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Abstract— Wind power represents one of the most promising
sources of renewable energy, and improvements to wind turbine
design and control can have a significant impact on energy
sustainability. In this paper we make two primary contribu-
tions: first, we develop and present a actuated micro wind
turbine intended for research purposes. While most academic
work on wind turbine control has largely focused on simulated
evaluations, most turbine simulators are quite limited in their
ability to model unsteady aerodynamic effects induced by the
turbine; thus, there is a huge value to validating wind turbine
control methods on a physical system, and the platform we
present here makes this possible at a very low cost. The second
contribution of this paper a novel policy search method, applied
to optimizing power production in Region II wind speeds.
Our method is similar in spirit to Reinforcement Learning
approaches such as the REINFORCE algorithm, but explicitly
models second order terms of the cost function and makes
efficient use of past execution data. We evaluate this method
on the physical turbine and show it it is able to quickly and
repeatably achieve near-optimal power production within about
a minute of execution time and without any a priori model of
the system.

I. INTRODUCTION

Energy issues pose one of the greatest challenges facing
society. More than 86% of the world’s energy currently
comes from (unsustainable) fossil fuels, and worldwide en-
ergy demand continues to grow rapidly [1]. Wind power
represents one of the most promising sources of renewable
energy: currently wind is more economically feasible than
solar or biomass for electricity generation, with some projec-
tions predicting wind, given good environmental conditions
and proper government subsidies, to be of similar cost
to fossil fuels for electricity generation [2]. Despite this
promise, significant improvements in the deployment and
control of wind turbines are needed if wind is to contribute
a significant portion of electricity worldwide [3]. One partic-
ularly important challenge, which we consider in this paper,
is extracting maximum power in “Region II” wind speeds,
where the turbine is not operating at its rated power [4];
since efficient operations in such speeds can potentially allow
for wind turbines in many more locations than currently
possible, addressing this problem is crucial for continued
expansion of wind power [5].

In this paper, we make two primary contributions. First,
we develop and present a fully actuated variable pitch,
variable speed micro wind turbine (shown in Figure 1)
with power sensing, load control, and individual blade pitch
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control, along with a software architecture for controlling
the system. While simulators naturally play a large role in
wind research due to the impracticality and cost of many
control experiments on full-scale turbines, there are also
considerable limitations to wind turbine simulators: a turbine
under non-uniform incoming flow or employing periodic
pitch control can induce unsteady aerodynamic flows [6],
whereas most common simulators are based on quasi-steady
aerodynamic assumptions. Thus, there is a huge value to
wind experiments conducted on physical systems, since these
can validate control methods beyond what is possible with
simulation alone; indeed, as we illustrate in this paper, even
steady-state power predictions from a standard simulation
tool are quite far from what is actually produced by our
turbine. While micro turbines are of course much smaller
scale that utility-sized, empirical results on such platforms
are a natural complement to the simulation-based results that
currently dominate from academic turbine control work.

The second contribution of this paper is a trust-region
method for online policy optimization, applied on the tur-
bine to maximize power output in Region II winds speeds.
Our algorithmic method builds upon reinforcement learning
algorithms for stochastic policy gradient methods [7] (also
called likelihood ratio stochastic gradient methods [8]),but
explicitly includes second-order terms that approximate the
Hessian of the cost function in order to take larger steps
the policy parameter space. By using past data via impor-
tance sampling methods, the algorithm is able to efficiently
build local second order estimates of the cost function, and
then find the parameters that optimize this cost function.
We compare the method to existing reinforcement learning
techniques, and show that the algorithm is able to quickly
and reliably steer the turbine operating parameters to those
that maximize its power production.

II. BACKGROUND AND RELATED WORK

Wind energy has received a great deal of attention in
recent years, and there is a vast amount of work on the
design, modeling, and control of wind turbines. A full review
of relevant literature is beyond the scope of this paper,
and we focus instead only on those elements of turbine
design and control that are most relevant to the presentation
here. However, there are several introductory texts on wind
energy in general, and we refer the reader to these for more
information [4], [9]. A number of papers survey more recent
control work and challenges [10], [11].

