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Abstract— Wind power represents one of the most promising control, along with a software architecture for contrailin
sources of renewable energy, and improvements to wind turbine the system. While simulators naturally play a large role in
design and control can have a significant impact on energy \ying research due to the impracticality and cost of many
sustainability. In this paper we make two primary contribu- trol . t full le turbi th |
tions: first, we develop and present a actuated micro wind con r.o experllm(.—:‘n.s on iu _—scae .ur mes, eré are also
turbine intended for research purposes. While most academic Considerable ||_m|tat|9n3 to }de turbine SImuIatprs. &btl?e .
work on wind turbine control has largely focused on simulated under non-uniform incoming flow or employing periodic
evaluations, most turbine simulators are quite limited in their  pitch control can induce unsteady aerodynamic flows [6],
ability to model unsteady aerodynamic effects induced by the whereas most common simulators are based on quasi-steady

turbine; thus, there is a huge value to validating wind turbine d - ti Th th - h lue t
control methods on a physical system, and the platiorm we a€rodynamic assumptions. 1hus, there is a huge value 1o

present here makes this possible at a very low cost. The second Wind experiments conducted on physical systems, since thes
contribution of this paper a novel policy search method, applied can validate control methods beyond what is possible with
tg optirr;i;irég_pov_ve_rl pVQdUCti_O_? tiﬂ F?e'gion I Wi?dL speeds.  simulation alone; indeed, as we illustrate in this papegnev
ur metnod Is similar In spirit to einforcemen earning _ i~ H H
approaches such as the REINFORCE algorithm, but explicitly f;ﬁ?(;{;tghﬁtep?z\;vreltrgr:"?(?llvcf::;niss f;%Eain;argzigdejT;liﬂ?n
models second order terms of the cost function and makes . . . .
efficient use of past execution data. We evaluate this method turbine. While micro turbines are of course much smaller
on the physical turbine and show it it is able to quickly and scale that utility-sized, empirical results on such platfe
repeatably achieve near-optimal power production within about  are a natural complement to the simulation-based results th
a minute of execution time and without any a priori model of currently dominate from academic turbine control work.
the system. The second contribution of this paper is a trust-region
I. INTRODUCTION method for online policy optimization, applied on the tur-
] bine to maximize power output in Region Il winds speeds.
Energy issues pose one of the greatest challenges faciggy agorithmic method builds upon reinforcement learning
society. More than 86% of the world's energy currentlyyqrithms for stochastic policy gradient methods [7] ¢als
comes from (unsustainable) fossil fuels, and worldwide ensyjieq likelihood ratio stochastic gradient methods [8])t
ergy demand continues to grow rapidly [1]. Wind poweraypicitly includes second-order terms that approximéae t
represents one of the most promising sources of renewali@ssian of the cost function in order to take larger steps
energy: c_urrently wind is ‘more econqmical!y feasible tha@he policy parameter space. By using past data via impor-
solar or biomass for electricity generation, with some @re] (5nce sampling methods, the algorithm is able to efficiently
tions predicting wind, given good environmental condi§ion iig |ocal second order estimates of the cost function, and
and proper government subsidies, to be of similar cogfen find the parameters that optimize this cost function.
to fossil fuels for electricity generation [2]. Despite ghi \ye compare the method to existing reinforcement learning
promise, significant improvements in the deployment anghcnniques, and show that the algorithm is able to quickly

control of wind turbines are needed if wind is to contributgynq reliably steer the turbine operating parameters toethos
a significant portion of electricity worldwide [3]. One p@ft 5t maximize its power production.

ularly important challenge, which we consider in this paper

is extracting maximum power in “Region 11" wind speeds, Il. BACKGROUND AND RELATED WORK

where the turbine is not operating at its rated power [4]; \wind energy has received a great deal of attention in
since efficient operations in such speeds can potentidtiwal (ocent years, and there is a vast amount of work on the
for wind turbines in many more locations than currentlygesign, modeling, and control of wind turbines. A full revie
possibl_e, addre_ssing this problem is crucial for continuegf relevant literature is beyond the scope of this paper,
expansion of wind power [S]. and we focus instead only on those elements of turbine
In this paper, we make two primary contributions. Firstgesign and control that are most relevant to the presentatio

we develop and present a fully actuated variable pitcthere, However, there are several introductory texts on wind
variable speed micro wind turbine (shown in Figure 1lknergy in general, and we refer the reader to these for more
with power sensing, load control, and individual blade IpitC jnformation [4], [9]. A number of papers survey more recent

