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A Model-Based Approach to Multi-Modal Mass Tuning
of a Micro-Scale Resonator

David Schwartz∗, Dennis Kim†, and Robert M’Closkey‡

Mechanical and Aerospace Engineering Department
University of California, Los Angeles

Abstract— The signal-to-noise ratio of axisymmetric vibra-
tory gyroscopes is maximized when a pair of coriolis-coupled
modes resonate at the same frequency. The manufacturing
process of micro-scale resonators creates random minute mass
and stiffness asymmetries that cause the natural frequencies of
these modes to deviate from one another, thereby degrading
sensor performance. One method of “tuning” these modal
frequencies to equality involves using electrostatic forces to
selectively soften the stiffness at points in the resonant struc-
ture. This generally requires large volume electronics that
are incompatible with application requirements common to
these sensors. Alternatively, modal frequency tuning by mass
perturbation of the resonator is a promising approach because
it is permanent and requires no ancillary electronics. In this
paper, a novel micro-scale resonator is presented which lends
itself to mass perturbation experiments. A resonator model,
based on empirical frequency response data, is used to guide
the mass perturbation process and demonstrates how multiple
pairs of modes can be tuned.

I. INTRODUCTION

In recent years there has been a resurgence of interest in
developing compact inertial sensors for use in GPS-denied
environments. Before this can become a reality, though, ad-
vancements must first be made in the size and accuracy of the
vibratory gyroscopes with axisymmetric resonators that are
proposed for use in such systems. In theory, the symmetric
nature of the resonator design enables high performance
characteristics due to the natural modal degeneracy intrinsic
to axisymmetric designs. Unfortunately, the manufacturing
process invariably produces random, minute asymmetries in
the resonant structure. These asymmetries cause the pairs
of modes that are used by the gyroscope to sense angular
motion to resonate at slightly different frequencies which in
turn reduces the signal-to-noise ration (Fig.1) [5].

A pair of modes can be “tuned” to operate at the same
frequency either by using electrostatic forces or selective
mass loading. Electrostatic tuning involves applying static
voltages to electrodes to change the effective modal stiffness.
This process can be effective, but the electronics required to
maintain the necessary voltage stability are generally larger
than the overall size requirements of the sensor [6]. Thus,
mass tuning, in which a pair of modes is tuned by altering the
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Fig. 1. The 2×2 empirical frequency response of the n=2 pair of modes of
the UCLA Resonator (URES). If the resonator were fabricated with perfect
symmetry, these modes would resonate at the same frequency and only a
single peak would be observable in each channel. In the case presented
here, minute asymmetries have caused the modes to exhibit a significant
frequency split. A similar split occurs in the n=3 modal pair as presented
Fig. 7.

mass distribution of the resonator, appears to be a necessary
endeavor.

On its face, mass tuning can be a straightforward process.
Fig. 2 displays a potential mass tuning scenario for the
fundamental Corilolis-coupled n=2 modes of simple ring
geometry. The n=2 modes have an elliptical shape and are
the ones most commonly used for rate sensing. With no
asymmetry, the ring can vibrate with an n=2 mode shape
at any angular orientation with the same frequency. If a
mass asymmetry exists, two modes clearly define themselves
whose frequencies are no longer matched [1], [8]. The device
can be tuned by placing additional mass on the anti-node of
the mode with a higher frequency.

Mass tuning has been successfully implemented on larger
devices. The Hemispherical Resonator Gyroscope (HRG) [7],
most notably used on the Hubble Space Telescope for instru-
ment stabilization, has been a benchmark for performance,
though its 3 cm diameter is too large for it to be considered a
micro-scale device. The HRG is tuned by perturbing its mass
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Fig. 2. A mass tuning example for a simple ring. Left:With no asymmetry, the ring can vibrate with an n=2 mode shape at any angular orientation with
the same frequency. Center: If a mass asymmetry exists, a low frequency mode defines itself with an anti-node at the location of the mass loading (green),
and a low frequency mode is defined with anti-nodes 45 degrees away from that point (blue). Right: The device can be tuned by placing additional mass
on the anti-node of the high frequency mode.

at points on the quartz cup rim, and although the details of
the tuning process have not been publicly disclosed, they are
reported to be meticulous and expensive (see [11] for analysis
by another group not involved with the HRG development).