The piece of wind turbine control work most closely
related to this paper is work on power optimization using



Fig. 1. Picture of our micro wind turbine in operation.

collective pitch control. Most initial work in this area was
largely model based, and focused on methods for accurately
tracking the optimal control setpoints under changing condi-
tions [12], [13], [14]. Alternatively, newer work has focused
on model-free methods for optimizing power coefficients, us-
ing pitch control, via extremum seeking control [15] or finite
difference methods [16]. These approaches are conceptually
similar to the proposed approach here, but are strictly first-
order methods, do not efficiently reuse past trajectories, and
were tested only in simulation.

Since this paper is about a physical platform, we also
briefly discuss turbine controls work on real hardware.
The vast majority of research in advanced wind control
techniques (including all papers cited above ) is performed
entirely in simulation: the ubiquity of standard simulation
packages such as FAST [17] and WTPerf [18], as well as the
cost involved with work on a a full-scale turbine, have made
full system real-world experiments a rarity in wind research.
Notable exceptions to this include work on the Controls
Advanced Research Turbine (CART) [19], including work
on load reduction [20] and individual pitch control [21], and
work on adaptive control for Region 2 power optimization
(but without pitch control). However, with the exception
of this last paper, work on the CART has focused largely
on model-based approaches, largely due to the fact that
significant effort has been invested in ensuring accurate
models for this particular turbine; furthermore, the CART
is a relatively large-scale system, and not replicable by most
research labs for testing purposes. There is also some work
on smaller scale turbines [22], but we know of no such
systems with active pitch control.

From a controls perspective, our online learning method
builds most directly upon the REINFORCE algorithm [7]
and likelihood ratio gradient estimation [8]. As stochastic
methods that seek to improve control performance via in-
teraction with the system, these methods are closely related
to adaptive control techniques in general, and also iterative
learning control (ILC) [23] and extremum seeking control
[24]. Informally speaking, a characteristic of the policy

search methods we consider is their batch formulation: the
methods typically consider several executions of a policy
on the real system, and then use this experience to update
the parameters of the policy by approximately computing
gradient or other update information. Of the above methods,
this is most similar to iterative learning control, but the focus
of such research has been on more on improving probabilistic
estimates of the gradient (e.g. [25]) and devising different
optimization-based approaches to using these gradient (e.g.
[26]) rather than notion of closed loop stability that are
more common in ILC. Fundamentally speaking, though, the
policy search methods have the same goal as ILC, and the
algorithms we discuss could certainly be viewed as ILC
methods.

III. HARDWARE AND SOFTWARE DESIGN

We begin by discussing the physical turbine platform we
have developed for this work. Our platform is a variable
pitch, variable speed wind turbine, with a blade radius of 1.52
meters and a maximum power output of 300W DC. The sys-
tem is based upon the Extractor turbine designed by Alternate
Power Technologies, Inc.1, but with significant modifications.
We replaced the mechanical blade pitch mechanism of the
Extractor turbine with servo motors attached to each blade
root; this allows us to individually control the turbine blades
at very high frequencies. We transmit data and power signals
to the servos using a slip ring in the turbine nacelle and
track the rotor angle using an encoder off the main rotor
shaft. Offboard, the power generated by the system is fed
into a board that both monitors the power output by the
system, and can programmably vary its resistance (this in
turn produces more or less torque on the generator). Finally,
a simple wind tunnel built using commodity fans powers
the turbine itself. All the elements are controlled by an
offboard computer via the Lightweight Communication and
Marshaling (LCM) software [27]. A block diagram of these
components is shown in Figure 2.

One element we want to highlight is the total cost of
the system, which is approximately $3,250 for the turbine
and associated hardware ($1,000 for the Extractor turbine,
$1,550 for the Dynamixel servos, $350 for encoder and
slip ring, $250 for the power monitoring hardware and
$100 for various cables and wiring) plus $2,600 for the
wind tunnel ($2,100 for fans, and $500 for lumber). We
are not aware of any low-cost micro turbines that have the
capabilities of our system (individual pitch control, variable
speed operation); thus, we feel the platform itself has the
potential to significantly impact small and academic-scale
research in wind power. We are happy to share detailed
design specifications with anyone wishing to build a similar
system.