_ _ S control work and challenges [10], [11].
*All authors are with the Computer Science and Artificial lfigence Th . f wind bi | K | |
Laboratory, Massaschusetts Institute of Technology, Ciatage MA, 02139 e piece of wind turbine control work most closely

{kol ter, zackbass, russt }@sai |l . nit. edu. related to this paper is work on power optimization using



search methods we consider is their batch formulation: the
methods typically consider several executions of a policy
on the real system, and then use this experience to update
the parameters of the policy by approximately computing
gradient or other update information. Of the above methods,
this is most similar to iterative learning control, but tleeds

of such research has been on more on improving probabilistic
estimates of the gradient (e.g. [25]) and devising differen
optimization-based approaches to using these gradiegnt (e.
[26]) rather than notion of closed loop stability that are
more common in ILC. Fundamentally speaking, though, the
policy search methods have the same goal as ILC, and the
algorithms we discuss could certainly be viewed as ILC
methods.

Fig. 1. Picture of our micro wind turbine in operation.

1. HARDWARE AND SOFTWARE DESIGN

We begin by discussing the physical turbine platform we
have developed for this work. Our platform is a variable
itch, variable speed wind turbine, with a blade radius 621.
eters and a maximum power output of 300W DC. The sys-
tem is based upon the Extractor turbine designed by Alternat
Power Technologies, In.but with significant modifications.
We replaced the mechanical blade pitch mechanism of the
aE}xtractor turbine with servo motors attached to each blade

collective pitch control. Most initial work in this area was
largely model based, and focused on methods for accurat
tracking the optimal control setpoints under changing ¢ond
tions [12], [13], [14]. Alternatively, newer work has foes
on model-free methods for optimizing power coefficients, u
ing pitch control, via extremum seeking control [15] or fanit
difference methods [16]. These approaches are conceptu
similar to the proposed approach here, but are strictly-firs
order methods, do not efficiently reuse past trajectoried, a
were tested only in simulation.

ot; this allows us to individually control the turbine ks
t very high frequencies. We transmit data and power signals
to the servos using a slip ring in the turbine nacelle and
) . i ) track the rotor angle using an encoder off the main rotor
Since this paper is about a physical platform, we alsgnaft. Offboard, the power generated by the system is fed
briefly discuss turbine controls work on real hardwareio a poard that both monitors the power output by the

The vast majority of research in advanced wind contralysiem, and can programmably vary its resistance (this in
techniques (including all papers cited above ) is performeg produces more or less torque on the generator). Finally

entirely in simulation: the ubiquity of standard simulatio 5 simple wind tunnel built using commodity fans powers
packages such as FAST [17] and \Werf [18], as well as the the turbine itself. All the elements are controlled by an
cost involved with work on a a full-scale turbine, have madgspoarg computer via the Lightweight Communication and

full system real-world experiments a rarity in wind reséarc Marshaling (LCM) software [27]. A block diagram of these
Notable exceptions to this include work on the Contm'%omponents is shown in Figure 2.

Advanced Research Turbine (CART) [19], including work ne element we want to highlight is the total cost of

on load reduction [20] and individual pitch control [21],c8n {he system, which is approximately $3,250 for the turbine
work on adaptive control for Region 2 power optimizationyng associated hardware ($1,000 for the Extractor turbine,
(but _W|th0ut pitch control). However, with the except|0n$1,550 for the Dynamixel servos, $350 for encoder and
of this last paper, work on the CART has focused Iargel)é"p ring, $250 for the power monitoring hardware and
on model-based approaches, largely due to the fact thgfno for various cables and wiring) plus $2,600 for the

significant effort has been invested in ensuring accurai§ing tunnel ($2,100 for fans, and $500 for lumber). We
models for this particular turbine; furthermore, the CART, 6 not aware of any low-cost micro turbines that have the

is a relatively large-scale system, and not replicable bgtmocanapilities of our system (individual pitch control, atie

research labs for testing purposes. There is also some WQikeeq operation); thus, we feel the platform itself has the
on smaller scale turbines [22], but we know of no suclystential to significantly impact small and academic-scale
systems with active pitch control. research in wind power. We are happy to share detailed

From a controls perspective, our online learning methodesign specifications with anyone wishing to build a similar
builds most directly upon the REINFORCE algorithm [7]system.

and likelihood ratio gradient estimation [8]. As stochasti _
methods that seek to improve control performance via irA. Hub and Nacelle Design
teraction with the system, these methods are closely telate The turbine hub and nacelle house the pitch actuators,

to adaptive control techniques in general, and also it&rati rotor encoder, and generator, as shown in Figure 3. To dontro
learning control (ILC) [23] and extremum seeking control

