
ij) > ε. This and equation (2)

implies that κ(Wn) < 1 − ε. Hence, from equation (3) it
follows that κ(W kn) ≤ κk(Wn) < (1− ε)k, and as a result,
limk→∞ κ(W k) = 0. Since κ(.) is a proper coefficient of
ergodicity, we have limk→∞W k = 1nd

T . Therefore, for all
x ∈ Rn

lim
k→∞

W kx = (dTx)1n. (8)



Now if we represent x on the basis of eigenvectors of W we
get

Wx = W (α1v1 + α2v2 + · · ·αnvn) =

α1λ1(W )v1 + α2λ2(W )v2 + · · ·αnλn(W )vn.

Using the fact that for the stochastic matrix W , λ1(W ) = 1
and v1 = 1n and employing equation (8) we obtain

(dTx)1n = lim
k→∞

W kx = lim
k→∞

(α1λ
k
1(W )v1 + α2λ

k
2(W )v2

+ · · ·αnλ
k
n(W )vn) = α11n + lim

k→∞
(α2(W )λk2(W )v2

+ · · ·αnλ
k
n(W )vn).

Therefore, limk→∞ λk2(W ) = 0. As a result, |λ2(W )| <
1 almost surely. This proves the result for the case when
E(W (k)) is reducible.

C. Directed Spanning Tree in the Random Limit and Con-
sensus

In this subsection, we show that a dynamical system
reaches consensus almost surely if and only if it contains
a directed spanning tree in expectation. We discuss both
irreducible and reducible cases of the expected graph. In
order to obtain this result, we use the following theorem
which relates the consensus in a dynamical system to the
paracontraction of the limit of the process.

Definition 10: Let ||.|| denote a vector norm in Rn. A
n × n matrix W is nonexpansive with respect to ||.|| if for
all x ∈ Rn,

||Wx|| ≤ ||x||.

W is called paracontracting with resect to ||.|| if for all x ∈
Rn,

Wx 6= x⇔ ||Wx|| < ||x||.
It can be seen that any stochastic matrix W is nonexpansive.
Also if λ2(W ) < 1, the stochastic matrix W is paracontract-
ing as well.

Lemma 5: Let {W (k)} be a sequence of matrices which
are nonexpansive with respect to the same vector norm. If
there exists a subsequence of {W (k)} converging to a limit
matrix W and W is paracontracting with respect to some
norm, then x(k) defined by (1) reaches consensus.
The proof of this lemma can be found in [18].
Exploiting the results of the preceding three subsections, we
state the main result of this paper for consensus in martingale
graph processes in the following theorem.

Theorem 3: For a martingale sequence of non-negative,
stochastic matrices {W (k)}, with positive diagonals, x(k)
defined by equation (1) reaches consensus almost surely, if
and only if λ2(E(W (k))) < 1 (the expected graph of the
network contains a directed spanning tree).

Proof: Assume that λ2(E(W (k))) = 1. Since all wk ∈
Ω0 have positive diagonals, E(W (k)) has strictly positive
diagonal entries as well. Hence, if E(W (k)) is irreducible,
then it is primitive and as a result of Perron Frobenius
theorem λ2(E(W (k))) < 1, which is in contradiction with
our assumption. Therefore, λ2(E(W (k))) = 1 implies re-
ducibility of E(W (k)). As a result, without loss of generality,
it can be written as (7), where all Qii are irreducible matrices.
Since λ2(E(W (k))) = 1, submatrices corresponding to at
least two classes of E(W (k)) have unit spectral radius (note

that because of irreducibility and aperiodicity of Qiis, the
multiplicity of the unit-modulus eigenvalue of each one of
them cannot be more than 1). Therefore, lemma 1 implies

∃i 6= j such that αi and αj are both initial classes

or equivalently, Qir = 0 for all r 6= i and Qjl = 0 for
all j 6= l. In other words, the matrix E(W (k)) has two
orthogonal rows. This, and the non-negativity of the matrices
in {W (k) : k ≥ 1} imply that

∏k
m=1W (m) has two

orthogonal rows almost surely for any k. Therefore, there are
initial conditions for which random discrete-time dynamical
system (1) reaches consensus with probability zero.
Now we prove the reverse implication. Since λ2(E(W (k)))
is subunit, theorem 2 implies that λ2(W ) < 1. Therefore, W
is paracontracting with respect to some norm. From lemma
5 we can see that the dynamical system defined by equation
(1) reaches consensus almost surely.