A. Hub and Nacelle Design

The turbine hub and nacelle house the pitch actuators,
rotor encoder, and generator, as shown in Figure 3. To control

1http://www.vpturbines.com



Fig. 2. Block diagram of the hardware components in the micro turbine.

Pitch Servo

Blade

Generator

DC Power

Slip Ring

Timing

Belt
Main Shaft 

EncoderHub

Fig. 3. Mechanical diagram of the turbine hub and nacelle.

blade pitch, we use three Dynamixel EX-106+ servo motors2

attached to the blade roots. The servos are daisy chained
together and controlled digitally via an RS-485 link, which
allows for setpoint control at 250 Hz with less than 1ms
latency (in addition to the onboard PD controller in the
servos). A picture of the hub and servo is shown in Figure
4.

Since the hub itself rotates, to provide data and power to
the servos we use a Mercotac 430 slip ring3 in the nacelle,
and run the wires through the rotor shaft. The nacelle also
houses a US Digital HB5M encoder4 off the main shift
used to track the orientation of the rotor (necessary both

2http://www.robotis.com/xe/dynamixel en
3http://www.mercotac.com
4http://www.usdigital.com

Fig. 4. Front view of the turbine hub and a closeup of the servomotor
used for pitch control.

Fig. 5. Internals of the turbine nacelle, showing the generator, encoder and
slip ring.

Fig. 6. Circuit diagram (left) and photograph (right) of theprogrammable
resistor and power monitoring board.

to estimate speed and to synchronize blade orientation with
rotor angle) as well as the generator itself, a Delco 12SI
alternator modified for use with the Extractor turbine. The
components of the nacelle are shown in Figure 5.

B. Power Control and Monitoring

To monitor and regulate the power output by the turbine
we attach a resistor to the DC power output lines, and moni-
tor current and voltage using a Phidgets USB A/D converter
and associated voltage and current measuring devices.5 In
order to regulate the power output it is important to be able
to vary the effective resistance: lower resistance will impose
a larger torque on the generator, and some intermediate (but
unknown) resistance is needed to maximize power output.
Thus, we place two high-power resistors (0.31 and 5 Ohm
respectively) in series, and short the later with a MOSFET
controlled by a PWM signal at 25kHz. By varying the duty
cycle of the PWM from 0 to 1, we can smoothly interpolate
between a resistance of 5.31 and 0.31 Ohms. The circuit
diagram for this device, as well as a photograph of the board,
is shown in Figure 6.

5http://www.phidgets.com



Fig. 7. Block diagram of the software architecture for controlling the
turbine.

C. Software Architecture

The turbine is controlled via an offboard computer, run-
ning a software system built upon the LCM message passing
framework. LCM offers an attractive architecture for building
such a system, as the different drivers and controllers can be
developed in a modular fashion, and the system has built-
in logging and playback capabilities. The basic software
architecture is shown in Figure 7. In addition to the three
driver modules that manage the servos, the encoder, and the
power board, we use two basic controllers: 1) a collective
pitch that controls all the blades equally, using a simple
integral control loop (although the servos internally have
a PD controller, the friction in the drive train and steady
aerodynamic forces often cause these to have a steady state
error, which we correct via an integral controller), and 2) an
independent pitch controller that synchronizes blade pitch
of the different blades with rotor angle using feed-forward
compensation; this element will be discussed further in
Section V-B. Also illustrated in Figure 7 is a policy search
procedure that we will describe in Section V-C, which uses
collective pitch control and feedback from the power board
to optimize energy output, and a MATLAB graphical user
interface that allows for easy visualization and control ofthe
different modules.

D. Wind Tunnel

To power the turbine, we constructed a small circular wind
tunnel using wood and commodity commercial fans. The
tunnel is eight feet long (a four foot contraction section and
a four foot straight section), with an output diameter of 1.72
meters (20 cm larger than the diameter of the turbine), and
generates an average wind speed of 6.5 m/sec over this area
(approximately 13.5 miles per hour). This is not fast enough
to reach the rated power output of 300W, but is still able to
generate a significant amount of power at high rotational
speeds. A photograph of the fans powering the tunnel is
shown in Figure 8.