[24]. Informally speaking, a characteristic of the policy thttp://ww vpturbines. com
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Fig. 2. Block diagram of the hardware components in the micrbite.
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Fig. 3. Mechanical diagram of the turbine hub and nacelle. Ps
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Fig. 6. Circuit diagram (left) and photograph (right) of theoygrammable
blade pitch, we use three Dynamixel EX-106+ servo matorgesistor and power monitoring board.
attached to the blade roots. The servos are daisy chained
together and controlled digitally via an RS-485 link, which
allows for setpoint control at 250 Hz with less than 1ms

latency (in addition to the onboard PD controller in theto estimate speed and to synchronize blade orientation with

servos). A picture of the hub and servo is shown in Figur&Otor angle) as .We" as the generator itself, a Dglco 12S|
4 alternator modified for use with the Extractor turbine. The

Since the hub itself rotates, to provide data and power t%omponents of the nacelle are shown in Figure 5.

the servos we use a Mercotac 430 slip fifig the nacelle,

and run the wires through the rotor shaft. The nacelle als9 power Control and Monitoring

houses a US Digital HB5M encodepoff the main shift

used to track the orientation of the rotor (necessary both To monitor and regulate the power output by the turbine

we attach a resistor to the DC power output lines, and moni-

2htt p: // www. robot i s. cont xe/ dynani xel _en tor current and voltage using a Phidgets USB A/D converter
thtpfllvwm mer cot ac. com and associated voltage and current measuring deVites.
http://ww usdigital . com order to regulate the power output it is important to be able

to vary the effective resistance: lower resistance will asp

a larger torque on the generator, and some intermediate (but

unknown) resistance is needed to maximize power output.

Thus, we place two high-power resistors (0.31 and 5 Ohm

respectively) in series, and short the later with a MOSFET

controlled by a PWM signal at 25kHz. By varying the duty

cycle of the PWM from 0 to 1, we can smoothly interpolate

between a resistance of 5.31 and 0.31 Ohms. The circuit

diagram for this device, as well as a photograph of the board,

is shown in Figure 6.

Fig. 4. Front view of the turbine hub and a closeup of the semator
used for pitch control.
Shttp: //ww. phi dgets. com
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Fig. 7. Block diagram of the software architecture for coltimg the
turbine.

Fig. 8. Rear view of the wind tunnel used for powering the iteb
C. Software Architecture

The turbine is controlled via an offboard computer, run- ) .
ning a software system built upon the LCM message passiﬂ@(geSt amount of_power possible from the turbine. The task
framework. LCM offers an attractive architecture for binilg S Made challenging by the fact that we do not assume a
such a system, as the different drivers and controllers ean §noWn model of the plant dynamics and because we can
developed in a modular fashion, and the system has buifNly obtainnoisy estimates of the power production for a
in logging and playback capabilities. The basic softwar@Ven se_t _of operating conditions. To accomplish this tgsk
architecture is shown in Figure 7. In addition to the thred an efficient manner we develop a new method for policy
driver modules that manage the servos, the encoder, and ff&rch. similar to the REINFORCE algorithm [7] mentioned
power board, we use two basic controllers: 1) a collectivBPOVe: .
pitch that controls all the blades equally, using a simple 10 formalize the method, we lew & R™ denote a
integral control loop (although the servos internally hav&€t Of policy parameters (e.g., the blade pitch and load
a PD controller, the friction in the drive train and steady€Sistance for the turbine), and lgt/|w) : R x R™ — Ry

aerodynamic forces often cause these to have a steady s@f80te & probability distribution over costs for a givenafet
error, which we correct via an integral controller), and 8) g Parameters. The goal is to choose parameters that minimize

independent pitch controller that synchronizes bladehpitdh® expected cost
of the different blades with rotor angle using feed-forward _
compensation; this element will be discussed further in E[J]w] _/p(‘]|w)JdJ' (1)

Section V-B. Also illustrated in Figure 7 is a policy searchryg gifficulty of trying to optimize parameters is that we
procedure that we will describe in Section V-C, which use§annot directly compute the gradient of the expected cost

collective pitch control and feedback from the power boarg;ii respect tow, and indeed this derivative may not exist
to optimize energy output, and a MATLAB graphical userdepending on the form Qi(J]w).