The expressions concerning the effects of mass perturba-
tions on the modal frequencies and the positions of the modal
axes on rings (which have similar modal characteristics to
other axisymmetric devices) have long been derived and
verified on physical systems [1], [2]. These expressions moti-
vated the process described in Fig. 2 which was demonstrated
on a MEM device when laser ablation was employed to
remove mass and predictably alter the frequency split [4],
[3]. Unfortunately, this process is not easily extended to
a “production” environment because the determination of
the location of the anti-nodes requires significant effort. We
recently developed an alternative model-driven approach that
appears to be quite systematic. The method was demon-
strated on a planar, 11 cm diameter steel resonator, dubbed
the Macro DRG, but is theoretically applicable to all axisym-
metric resonators [10].

For this paper, the UCLA resonator (URES) was created to
further demonstrate the feasibility of this concept (Fig. 3).
URES employs a version of planar concentric ring design
that is similar to other successful devices. In the URES
design, the connections between concentric rings have been
exaggerated in order to make 96 easy targets for various
forms of mass perturbations. Also, the exterior electrodes,
which are used for actuation, sensing, and electrostatic
softening (if need be), are arranged so that they can be used
to optimally measure both the n=2 and n=3 modes.

An electrode configuration which can sense both n=2
and n=3 modes is chosen for this study. The electrodes are
connected to yield a four-input/four-output system. Selected
channels of the empirical transfer function are fit with a
2 degree–of–freedom model and the relationship between
the model and the nature of the physical asymmetry is
revealed in a novel manner. The models are then validated,
and finally used for modal frequency tuning with appropriate
mass perturbations.

II. EXPERIMENTAL DESIGN

A single URES is pictured in Fig. 3, as well as an SEM
image displaying some of its details. The resonator itself is
1 cm across and its central disk, denoted “1” in Fig. 3, is
attached to the base wafer, while thin concentric rings “2”
are free to resonate primarily in–plane. The exaggerated con-
nections between pads are 150 µm in diameter and are plated
with gold to aid with perturbations “4”. The perturbations are
in the form of gold balls with a mass of approximately 20 µg.
Twenty four electrodes “6” surround the outermost ring and
are electrically connected to the larger probe pads “7”.

Test signals are generated using a DSP and are provided,
via the probe card, directly to the drive electrodes (Fig.
4). The resonator is DC biased so that, as the resonator
vibrates, the gap between the resonator and the sense elec-
trodes changes. This creates a small current that is amplified
by electronics located on the probe card. The signals are
filtered before being sampled by the DSP. Typically, the
{D3,D4,S3,S4} electrodes are used to perform frequency
response experiments on the the n=2 modes because their
sensors and actuators are 45 degrees apart, whereas the
{D1,D2,S1,S2} electrodes are thirty degrees apart and are
used to test the n=3 modes. In both cases, a chirp signal that
encompass the modes of interest are applied to one actuator
at a time while data is recovered from the corresponding
sense electrodes to create a 2× 2 transfer function as dis-
played in Fig. 1.