IV. TRUST REGION POLICY SEARCH

The primary control task we consider in this paper is maxi-
mizing power production in wind speeds below the turbine’s
rated power; concretely, by adjusting the resistance of the
load (which in turn affects the turbine rotational speed), and
by changing the blade pitch angle, we seek to generate the

Fig. 8. Rear view of the wind tunnel used for powering the turbine.

largest amount of power possible from the turbine. The task
is made challenging by the fact that we do not assume a
known model of the plant dynamics and because we can
only obtain noisy estimates of the power production for a
given set of operating conditions. To accomplish this task
in an efficient manner we develop a new method for policy
search, similar to the REINFORCE algorithm [7] mentioned
above.

To formalize the method, we letw ∈ R
n denote a

set of policy parameters (e.g., the blade pitch and load
resistance for the turbine), and letp(J |w) : R × R

n → R+

denote a probability distribution over costs for a given setof
parameters. The goal is to choose parameters that minimize
the expected cost

E[J |w] =

∫

p(J |w)JdJ. (1)

The difficulty of trying to optimize parametersw is that we
cannot directly compute the gradient of the expected cost
with respect tow, and indeed this derivative may not exist
depending on the form ofp(J |w).

Instead likelihood ratio methods typically consider
stochastic policies that actually maintain adistribution over
possible parameters and optimize with respect to this distri-
bution. In particular, we letθ denote a set ofdistribution
parameters, and let p(w; θ) denote the distribution over
policy parametersw given θ. Then the expected cost for
parametersθ is

E[J ; θ] =

∫

p(w; θ)E[J |w]dw (2)

and we can represent the gradient of this expected cost as

∇θE[J ; θ] =

∫

∇θp(w; θ)E[J |w]dw

=

∫

p(w; θ)
∇θp(w; θ)

p(w; θ)
E[J |w]dw

=

∫

p(w; θ)∇θ log p(w; θ)E[J |w]dw

= E[J∇θ log p(w; θ)].

(3)

The key here is that this last expression involves only
easily computable quantities (sincep(w; θ) is known, the
∇θ log p(w; θ) term can be computed exactly). Thus the



gradient can be approximated by sampling: if we sample
parametersw(1), . . . , w(m) ∼ p(w; θ), execute these policies
and receive costsJ1, . . . , Jn, then we can approximate the
gradient as

∇̃θE[J ; θ] =
1

m

m
∑

i=1

Ji∇θ log p(w
(i); θ) (4)

For the Gaussian noise above,∇θ log p(w; θ) = ǫ(w − θ)
so that the update is equivalent to the so-called weight
perturbation method [28]. Finally, since the gradient is not
affected by adding an arbitrary constant to the cost, it is
common to change the observed costs to beJ̃i = Ji − b for
b chosen to minimize the variance of this estimate [25].

Despite its simplicity, the REINFORCE algorithm has
significant drawbacks: it often takes several executions ofthe
policy in order to obtain a gradient estimate, and even then
one is typically limited to first-order optimization techniques
such as stochastic gradient descent. Instead, we propose an
alternative approach that 1) explicitly models second order
function information to take larger steps in parameter space
and 2) makes efficient use of past data so as to quickly
obtain accurate estimates. Formally, we seek a second order
approximation ofE[J |w] that is as accurate as possible for
w ∼ p(w; θ), and which captures the change inJ with
respect to changes in the gradient of the log probability
∇θ log p(w; θ),

Ê[J |w] ≈ J0 + gT (∇θ log p(w; θ))

+
1

2
(∇θ log p(w; θ))

TH(∇θ log p(w; θ)).
(5)

For p(w; θ) = N (θ, ǫI) (the case we will focus on for the
remainder of the paper) this simplifies to a weighted version
of the standard second-order approximation

Ê[J |w] ≈ J0 + ǫgT (w − θ) +
ǫ2

2
(w − θ)TH(w − θ). (6)

We can find the parameters that maximize the likelihood
of this approximation by simple least-squares regression.
Letting svec : Rn×n → R

n(n+1)/2 denote a function that
maps symmetricn× n matrices into a vector containing all
their upper triangular entries, we want to findJ0 g, andH
so as to minimize

E












Ê[J |w]−





svec(H)
g
J0





T

φ(w)







2




(7)

where the outer expectation is taken with respect tow ∼
p(w; θ) and where

φ(w) ≡





(ǫ2/2) svec((w − θ)(w − θ)T )
ǫ(w − θ)

1



 . (8)

This can be approximated by simply sampling severalw(i) ∼
p(w; θ) and minimizing the empirical least squares error: we
denote this approximate solution aŝJ0, ĝ and Ĥ and for
simplicity of notation we will fold the scaling constantsǫ
and ǫ2 into ĝ and Ĥ.