interface that allows for easy visualization and controlhaf Instead likelihood ratio methods typically consider

different modules. stochastic policies that actually maintain @istribution over
D. Wind Tunnel posgble parameters and optimize with respeqt tq th{Sldlstr
) ) ~ bution. In particular, we lep denote a set oflistribution
To power the turbine, we constructed a small circular windarameters, and let p(w;6) denote the distribution over

tunnel using wood and commodity commercial fans. Th@olicy parametersy given 6. Then the expected cost for
tunnel is eight feet long (a four foot contraction sectiol anparameterd is

a four foot straight section), with an output diameter of21.7

meters (20 cm larger than the diameter of the turbine), and E[J;0] = /p(w; 0)E[J|w]dw 2
generates an average wind speed of 6.5 m/sec over this area

(approximately 13.5 miles per hour). This is not fast enoughnd we can represent the gradient of this expected cost as
to reach the rated power output of 300W, but is still able to

generate a significant amount of power at high rotational ~ VeE[J;0] = /Vep(w;Q)E[Jde

speeds. A photograph of the fans powering the tunnel is Vop(w; 0)

h in Fi 8. = :0) ————E[J|w]d

shown in Figure / (w; 0) p(w; 0) [J|w]dw 3)
IV. TRUST REGION POLICY SEARCH _ /p(w;G)VQ log p(w; 0)E[J|w]dw

The primary control task we consider in this paper is maxi-
mizing power production in wind speeds below the turbine’s = E[JV; log p(w; 0)].
rated power; concretely, by adjusting the resistance of thehe key here is that this last expression involves only
load (which in turn affects the turbine rotational speedy a easily computable quantities (singgw;#) is known, the
by changing the blade pitch angle, we seek to generate tRg logp(w;6) term can be computed exactly). Thus the



gradient can be approximated by sampling: if we sample While the above approach (in the Gaussian case) just is
parametersu(), ..., w(™) ~ p(w;0), execute these policies a standard method for approximatifg./|w] locally as a
and receive costdy, ..., J,, then we can approximate the quadratic function, there are two pitfalls when applyings th

gradient as method to policy search. First, when optimizing parameters
Lo the possible non-convexity of our estimatdds problematic
VoE[J;6) = — Y " J;Vglogp(w™;0) (4) (either due to the non-convexity &[J|w] itself, or because
m

i=1 we may not have enough samples to accurately estimate

For the Gaussian noise abové, logp(w;0) = e(w — 6) H). Tc_) gddress this issue, we take an approach common
so that the update is equivalent to the so-called weigf! OPtimization and apply a trust region solver to update
perturbation method [28]. Finally, since the gradient ig nd°@rameterd as
affected by adding an arbitrary constant to the cost, it is
common to change the observed costs toJpe- J; — b for
b chosen to minimize the variance of this estimate [25].

Despite its simplicity, the REINFORCE algorithm haswhere ) ¢ R™*" defines is a positive semidefinite trust
significant drawbacks: it often takes several executiorte®f region. Although this problem is non-convex for genekél
policy in order to obtain a gradient estimate, and even theinis a well-known trust region sub-problem, and can for
one is typically limited to first-order optimization tecljuies example be solved exactly by semidefinite programming [29,
such as stochastic gradient descent. Instead, we proposeA@pendix B]. Further, we argue that trust region methods are
alternative approach that 1) explicitly models second ordearticularly well-suited to policy search. Whereas trugioa
function information to take larger steps in parameter spaenethods for optimization typically use solve the trust oegi
and 2) makes efficient use of past data so as to quickubproblem only approximately, because policy execution
obtain accurate estimates. Formally, we seek a second ord@sically the most time-consuming portion of the policy
approximation ofE[J|w] that is as accurate as possible forsearch process, we can solve these subproblems exactly, us-
w ~ p(w;#), and which captures the change Jhwith ing the semidefinite method mentioned above. Furthermore,
respect to changes in the gradient of the log probabilitywhile choosing the trust regiofy is a somewhat arbitrary

min  SAOTHAD+ [RA A (°)

0 <~ 0; + ar
b+l K gAGTQAegl 2

Vg logp(w; ),
E[J|w] ~ Jo + g7 (Ve log p(w; 0))

5
+ %(Ve log p(w; 0))" H (Vg log p(w; 0)). ©

decision for most trust region methods, for policy search
there is a natural choice; sinégrepresents the region where

we are “confident” in our quadratic approximation, choosing
Q = ¢ 'I (the inverse covariance of our distribution over
w) will update the parameters to lie within a region that is

For p(w;¢) = N(0,¢l) (the case we will focus on for the well-approximated by our least-squares approximatioifof
remainder of the paper) this simplifies to a weighted versiognd g.