III. SYSTEM MODELING

A. Frequency Domain Model

The system identification method for guiding the mass
perturbation process is based on the one developed by the
authors for electrostatic tuning of the gyro dynamics [6] .
For mass tuning, the linear mechanics of nearly degenerate
vibratory gyros in a neighbourhood of the Coriolis-coupled
modes can be modeled as

Z−1
sens(s)RHin(s), (1)

where s is the Laplace transform variable and where

Zsens(s) := Ms2 +Cs+K. (2)
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Fig. 3. Left and Center: An example of the UCLA Resonator (URES). The central disk, 1, is attached to the base wafer, while thin concentric rings, 2,
are free to resonate. The exaggerated connections between pads, 3, are plated with gold to aid with perturbations, 4. The space between rings, 5, does not
resonate. The probe pads are electrically connected to the the 24 electrodes, 6, that sit around the outside of the outermost ring. The probes which connect
to the signal conditioning board connect to the probe pads, 7. Right: The electrodes are paired together for sensing and actuation using wire bonds, 8.
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Fig. 4. Signal flow diagram used to generate empirical frequency response data

In this model, M, C and K are real 2× 2 positive definite
mass, damping and stiffness matrices. The angular rotation
rate of the sensor is assumed to be zero in this model.
The subscript on Zsens denotes that the system matrices are
written in the generalized coordinates specified by the sensor
frame. The transfer function Hin represents any dynamics
associated with the signal conditioning electronics and R ∈
R2×2 captures the effects of non-colocated pick-offs and
forcers.

The model parameters {M,C,K,R,Hin} are estimated by
fitting frequency response data. In other words, an experi-
ment yields two-input/two-output complex valued frequency
response data {ψ1,ψ2, . . . ,ψN f } corresponding to the N f real
frequencies {ω1,ω2, . . . ,ωN f }.

The minimax optimization problem for estimating the
sensor parameters is

min
M>I

K>0,C>0
Rl∈C2×2, l=0,1,...,nR

max
q=1,...,N f

σ̄
(
R̃q−Zsens( jωq)ψq

)
, (3)

where

R̃q :=
nR

∑
l=0

Rlω
l
q (4)

and where evaluating Zsens at the qth frequency point yields

Zsens( jωq) :=−Mω
2
q +K + jCωq. (5)

The largest singular value is denoted σ . The constraint
M > I in (3) is imposed rather than the typical M > 0
because in the latter case all of the free parameters may
be scaled by a nonzero constant in order to make the
cost arbitrarily small without actually changing the model
frequency response. Also note that RHin has been replaced
by R̃. This recognizes the fact that any additional dynamics
due to, for example, signal conditioning preamplifiers, should
not exhibit significant magnitude and phase changes in a
neighbourhood of the resonant modes. If these dynamics can
be reflected to the sensor input then they can be combined
with R into a low order polynomial function of frequency
with coefficients in C2×2, i.e. R̃ is degree nR. In fact, R̃ can
be viewed as the combination of the first few terms of the
Taylor series expansion of the frequency response function
of Hin including the non-collocation effects. The details on
how (3) is restated as a generalized eigenvalue problem is
shown in [6], [10].

The next section shows how the generalized eigenvectors
and eigenvalues of (M,K) are used to estimate the location
of the anti-nodes in the resonator.
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B. Interpretation of the Frequency Domain Model

The unforced resonator model is Mẍ + Cẋ + Kx = 0,
where x represents the vector of generalized displacements
associated with the identified modes. The time response of
the generalized displacements in the unforced problem can
be derived assuming the initial state has zero velocity and
the initial displacement is constrained to be a scalar multiple
of one of the two generalized eigenvectors of M and K.
Considerable simplification is possible if damping is ne-
glected. Under this zero damping assumption the generalized
displacement vector is given by

x(t) = |x0|vni cos(λnit) i ∈ 1,2

where vni and λni are the eigenvector and square root of
the eigenvalue associated with the high and low frequency
modes with n modal diameters and |x0| is the norm of the
initial state. The index i = 1 refers to the lower frequency
mode while i = 2 refers to the higher frequency mode. The
physical measurements are proportional to radial velocity,
averaged over the electrode area, so the measurement in this
“experiment” is given by

y(t) = λni|x0|vni sin(λnit) i ∈ 1,2. (6)