While the above approach (in the Gaussian case) just is
a standard method for approximatingE[J |w] locally as a
quadratic function, there are two pitfalls when applying this
method to policy search. First, when optimizing parameters,
the possible non-convexity of our estimatedĤ is problematic
(either due to the non-convexity ofE[J |w] itself, or because
we may not have enough samples to accurately estimate
H). To address this issue, we take an approach common
in optimization and apply a trust region solver to update
parametersθ as

θt+1 ← θt + arg min
∆θTQ∆θ≤1

1

2
∆θT Ĥ∆θ + ĝT∆θ. (9)

where Q ∈ R
n×n defines is a positive semidefinite trust

region. Although this problem is non-convex for generalĤ,
it is a well-known trust region sub-problem, and can for
example be solved exactly by semidefinite programming [29,
Appendix B]. Further, we argue that trust region methods are
particularly well-suited to policy search. Whereas trust region
methods for optimization typically use solve the trust region
subproblem only approximately, because policy execution
typically the most time-consuming portion of the policy
search process, we can solve these subproblems exactly, us-
ing the semidefinite method mentioned above. Furthermore,
while choosing the trust regionQ is a somewhat arbitrary
decision for most trust region methods, for policy search
there is a natural choice; sinceQ represents the region where
we are “confident” in our quadratic approximation, choosing
Q = ǫ−1I (the inverse covariance of our distribution over
w) will update the parameters to lie within a region that is
well-approximated by our least-squares approximation ofH
andg.

The second difficulty with using second-order approxima-
tions for policy search is that the number of samples required
to estimate second-order information can be much higher
than that needed to estimate the gradient alone. To overcome
this limitation, we employ importance sampling, as recently
described in the context of policy search [30], in order to
efficiently re-use past data to estimateĤ andĝ. In particular,
let θt be the nominal parameters executed at iterationt of
the algorithm, and suppose that at a previous iterationτ < t,
when the nominal parameters wereθτ , we and we sampled
parametersw(i) ∼ p(w; θτ ). Then even thoughw(i) was not
sampled fromp(w; θt) we can still use it to estimate the
parameters at iterationt using importance-sampling, by re-
weighting it by the correction factorp(w(i); θt)/p(w

(i); θτ ).
A summary of the entire algorithm, dubbed Trust Region
Policy Search (TRPS), is shown in Algorithm IV.

V. ANALYSIS AND RESULTS

Here we present a number experimental results both
demonstrating our turbine system and evaluating the TRPS
algorithm. The first set of experiments use exhaustive search
to sweep out the power curve for a number of different
operating conditions of the turbine; this establishes the best
possibly performance might might expect from an online



Algorithm 1 Trust Region Policy Search (TRPS)
Input: initial parametersθ0 ∈ R

n, varianceǫ ∈ R+

Repeat until convergence,t = 0, 1, 2, . . .

1) Sample parametersw(t) ∼ N (θt, ǫI). Execute policy
with parametersw(t) and receive cost̂Jt.

2) For i = 0, . . . , t, compute importance weights

si =
p(w(i); θt)

p(w(i); θi)
=

exp
(

ǫ2

2 (w
(i) − θt)

T (w(i) − θt)
)

exp
(

ǫ2

2 (w
(i) − θi)T (w(i) − θi)

)

3) Compute weighted least-squares solution




svec(H)
g
J0



← (ΦTSΦ)−1ΦTSĴ

where

Φ =







φ(w(0))T

...
φ(w(t))T






, S = diag(s0, . . . st).

