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Abstract— We consider the estimation of a binary random
variable based on m noisy measurements that can be manip-
ulated by an attacker. The attacker is assumed to have full
information about the true value of the variable to be estimated
and about the value of all the measurements. However, the
attacker has limited resources and can only manipulate n of
the m measurements. The problem is formulated as a minimax
optimization, where one seeks to construct an optimal detector
that minimizes the “worst-case” probability of error against
all possible manipulations by the attacker. We show that if
the attacker can manipulate at least half the measurements
(n ≥ m/2) then the optimal worst-case estimator should
ignore all m measurements and be based solely on the a-
priori information. When the attacker can manipulate less
than half the measurements (n < m/2), we show that the
optimal estimator is a threshold rule based on a Hamming-
like distance between the (manipulated) measurement vector
and two appropriately defined sets. For the special case where
m = 2n + 1, our results provide a constructive procedure for
the optimal estimator.

I. INTRODUCTION

The increasing use of networked embedded sensors to

monitor and control critical infrastructures such as the power

grid, transportation systems and built environments provides

potential malicious agents with the opportunity to disrupt

their operations by corrupting sensor measurements.

Supervisory Control And Data Acquisition (SCADA) sys-

tems, for example, implement the distributed control systems

that run a wide range of safety critical plants and processes,

including manufacturing, water and gas treatment and distri-

bution, facility control and power grids. A successful attack

to SCADA systems may significantly hamper the economy,

the environment, and may even lead to the loss of human

life. The first-ever SCADA system malware (called Stuxnet)

was found in July 2010 and rose significant concern about

SCADA system security [1], [2]. While SCADA systems

are currently mostly isolated, next generation SCADA will

make extensive use of widespread sensing and networking,

both wired and wireless, making critical infrastructures sus-

ceptible to cyber security threats.
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The research community has acknowledged the impor-

tance of addressing the challenge of designing secure de-

tection, estimation and control systems [3].

We consider a robust detection problem inspired by se-

curity concerns that arise from the possible manipulation

of sensor data. We focus our attention on the estimation

of a binary random variable θ from independent measure-

ments collected by m sensors, with the caveat that some

of these measurements can be manipulated by an attacker.

The attacker is assumed to have full information about the

true value of θ and all the measurements and uses this

information to manipulate the data available to the detector.

Limitations in the resources available to the attacker enable

him to only manipulate n of the m sensors. However, the

attacker has total control over the corrupted sensors, as he

can change their values arbitrarily. To minimize the detector’s

performance degradation in the face of such attacks, we

construct minimax detectors that minimize the “worst-case”

probability of detection error, where worst-case refers to all

possible manipulations available to the attacker.

We start by considering the case n ≥ m/2, in which the

attacker can manipulate at least half the measurements. We

show that in this scenario the optimal worst-case estimators

should ignore all m measurements and be based solely on

the a-priori distribution of θ. This result is in sharp contrast

with non-adversarial detection theory where even very noisy

data can provide some information. This also highlights the

power of adversarial manipulation of sensor data since an

attacker that has the ability to manipulate only half the

sensors, effectively destroys all the information that can be

inferred from the full set of sensors.

For the case n < m/2, in which the attacker can manipu-

late less than half the sensors, the optimal estimator typically

depends on the sensor data. Moreover, we show that the

optimal estimator consists of a threshold rule that compares a

Hamming-like distance between the (manipulated) measure-

ment vector and two appropriately defined sets. In general,

these sets may be difficult to compute but we provide a

procedure to construct the optimal estimator for the boundary

case n = (m− 1)/2, which turns out to be a simple voting

scheme. Specific numerical values are provided for the i.i.d.

Gaussian case (prior to the adversarial manipulation).

Related Work

Minimax robust detection problems have been extensively

studied in the past decades [4]–[6]. A classical approach

assumes that the conditional distribution of sensor measure-

ments lies in a set of probability distributions, which is called

an uncertainty class. One then identifies a pair of “least



favorable distributions” (LFDs) in the uncertainty class,

which conceptually represents the most similar and hardest

to distinguish pair of distributions. The robust detector is

then designed as a naive-Bayes or Neymann-Pearson detector

between the LFDs. While LFDs have been found for a

few uncertainty classes, there is no systematic procedure

to construct the LFDs and the corresponding estimators,

which is the main challenge to apply such approaches in

the presence of integrity attacks.

Basar et al. [7], [8] consider the problem of transmit-

ting and decoding Gaussian signals over a communication

channel with unknown input from a so-caller “jammer”.

The unknown input is assumed to be mean square bounded

by a constant, which characterizes the capability of the

“jammer”. Although the mean square bounded assumption is

reasonable for analog communications where the attacker is

constrained by “energy”, it is not practical for cyber attacks

on digital communications, where the attacker can change

the data arbitrarily as long as the integrity of the sensor is

compromised.

The rest of paper is organized as follows: In Section II

we formulate the problem of robust detection with n ma-

nipulated measurements from m total measurements. In

Section III and IV, we consider the optimal detector de-

sign for the cases n ≥ m/2 and n < m/2 respectively.