of the standard second-order approximation

E[J|w] ~ Jo + eg” (w — 0) + %(w —0)TH(w—0). (6)

We can find the parameters that maximize the likelihoo

The second difficulty with using second-order approxima-
tions for policy search is that the number of samples reduire
to estimate second-order information can be much higher
H1an that needed to estimate the gradient alone. To overcome

of this approximation by simple least-squares regressioH!iS limitation, we employ importance sampling, as regentl

Letting svec :

maps symmetrie: x n matrices into a vector containing all €

their upper triangular entries, we want to fing g, and H
SO as to minimize

svec(H)

BBl | o
Jo

p(w) ()

where the outer expectation is taken with respectote-
p(w; 0) and where

(€2/2) svec((w — ) (w — 6)T)
e(w—0) ()]
1

P(w) =

This can be approximated by simply sampling several ~

R"xn _y R2(+1)/2 denote a function that described in the context of policy search [30], in order to

fficiently re-use past data to estimadfeandg. In particular,

let 9; be the nominal parameters executed at iteratiaf
the algorithm, and suppose that at a previous iteratient,
when the nominal parameters wete we and we sampled
parametersu®) ~ p(w;6,). Then even thoughy() was not
sampled fromp(w; ;) we can still use it to estimate the
parameters at iteratioh using importance-sampling, by re-
weighting it by the correction factgs(w®;6,) /p(w®;6..).

A summary of the entire algorithm, dubbed Trust Region
Policy Search (TRPS), is shown in Algorithm 1V.

V. ANALYSIS AND RESULTS

Here we present a number experimental results both
demonstrating our turbine system and evaluating the TRPS

p(w; 0) and minimizing the empirical least squares error: walgorithm. The first set of experiments use exhaustive kearc

denote this approximate solution @, and H and for

to sweep out the power curve for a number of different

simplicity of notation we will fold the scaling constants operating conditions of the turbine; this establishes thet b

ande? into g and H.

possibly performance might might expect from an online



Algorithm 1 Trust Region Policy Search (TRPS)
Input: initial parameterg, € R™, variancee € R
Repeat until convergencef =0,1,2,... 7 o
1) Sample parameters") ~ N (6;,eI). Execute policy
with parametersv® and receive cost,.
2) Fori=0,...,t, compute importance weights

p(w®;,) o5 (50 —0)T(w® - 6,)
Cop(w®:6;)  exp (S (w® — 0,)T (w — 6;))
3) Compute weighted least-squares solution
svec(H) e g e s w1z m 1
g <— ((I) S(I)) ot SJ Pitch Angle
Jo

o
ol

o0

Tip Speed Ratio

o
&

where

S 7
P = , S = diag(sog,- .. st)-
p(w®)”

4) Update distribution parameters

Tip Speed Ratio

R AT
Oiy1 < 0; + arg \|Ar£\g1§e §A0 HAO + g* Af.

. . . 4 6 8 10 12 14 16 18
policy search method, though of course is a much more time- Pitch Angle

consuming process. The second set of experiments departs

somewhat from the rest of the paper, but is crucial fofid. 9. Real (top) and simulated (bottom) power curves for thbite

d trati th biliti f the turbi latf eh under different operating conditions. Power levels inttidaby color are in
emonstrating _e ‘?a_Pa h |_es Ol the tur m_e pIatiormene \yatts. Note the different vertical scales of the two plots.

we demonstrate individual pitch control at high rotor spgged

using feed-forward compensation based upon a learned dy-

namics model of the servo actuators. Finally, we evaluage th ) ) ) )

TRPS algorithm on the turbine and show that the metho@® the de”?'ty and viscosity of the air. It the”_ computes the

is able to quickly and reliably obtain near-optimal energ@erodynamlc properties of the blades, along with momentum-

extraction after about two minutes of execution time on th@ased properties of the turbine power output as a whole,

real turbine. to compute steady-state power output for different opegati
_ _ conditions of the turbine.
A. Modeling and Power Output Analysis The resulting power curves, for both the real and simulated