4) Update distribution parameters

θt+1 ← θt + arg min
‖∆θ‖2≤ǫ

1

2
∆θT Ĥ∆θ + ĝT∆θ.

policy search method, though of course is a much more time-
consuming process. The second set of experiments departs
somewhat from the rest of the paper, but is crucial for
demonstrating the capabilities of the turbine platform: here
we demonstrate individual pitch control at high rotor speeds,
using feed-forward compensation based upon a learned dy-
namics model of the servo actuators. Finally, we evaluate the
TRPS algorithm on the turbine and show that the method
is able to quickly and reliably obtain near-optimal energy
extraction after about two minutes of execution time on the
real turbine.

A. Modeling and Power Output Analysis

Our first set of experiments characterize the power output
of the turbine relative to a simulated model of the system,
under a variety of different operating conditions. Specifically,
we independently varied the (collective) blade pitch angleof
the turbine from 4 to 17 degrees in 24 equal increments, and
the resistance from 1.8 to 5 Ohms in 14 equal increments,
for a total of 336 different operating conditions. For each
setting, we let the turbine run for five seconds (to settle to
the steady state power output), and recorded the resulting
power.

In addition, we developed a simulated model of the system
using the WTPerf aerodynamics simulator [18], an industry
standard tool developed by the National Wind Technology
Center for predicting the the performance of wind turbines
using blade element momentum (BEM) theory [4]. The
simulator takes as input the physical properties of the system
such as the number of blades and their shape, the lift and drag
curves of the blade airfoil, and aerodynamic constants such
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Fig. 9. Real (top) and simulated (bottom) power curves for the turbine
under different operating conditions. Power levels indicated by color are in
Watts. Note the different vertical scales of the two plots.

as the density and viscosity of the air. It then computes the
aerodynamic properties of the blades, along with momentum-
based properties of the turbine power output as a whole,
to compute steady-state power output for different operating
conditions of the turbine.

The resulting power curves, for both the real and simulated
systems, are shown in Figure 9. The figures show power
output in Watts, indicated by color, as a function of pitch
angle andtip speed ratio, the ratio of the blade’s tip speed
to the incoming wind speed.

Figure 9 also emphasizes both the the benefits and draw-
backs of simulation models. Qualitatively, the two power
curves look quite similar: they both have a characteristic
“triangle” shape, and the optimal operating conditions areat
similar points. But the figures also differ in crucial respects:
the optimal tip speed ratio on the real system is significantly
higher than for the simulated system, and the range of near-
optimal points is significantly smaller. Indeed, if one wereto
simply choose the operating conditions of the turbine based
upon the simulated model (as is often done in practice), then
we would be operating at a substantially suboptimal point.
This highlights the usefulness of experimentation on real
systems and the development of learning methods that can
optimize performance without relying on an a priori model



of the system.

B. Independent Pitch Control

Our second set of experiments demonstrate the feasibility
of independent pitch control (IPC) on the turbine, a crucial
design requirement for the system. However, IPC on a micro
turbine is a challenging task: in order to maintain reasonable
tip speed ratios, micro turbines must rotate much faster than
large turbines (the maximum power output from the previous
section occurs at a tip speed ratio of 6.25, corresponding to
a rotor speed of 510 RPM on the turbine). IPC requires at a
minimum that we be able to vary the blade pitch on the order
of one rotational period, typically synchronized with the ab-
solute rotor angle in order to account for spatial effects such
as wind shear. Thus, we need both high frequency control
and accurate compensation for the servo motor dynamics in
order to accurately track the desired pitch angles.

To achieve accurate independent pitch control, we employ
feedback compensation using a learned dynamics model. The
dynamics of the motors are well-modeled by a second order
system

q̈ = k1(q − u) + k2q̇ + k3sign(q̇) + k4 (10)

whereq denotes the motor angle,u denotes the control input
(corresponding to the desired angle setpoint),k1, . . . , k4 are
parameters of the model. The model is non-linear due to the
sign term, which captures the effects of Coulomb friction.
We fit this model to the data using system identification
procedures: we generate data by commanding a sequence of
“chirp” commands (sinusoidal inputs and varying frequen-
cies and magnitudes), then minimize thesimulation error of
the model (the deviation between the observed and predicted
sequences, simulated over the entire sequence of inputs)
using non-linear optimization. We collect this data when the
turbine is stationary, so the models do not attempt to capture
any of the aerodynamic forces on the blades; however, since
the gear inertia in the servos is typically much larger than
the aerodynamic torques associated with the the blades, these
models still perform well when the turbine is in operation.