V. A MARTINGALE MODEL OF SOCIAL NETWORK
FORMATION

In our previous work in [1], we showed consensus happens
in a Polya Urn model of social networks where at each time
step, each agent takes an average of her belief and the belief
of her neighbor. This model is an interesting model of social
network formation, however, it requires that at each time step
the current link associated to each agent is removed and is
replaced by another link, therefore, ∆Wij(k) = 0 for all k.
We can relax this requirement to a constraint in which the
number of links associated to each agent is not constant over
time, however, its expectation with respect to the available
information so far is constant, i.e. E(∆Wij(k)|Fk−1) = 0
for all k. Also, in the Polya Urn model all agents form a
link with some other agent at each time step. This condition
can also be generalized in a model where only some subset
of agents form a link with some other subset of agents.
Another assumption in the Polya Urn model which can be
relaxed is the probability of link formation with each agent.
In the Polya Urn model this probability is proportional to
the assigned weight of that agent, which makes the model
possible to analyze by the exchangeability property of the
resulting process. A more general model would be the one
which allows arbitrary probability of link formation with
each agent at each time step.

It can be seen that the Polya Urn process, besides being an
exchangeable process, is in fact a martingale process. From
this observation and previous results of this paper, a more
generalized version of the Polya Urn model, which is still a
martingale process, should reach consensus as well. For this
purpose, we build a martingale model of social networks
which contains the Polya-Urn model as a special case. Let
us consider the social network G = (V,E) with a fixed
set of agents, V = {1, . . . , n}, and directed edges between
them. Let Wij(k) be the weight that agent i assigns to agent
j at time k. Let W̄i(k) = (W̄i1(k), . . . , W̄in(k)) be the
normalized weight vector, where

W̄ij(k) =
Wij(k)∑
lWil(k)

.

At each time step, a subset of agents form links with
some other subset of agents according to some arbitrary



probabilities of pij(k). In contrast to the Polya Urn model,
these probabilities do not need to be proportional to the
assigned weights of the agents with whom links are formed.
The link formed with each agent is independent of the link
formed with any other agent. While link formation each
agent increases or decreases the weight associated with the
agents she formed a link with by ∆Wij(k + 1) conditioned
on E(∆Wij(k + 1)|Fk) = 0 and Wij(k + 1) ≥ 0. In other
words

Wij(k + 1) = Wij(k) + ∆Wij(k + 1).

In the meantime, agents update their beliefs as a convex
combination of the beliefs of their neighbors and their beliefs
at the previous time step

x(t+ 1) = W̄ (t)x(t).

In other words

xi(t+ 1) =
∑

j∈Ni(t)

W̄ij(t)xj(t). (9)

where Ni(t) is the set of agent i and her neighbors at time t.
From the definition of a martingale process we know that a
network is martingale if and only if the “normalized weight
matrix” i.e. W̄ (k), is martingale or if we have

E(W̄ij(k + 1)|Fk) = W̄ij(k).

We now show that for the network to be martingale it suffices
that the “unnormalized weight matrix” i.e. W (k), to be
martingale or

E(Wij(k + 1)|Fk) = Wij(k)

which is equal to

E(∆Wij(k + 1)|Fk) = 0.

If E(∆Wij(k + 1)|Fk) = 0 we have

E(W̄ij(k + 1)|Fk) =

E[pij(k)(
Wij(k) + ∆Wij(k + 1)∑
l(Wil(k) + ∆Wil(k + 1))

)|Fk]+

E[(1− pij(k))(
Wij(k)∑
lWil(k)

)|Fk] =

pij(k)(
Wij(k) + E(∆Wij(k + 1)|Fk)∑
l(Wil(k) + E(∆Wil(k + 1)|Fk))

+

(1− pij(k))(
Wij(k)∑
lWil(k)

) =
Wij(k)∑
lWil(k)

= W̄ij(k).

Therefore, instead of E(∆W̄ij(k + 1)|Fk) = 0, if
E(∆Wij(k + 1)|Fk) = 0 the resulting social network, i.e.
W̄ (k), would be martingale and if it contains a directed
spanning tree in expectation as well, then we can use the
results from section IV to show that consensus happens in the
distributed update scheme (9) almost surely. Also note that in
the Polya Urn model the unnormalized weight matrix, W (k),
is initialized as a connected graph, i.e. W (0) = 1n,1

T
n − In

and as a result of the process it will be a complete graph
for all time steps almost surely. Therefore, the expectation
of the social network, i.e. E(W̄ (k)), is a complete graph for

all time steps as well. This condition is relaxed to a directed
spanning tree in the expectation of the social network in this
proposed model. This is in fact the main requirement for
consensus in martingale random networks.

VI. CONCLUSION

In this paper, we provided a necessary and sufficient
condition for almost sure convergence of consensus algo-
rithms over general weighted and directed martingale random
graph processes. We showed that linear dynamical system
x(k + 1) = W (k)x(k) reaches consensus almost surely if
E(W (k) has exactly one eigenvalue with unit modulus or
if the expected graph of the network contains a directed
spanning tree. We also constructed a model of social network
formation which was the generalization of a Polya Urn model
of social network formation proposed in [1]. We showed
a consensus seeking process based on local averaging of
opinions in this model converges to a random consensus
value almost surely. A direction for future research is to
find closed form formula for the statistics of this random
consensus value as in the case of an i.i.d. graph process.
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