Our first set of experiments characterize the power outpsystems, are shown in Figure 9. The figures show power
of the turbine relative to a simulated model of the systemgutput in Watts, indicated by color, as a function of pitch
under a variety of different operating conditions. Spealfic angle andtip speed ratio, the ratio of the blade’s tip speed
we independently varied the (collective) blade pitch amle to the incoming wind speed.
the turbine from 4 to 17 degrees in 24 equal increments, andFigure 9 also emphasizes both the the benefits and draw-
the resistance from 1.8 to 5 Ohms in 14 equal incrementsacks of simulation models. Qualitatively, the two power
for a total of 336 different operating conditions. For eaclturves look quite similar: they both have a characteristic
setting, we let the turbine run for five seconds (to settle ttfriangle” shape, and the optimal operating conditionsatre
the steady state power output), and recorded the resultisgmilar points. But the figures also differ in crucial resjsec
power. the optimal tip speed ratio on the real system is signifigantl

In addition, we developed a simulated model of the systetmgher than for the simulated system, and the range of near-
using the WTPerf aerodynamics simulator [18], an industryoptimal points is significantly smaller. Indeed, if one were
standard tool developed by the National Wind Technologgimply choose the operating conditions of the turbine based
Center for predicting the the performance of wind turbinesipon the simulated model (as is often done in practice), then
using blade element momentum (BEM) theory [4]. Theve would be operating at a substantially suboptimal point.
simulator takes as input the physical properties of theesyst This highlights the usefulness of experimentation on real
such as the number of blades and their shape, the lift and dregstems and the development of learning methods that can
curves of the blade airfoil, and aerodynamic constants sudptimize performance without relying on an a priori model



of the system.
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B. Independent Pitch Control

Our second set of experiments demonstrate the feasibility
of independent pitch control (IPC) on the turbine, a crucial
design requirement for the system. However, IPC on a micro
turbine is a challenging task: in order to maintain reastmab

Pitch Angle (deg)
= =
N w

[N
[

tip speed ratios, micro turbines must rotate much faster tha 10f

large turbines (the maximum power output from the previous . ‘ ‘ ‘ ‘
section occurs at a tip speed ratio of 6.25, corresponding to 0 Y angetad 6
a rotor speed of 510 RPM on the turbine). IPC requires at a s

minimum that we be able to vary the blade pitch on the order < Actual Trajectories

of one rotational period, typically synchronized with thHe a ML |~ Desired Trejectory

solute rotor angle in order to account for spatial effectshsu
as wind shear. Thus, we need both high frequency control
and accurate compensation for the servo motor dynamics in
order to accurately track the desired pitch angles.

To achieve accurate independent pitch control, we employ
feedback compensation using a learned dynamics model. The ‘ ‘ ‘ ‘ ‘ ‘
dynamics of the motors are well-modeled by a second order 0 1 2 otor Angle (rac) 5 6
system

Pitch Angle (deg)

B . . . Fig. 10. Individual Pitch Control tracking performance gslearned feed-
G = ki1(q —u) + kag + kssign(q) + k4 (10)  forward compensation (top), and PD control alone (bottom).

whereq denotes the motor angle,denotes the control input
(corresponding to the desired angle setpoikt),. .., k4 are
parameters of the model. The model is non-linear due to thieed-forward controller: in this case we are able to traek th
sign term, which captures the effects of Coulomb frictionreference trajectory quite accurately even at high speedtis,
We fit this model to the data using system identification RMSE of 0.26 degrees. In contrast, the bottom plot shows
procedures: we generate data by commanding a sequencédhef performance of a simple PD controller attempting tokrac
“chirp” commands (sinusoidal inputs and varying frequenthe trajectory; here the settling time of the motor dynamics
cies and magnitudes), then minimize gamulation error of cause the actual trajectory to lag significantly behind the
the model (the deviation between the observed and predictddsired trajectory, a well-known effect in PD control. While
sequences, simulated over the entire sequence of inpuitsyvould also be possible to adaptively tune the phase and
using non-linear optimization. We collect this data whea thamplitude of the desired trajectory to make the PD controlle
turbine is stationary, so the models do not attempt to captumatch the desired behavior, the froward controller does thi
any of the aerodynamic forces on the blades; however, sinegtomatically through its model of the dynamics.
the gear inertia in the servos is typically much larger than
the aerodynamic torques associated with the the bladess th&- Policy Search for Online Parameter Optimization
models still perform well when the turbine is in operation. Finally, our last experiments evaluate our proposed trust
Supposing we want to the pitch angles to track somggion policy search method on the task of optimizating
know function of rotor angle;’ = f(), we analytically power output (using collective pitch) at below the turbine’
differentiate this function to achieve desired velocitydan rated speed. The policy parameterss R? here are simply
accelerations the collective blade pitch angle and resistance of the load
d _lgNg md NG 1ONA (since the resistance is more directly controllable, weitese
@ =109, a" = 100+ F(0)0 (11) our policy parameters, but could equivalently paramettiee
and assume for simplicity that the rotor speed is constapblicy in terms of tip speed ratio). To evaluate the method,
6 = 0. Instead of commanding the desired angle- ¢¢, we  we randomly initialized policies with uniformly random gt
invert the dynamics model and command the input and resistance values within 10 to 20 degrees, and resistanc
d d .d . .d between 5 and 0.33 ochms. We then ran our trust region policy
u=q"+ (0"~ kag® — kgsign(q®) —aka)/kr - (A2) oo approach for 40 iterations, using the power output
which is simply a feed-forward compensator to the desiredveraged over two seconds (after three seconds of settling
position, based upon the dynamical system. time) as the reward signal (the negative cost function).
Figure 10 shows the pitch tracking performance using Figure 11 shows the evolution of the reward versus
the model-based feed-forward compensation versus simpteration number, averaged over 10 trials (with different
PD control. We commanded a desired angleq®fd) = starting parameters), along with 95% confidence intervals.
12 — 2.9sin(#), with the rotor spinning at 525 RPM. The Also shown is the average reward obtained by trusting the
top plot of Figure 10 shows tracking performance of th&VT_Perf simulation model and using its prescribed optimal
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Fig. 11. Average reward versus iteration number, with 95%fidence
intervals for our trust region policy search method optingzoower output.