Supposing we want to the pitch angles to track some
know function of rotor angleqd = f(θ), we analytically
differentiate this function to achieve desired velocity and
accelerations

q̇d = f ′(θ)θ̇, q̈d = f ′′(θ)θ̇ + f ′(θ)θ̈ (11)

and assume for simplicity that the rotor speed is constant
θ̈ = 0. Instead of commanding the desired angleu = qd, we
invert the dynamics model and command the input

u = qd + (q̈d − k2q̇
d − k3sign(q̇

d)− xk4)/k1 (12)

which is simply a feed-forward compensator to the desired
position, based upon the dynamical system.

Figure 10 shows the pitch tracking performance using
the model-based feed-forward compensation versus simple
PD control. We commanded a desired angle ofqd(θ) =
12 − 2.9 sin(θ), with the rotor spinning at 525 RPM. The
top plot of Figure 10 shows tracking performance of the
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Fig. 10. Individual Pitch Control tracking performance using learned feed-
forward compensation (top), and PD control alone (bottom).

feed-forward controller: in this case we are able to track the
reference trajectory quite accurately even at high speeds,with
an RMSE of 0.26 degrees. In contrast, the bottom plot shows
the performance of a simple PD controller attempting to track
the trajectory; here the settling time of the motor dynamics
cause the actual trajectory to lag significantly behind the
desired trajectory, a well-known effect in PD control. While
it would also be possible to adaptively tune the phase and
amplitude of the desired trajectory to make the PD controller
match the desired behavior, the froward controller does this
automatically through its model of the dynamics.

C. Policy Search for Online Parameter Optimization

Finally, our last experiments evaluate our proposed trust
region policy search method on the task of optimizating
power output (using collective pitch) at below the turbine’s
rated speed. The policy parametersw ∈ R

2 here are simply
the collective blade pitch angle and resistance of the load
(since the resistance is more directly controllable, we useit as
our policy parameters, but could equivalently parametrizethe
policy in terms of tip speed ratio). To evaluate the method,
we randomly initialized policies with uniformly random pitch
and resistance values within 10 to 20 degrees, and resistance
between 5 and 0.33 ohms. We then ran our trust region policy
search approach for 40 iterations, using the power output
averaged over two seconds (after three seconds of settling
time) as the reward signal (the negative cost function).

Figure 11 shows the evolution of the reward versus
iteration number, averaged over 10 trials (with different
starting parameters), along with 95% confidence intervals.
Also shown is the average reward obtained by trusting the
WT Perf simulation model and using its prescribed optimal
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Fig. 11. Average reward versus iteration number, with 95% confidence
intervals for our trust region policy search method optimizing power output.
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Fig. 12. Evolution of policy parameters for a typical run of policy search.

operating point. Despite receiving very little feedback from
the system, just the average power for a small number of
situations without any model of the system, our algorithm
is able to quickly obtain near-optimal parameter settings,
typically within about 15 iterations (75 seconds of real-
time operation). Figure 12 shows the evolution of the policy
parameters for a typical run of the policy search; as expected
the method quickly gets to (and remains in) a near-optimal
region of the parameter space. In contrast the REINFORCE
algorithm (using both the importance sampling technique
discussed in [30] and the optimal baseline technique from
[25]), performs significantly worse in this domain.

VI. CONCLUSIONS AND FUTURE WORK

This paper has presented an actuated wind turbine sys-
tem. We presented the physical system design, illustrated
the power output of the turbine and demonstrated accurate
individual pitch control via feed-forward compensation. We
proposed and evaluated the Trust Region Policy Search
method, an online learning algorithm similar to Reinforce-
ment Learning policy search methods, but which explicitly
models second order information about the cost function

and uses past data efficiently. We applied the algorithm to
power optimization in Region II wind speeds, and show
that it is able to quickly and reliably achieve near-optimal
power output on our turbine. Next steps for the research
involve integrating the policy search and individual pitch
control mechanisms to cope with static obstructions in the
incoming airflow. Building upon this, the eventual goal is to
develop a system that can autonomously adjust to dynamic
disturbances, such as those caused by an upwind turbine,
using a combination of both model-based and model-free
optimization techniques.
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