One the other hand, the time response y can also be
determined from the approximate mode shape. The mode
shape of the outermost ring of URES is closely approximated
by that of a simple ring, which is

w(θ , t) = U0αn cos(n(θ −Ψni))sin(ωnit)
u(θ , t) = U0 sin(n(θ −Ψni))sin(ωnit)

(7)

where w and u are the radial and tangential motion position
with respect to nominal at a location θ on the ring [8]. As
illustrated in Fig. 5, the angle Ψni gives the to-be-determined
position anti-nodes of a particular mode. Also, ωni is the
frequency of vibration, n is the number of nodal diameters,
U0 is the amplitude of the tangential motion and αn is the
factor by which the radial motion is larger than the tangential

motion. Thus, the expression for y can also be expressed as

y(t) =

[
dw(θ1,t)

dt
dw(θ2,t)

dt

]
=−ωniαnV0

[
cos(n(θ1−Ψni))
cos(n(θ2−Ψni))

]
sin(ωnit)

= ωniαnV0

[
cos(nθ1) sin(nθ1)
cos(nθ2) sin(nθ2)

][
cos(nΨni)
sin(nΨni)

]
sin(ωnit).

(8)
Equating (8) and (6), and setting λni = ωni, yields an expres-
sion from which Ψni is found:[

cos(nΨni)
sin(nΨni)

]
= |x0|

αnV0

[
cos(nθ1) sin(nθ1)
cos(nθ2) sin(nθ2)

]−1

vni

=⇒ Ψni = 1
n tan−1

( [
−cos(nθ2) cos(nθ1)

]
vni[

sin(nθ2) −sin(nθ1)
]
vni

)
.

(9)
Thus, one can find an estimate for the angular orientation
of both the low and high frequency anti-nodes the identified
mass and stiffness matrices.

C. Mass Perturbation Model

Once the orientation of the anti-nodes and the modal fre-
quency split have been identified, it is possible to predict the
change in orientation and split after a point mass perturbation
is performed using the results of [8]. The perturbed frequency
ωni of a mode with a particular orientation defined by Ψni
is defined by the ratio

ω2
n0

ω2
ni

= 1+ γn1Σ
Nm
i=1mni+

γn2
ωn0

(cos(2nΨni)σcos + sin(2nΨni)σsin)
(10)

where
σcos = Σ

Na
a=1ma cos(2nθa)

σsin = Σ
Na
a=1ma sin(2nθa)

and the asymmetry is defined by Na point masses ma
occurring at locations θa. The variables γn1 and γn2 are gains
that change depending on the geometry and may be deter-
mined experimentally, and ωn0 is the unperturbed resonant
frequency. Thus, the frequency of vibration for a particular
perturbation scenario are only a function of the anti-node
orientation. The maximum and minimum frequencies of this
function are the modal frequencies of the resonator, while
the orientations at which they occur define the corresponding
mode shapes. These extremes occur when

sin(2nΨni)σcos = cos(2nΨni)σsin

=⇒ Ψni = 1
2n tan− 1

(
σsin
σcos

)
+(i−1) π

2n i ∈ 1,2.
(11)

The ratio (10) is minimized (and the resonant frequency
maximized) when i = 1, whereas the resonant frequency
reaches its maximum when i = 2.

Next, the frequency split can be found in terms of the
asymmetry:

(ω2
n2−ω2

n1) = −2γn2ω2
n1ω2

n2
ω3

n0
(cos(2nΨn2)σcos + sin(2nΨn2)σsin)

=⇒ ωn2−ωn1 ≈ γn2

√
σ2

cos +σ2
sin.