o
o

o

Tip Speed Ratio

a
5

4 6 8 10 12 14 16 18 20
Pitch Angle

Fig. 12. Evolution of policy parameters for a typical run ofipp search.

operating point. Despite receiving very little feedbachnfr

the system, just the average power for a small humber o

and uses past data efficiently. We applied the algorithm to
power optimization in Region Il wind speeds, and show
that it is able to quickly and reliably achieve near-optimal
power output on our turbine. Next steps for the research
involve integrating the policy search and individual pitch
control mechanisms to cope with static obstructions in the
incoming airflow. Building upon this, the eventual goal is to
develop a system that can autonomously adjust to dynamic
disturbances, such as those caused by an upwind turbine,
using a combination of both model-based and model-free
optimization techniques.

ACKNOWLEDGMENTS

We thank Morgan Quigley for helpful discussions, Paul
Stearns of Alternate Power Technologies, Inc for the Ex-
tractor turbine and his assistance in modifying hub parts
for our turbine, and Ron Wiken for his help designing and
building the wind tunnel. J. Zico Kolter is supported by an
NSF Computing Innovations Fellowship.

REFERENCES

[1] Various, “Annual energy review 2009,” U.S. Energy Infeation
Administration, Tech. Rep., 2009.

[2] ——, “Annual energy outlook 2011,” U.S. Energy InformaticAd-
ministration, Tech. Rep., 2010.

[3] U.D. of Energy, “20% wind energy by 2030: Increasing wikrgy’s
contribution to u.s. electricty supply,” U.S. Department Bfiergy,
Tech. Rep., 2008.

[4] J. Manwell, J. McGowan, and A. Robertgfnd Energy Explained:
Theory, Design, and Application. Wiley, 2009.

[5] K. E. Johnson, L. Fingersh, M. J. Balas, and L. Y. Pao, ‘els for
increasing region 2 power capture on a variable-speed wirine,”
Transactions of the American Society of Mechanical Engineers, vol.
126, 2004.

[6] T. Sebastian and M. Lackner, “Characterization of theteady aero-
dynamics of offshore floating wind turbinesfind Energy, vol. 14,
2011.

[7] R. J. Williams, “Simple statistical graident-follwoinggmrithms for
connectionist reinforcement learningMachine Learning, vol. 8,
no. 23, 1992.

[8] P. Glynn, “Likelihood ratio gradient estimation: an oviEw,” in
Proceedigns of the 1987 Winter Smulation Conference, 1987.

] T. Burton, D. Sharpe, N. Jenkins, and E. BossaMind Energy

situations without any model of the system, our algorithm = Handbook. Wiley, 2001.
is able to quickly obtain near-optimal parameter settingé}ol T.K.Barlas and G. van Kuik, “Review of state of the artsimart rotor

typically within about 15 iterations (75 seconds of real-

control research for wind turbinesProgress in Aerospace Sciences,
vol. 46, no. 1, pp. 1-27, 2010.

time operation). Figure 12 shows the evolution of the policyL1] L. Y. Pao and K. E. Johnson, “Control of wind turbines: pkpaches,
parameters for a typical run of the policy search; as expecte  challenges, and recent development&FEE Control Systems Maga-

the method quickly gets to (and remains in) a near-optima,,

zine, vol. 31, pp. 44-62, 2011.
K. Pierce, “Control methods for improved energy captuetoly rated

region of the parameter space. In contrast the REINFORCE " power,” in Proceedings of the ASME/JSME Joint Fluids Engineering
algorithm (using both the importance sampling technique _ Conference, 1999.

discussed in [30] and the optimal baseline technique fro
[25]), performs significantly worse in this domain.

VI. CONCLUSIONS AND FUTURE WORK

] J. Yougin, Y. Zhongging, and C. Binggang, “A new maximunwgo
point tracking control scheme for wind generation,” Rnoceedings
of the |IEEE International Conference on Power Systems Technology,
2002.

[14] E. Koutroulis and K. Kalaitzakis, “Deisng of a maximum paw
tracking system for wind-energy conversion applicatibHsSEE Trans-

This paper has presented _an actuated Win_d turbine SYS-  actions on Industrial Electronics, vol. 53, no. 2, pp. 386-394, 2006.
tem. We presented the physical system design, illustrat¢eb] T. Hawkins, W. White, G. Hu, and F. D. Sahneh, “Wind tukbjpower
the power output of the turbine and demonstrated accurate ¢capture control with robust estimation,” Rroceedings of the Dynamic

individual pitch control via feed-forward compensatione W

Systems and Control Conference, 2010.
[16] J. Creaby, Y. Li, and J. Seem, “Maximizing wind turbine mge

proposed and evaluated the Trust Region Policy Search capture ssing multi-variable extremum seeking contiéhd Engi-
method, an online learning algorithm similar to Reinforce- _ neering, vol. 33, no. 4, pp. 361-387, 2009.

ment Learning policy search methods, but which explicitl);m

“Nwtc design codes (fast by jason jonkman, ph.d.),”
http://wind.nrel.gov/designcodes/simulators/fast/. stLa modified

models second order information about the cost function 05-November-2010; accessed 05-November-2010.



(18]

[19]

[20]

[21]

[22]

[23]

[24]

“Nwtc  design codes  (wperf by  marshall
http://wind.nrel.gov/designcodes/simulators/wtperfl.ast

17-February-2011; accessed 17-February-2011.

L. Fingersh and K. Johnson, “Controls advanced re$eancbine
(cart) commisioning and baseline data collection,” NatidRaehewable
Energy Laboratory, Tech. Rep., 2002.

A. Wright, L. Fingersh, and M. Balas, “Testing state-spaontrols for
the controls advanced research turbine,Piroceedings of the AIAA

Aerospace Sciences Meeting and Exhibit, 2006.

K. A. Stol, W. Zhao, and A. D. Wright, “Individual blade tgh control
for the controls advanced research turbine (caffighsactions of the

ASME, vol. 128, pp. 498-505, 2006.

D. Adams, “Model identification and operating load clwesization
for a small horizontal axes wind turbine rotor using integdablade
sensors,” inProceedings of the Dynamic Systems and Control Confer-

ence, 2010.

K. L. Moore, “Iterative learning control: an exposijooverview,”
Applied and Computational Controls, Sgnal Processing, and Circuits,

vol. 1, no. 1, pp. 151-214, 1999.

K. Ariyur and M. Krstic, Real-Time Optimization by Extremum-

buhl),”
modified

[25]

[26]

[27]

(28]

[29]

[30]

Seeking Control.  Wiley, 2003.

E. Greensmith, P. L. Bartlett, and J. Baxter, “Varianeguction
techniques for gradient estimates in reinforcement learhifayrnal

of Machine Learning Research, vol. 5, pp. 1471-1530, 2004.

J. Peters and S. Schaal, “Policy gradient methods footich” in

Proceedings of the IEEE Conference on Intelligent Robotics Systems,

2006.

A. S. Huang, E. Olson, and D. Moore, “Lcm: Lightweight commua-
tions and marshalling,” ifProceedings of the International Conference
on Intelligent Robots and Systems, 2010.

M. Jabri and B. Flower, “Weight perturbation: an optinaathitecture
and learning technique for analog vslif feedforward andunemt
multilayer networks,1EEE Transactions and Neural Networks, vol. 3,
pp. 154-147, 1992.

S. Boyd and L. Vandenbergh&onvex Optimization.
University Press, 2004.

J. Tang and P. Abbeel, “On a connection between impoetaam-
pling and the likelihood ratio policy gradient,” iNeural Information
Processing Systems, 2011.

Cambridge