(12)



Lastly, one can calculate σcos and σsin using the frequency
split and the location of the high frequency anti-nodes:

σcos = (ωn2−ωn1)cos(2nΨn2)
γ2

σsin = (ωn2−ωn1)sin(2nΨn2)
γ2

.
(13)

D. Tuning Methods

A single modal frequency can be modified by finding a
combination of perturbations of mass mp placed at locations
θp that solve

σcosn(0) +∑
Nm
p=1 mp cos(2nθp) = 0

σsinn(0) +∑
Nm
p=1 mp sin(2nθp) = 0

(14)

where σcosn(0) and σsinn(0) are defined by the mass asym-
metry state before any perturbations are made. This set of
equations can be solved with any number of perturbations.
A single mass solution is attained with m1 = 1

γ2

√
σ2

cos +σ2
sin

and θ1 = Ψn2. In other words, a specific quantity of mass is
placed precisely at the location of the anti-node of the high
frequency mode.

If there are constraints on where the mass perturbations
can physically take place on the resonator, as is the case
with the URES device, then two masses are required for
tuning. There are multiple two mass solutions, and one
simple method for finding a solution is to pick two locations,
denoted θ1 and θ2, where the perturbations are to occur and
use [

m1
m2

]
=
[

cos(2nθ1) cos(2nφ2)
sin(2nφ1) sin(2nθ2)

]−1 [
σcosn(0)
σsinn(0)

]
(15)

to compute m1 and m2. Generally, there are two constraints
on the choices of θ1 and θ2. First, they must be chosen so
that the inverted matrix is nonsingular, or, equivalently

mod (θ1−θ2,
π

2n
) 6= 0.

Also, the solutions m1 and m2 must be positive (or negative
in the case mass reduction). This is guaranteed if

θ1 ≤Ψn2 ≤ θ2, 2nθ2−2nθ1 < π,

which is interpreted as choosing θ1 and θ2 to be on either
side of the high frequency anti-node. The closer the two
perturbation locations actually are to the higher frequency
anti-node, the smaller the amount of mass will be required
for tuning.

It is also possible to extend this method to manipulating
the frequencies of multiple modal pairs. In our case, we are
interested in tuning the n=2 and n=3 modes:

σcos2(0) +∑
Nm
p=1 mp cos(4θp) = 0

σcos2(0) +∑
Nm
p=1 mp sin(4θp) = 0

σcos3(0) +∑
Nm
p=1 mp cos(6θp) = 0

σcos3(0) +∑
Nm
p=1 mp cos(6θp) = 0

(16)

In general, this system of equations can be solved with two
or more masses [9].
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Fig. 6. Example of the model fitting algorithm. The red points display the
measured frequency response magnitude, while the trace is generated using
the frequency domain model using 2×2 positive definite mass, stiffness and
damping matrices.

IV. EXPERIMENTAL RESULTS

A. Validation of Models

An example of the model fit generated by using the method
discussed in Section III.A is shown in Fig. 6. Only the
magnitude of the transfer function and its corresponding fit
are shown. Still, the model for M,C,K, and R is a close fit
for both magnitude and phase in all four channels and is
more than 95% accurate as quantified by the H2 norm of the
residual.

The validation of the modelling process as well as esti-
mates of γ22 and γ32 are done experimentally on a device
with results shown in Table I. If a single mass perturbation
is made to a measured system, the imbalance parameters
σcos(p) and σsin(p) can be calculated using

σcosn(p) = σcosn(p−1) + γn2mp cos(2nθp)
σsinn(p) = σsinn(p−1) + γn2mp sin(2nθp).

(17)

In order to validate the model, data is taken before and after
a mass perturbation of known mass is made. The sensitivity
γn2 and an estimate of the location of the mass perturbation
are then calculated using

γ̄n2 = 1
mp

√
(σcosn(p)−σcosn(p−1))2 +(σσsinn(p)−σsinn(p−1))2

θ̄np = 1
2n tan−1

(
σsinn(a)−σsinn(p−1)
σcosn(p)−σcosn(p−1)

)
(18)

where the bar represents an estimate being made. Table I
shows that the sensitivity of the mass perturbation is actually
extremely variable from test to test. This can be explained
by the large variability in the amount of mass being added
as a consequence of the physical process that is employed
to deposit the mass. The perturbation model does accurately
estimate the angle at which the mass was placed. This means
that it also accurately estimates the location of the high
frequency mode and will be a useful aid in tuning.
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B. Tuning Example

Due to the lack of a consistent mass quantum that can
be placed on the resonator, tuning a modal pair to de-
generacy is difficult. Despite this challenge, in this section
we successfully demonstrate the model driven approach to
tuning, starting with an unperturbed URES resonator. The
following example uses several different tuning strategies at
different stages to reach a final, modally tuned, state. At
first, masses are placed with the goal of tuning both modes.
As this becomes more difficult the strategy is shifted toward
achieving a tuned state for one mode.

The experimental results are displayed in Table II. Each
row of table gives the modeled parameters of the n = 2 and
n = 3 models, and the location(s) of the perturbation(s) made
before the data was taken. In the first stage, masses are placed
in order to reduce the split in the n = 3 mode as much as
possible without reducing the split of the n = 2 modes. Since
the mass of each perturbation is so variable, the perturbations
are made one at a time for the first 3 perturbations. The
splits of both modes reduce each time, again confirming
that the model based predictions are useful. After the fourth
perturbation, the split is 1.2 Hz for the n = 3 modes and 1.7
Hz for the n = 2 modes. At this point (Dataset 5), the gold
ball mass perturbation is too large to reduce either split with
only one mass, i.e. a single gold ball will cause “overshoot”
of the desired frequencies, so any subsequent perturbations
will only address reducing the n = 2 modal split and for
this case, a two-location solution is found that reduces the
split of the n = 2 modes to 0.46 Hz (Dataset 6). After
Dataset 6, further reduction in the n = 2 modal frequency
split is not possible with gold ball mass perturbations so
a different mechanism employing silver ink deposition is
used to accomplish fine tuning. The mass quantum associated
with the ink is several orders of magnitude smaller than the
gold balls. This process took several iterations which have
been removed for brevity but the resonator’s n = 2 modes
were tuned to less than a 0.1 Hz split (see Fig. 8) after the
conclusion of the ink deposition (Dataset 7).

TABLE II
MASS TUNING EXAMPLE

                              n=2 Data                                          n=3 Data             Deposition
Data Frequency Split  Angle Estimate   Frequency Split Angle Estimate   Location 
set              (Hz)                    (degrees)          (Hz)                  (Degrees)     (Degrees)
   1              14.1                        36.2                8.2                      23.1                  
   2              12.3                        39.6                7.0                      34.2             22.5
   3                8.5                        48.1                4.6                      39.6             37.5
   4                5.1                        39.5                2.9                      28.5             37.5
   5                1.7                        39.2                1.2                      47.5         -37.5, 30
   6                0.46                        5.7                5.7                      38.0          -30, 22.5 
   7                0.07                      84.7                6.1                      53.7        fine tuning w/ink
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V. CONCLUSION

A model based approach has been developed and used
to guide the mass loading of a micro-resonator with the
objective of reducing the modal frequency split between two
nominally degenerate modes. Of particular interest are the
n = 2 and n = 3 modal pairs since these are the modes
that can be exploited for angular rotation rate sensing in
axisymmetric vibratory gyros. The algorithm only requires
knowledge of the mode shapes in order to estimate the
location of the anti-nodes from models fit to empirical
frequency response data. The biggest challenge in this study
was not performing the measurements or implementing the
algorithm, but rather the process for effecting the mass per-
turbation is not sufficiently developed to produce a consistent
mass “quanta” across all experiments. This is especially
true of the gold ball deposition which had the advantage
of creating a large change in the modal properties of the
resonator. Ultimately, a hybrid approach was used in which
silver ink deposition was employed to further reduce the
modal frequency split. The impact of mass perturbation on
the modal quality factors is also of interest since higher
quality factors produce higher signal-to-noise ratios in tuned
vibratory gyros. Fortunately, the current data suggest that the
quality factors are not changed by these mass perturbations.
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