Furthermore, in Section V we discuss a special case where

n = (m − 1)/2 and formulate the problem of optimal

detector design as an optimization problem. In Section VI

we provide a numerical example of i.i.d. Gaussian signals.

Finally Section VII concludes the paper.

II. PROBLEM FORMULATION

The goal is to estimate a binary random variable (r.v.) θ
with distribution

θ =

{

−1 w.p. p−

+1 w.p. p+

where p−, p+ ≥ 0 and p− + p+ = 1. Without loss of

generality, we assume that p+ ≥ p−. To estimate θ we have

available a vector y , [y1, . . . , ym]′ ∈ R
m of m sensor

measurements yi ∈ R, i ∈ {1, 2, ...,m}, each of which

is conditionally independent from the others given θ. The

conditional probability density (mass) function of each yi is

denoted by

P (yi ∈ dx|θ) = F (yi|θ)dx.

We assume that an attacker wants to increase the prob-

ability that we make an error in estimating θ. To this end,

the attacker has the ability to manipulate n of the m sensor

measurements, but we do not know which n of the m
measurements have been manipulated. Formally, this means

that our estimate has to rely on a vector y′ ∈ R
m of

manipulated measurements defined by

y′ = y + γ ◦ u, (1)

where ◦ is element-wise multiplication and the sensor-

selection vector γ taking values in

Γ , {γ ∈ R
m : γi = 0 or 1,

m∑

i=1

γi = n}

and the bias vector u taking values in R
m. By selecting

which values of γ are nonzero, the attacker chooses which

of the n sensors will be manipulated. The “level” of manip-

ulation is determined by u.

The estimation problem is formalized as a minimax prob-

lem where one wants to select an optimal estimator

θ̂ = f(y′) = f(y + γ ◦ u) (2)

so as to minimize the probability of error, for a worst

case manipulation by the adversary. Following Kerckhoffs’

Principle that security should not rely on the obscurity

of the system, our goal is to design the estimator f :
R

m → {−1, 1} assuming that f is known to the attacker.

We also take the conservative approach that the attacker

has full information about the state of the system. Namely,

the underlying θ and all the measurements y1, . . . , ym are

assumed to be known to the attacker. However, due to limited

resources, he can only manipulate n of the m sensors. We

assume that the defender knowns how many sensors n can

be attacked, but cannot identify them.

To compute the worst-case probability of error that we

seek to minimize, we consider given values of θ, y and an

estimator f , for which an optimal policy for the attacker can

be written as follows:

(u, γ) =







arg min
u∈Rm,γ∈Γ

f(y + γ ◦ u) θ = 1

arg max
u∈Rm,γ∈Γ

f(y + γ ◦ u) θ = −1,

where the selection of the manipulation pair (u, γ) tries to

get the estimate in (2) as low as possible when θ = 1 (ideally

as low as −1) or as high as possible when θ = −1 (ideally

as high as 1). The min and max are attainable since f only

takes binary values.

Under this worst-case attacker policy, a correct decision

will be made only when the pair (θ, y) belongs to the set
{

(−1, y) : y ∈ Y −(f)
}

∪
{

(+1, y) : y ∈ Y +(f)
}

(3)

where Y +(f) and Y −(f) denotes the set of measurement

values y ∈ R
m for which the decision of the detector will

always be 1 and −1 respectively, regardless of the attacker’s

action, i.e.,

Y +(f) ,
{
y ∈ R

m : f(y + γ ◦ u) = 1, ∀u ∈ R
m, γ ∈ Γ

}
,

Y −(f) ,
{
y ∈ R

m : f(y + γ ◦ u) = −1, ∀u ∈ R
m, γ ∈ Γ

}
.

For a given estimator f , the worst-case probability of error

Pe(f) is then given by the measure of the set defined in (3)

and can be expressed as

Pe(f) , (1− β(f))p+ + α(f)p−, (4)



with

α(f) , 1− sup{P (y ∈ S|θ = −1) : S ∈ B(Rm), S ⊆ Y −(f)},
β(f) , sup{P (y ∈ S|θ = 1) : S ∈ B(Rm), S ⊆ Y +(f)},
where B(Rm) is the Borel σ-algebra on R

m. One should

think of α(f) as the measure of the set R
m \ Y −(f)

conditioned to θ = −1 and of 1 − β(f) as the measure

of the set Rm \ Y +(f) conditioned to θ = +1. The more

complicated definitions of α(f) and β(f) use inner measures

to make sure that Pe is well defined even if these sets are

not measurable.

Formally, the problem under consideration is to determine

the optimal estimator f in (2) that minimizes the worst-case

probability of error in (4):

P ∗
e = inf

f
Pe(f).

From the discussion above, we can recognize Y +(f) and

Y −(f) as “good” sets for the estimator, in the sense that

when measurements fall in these sets the attacker cannot

induce errors. From this perspective, good estimation policies

correspond these sets being large. This statement is formal-

ized in the following lemma:

Lemma 1: Given two functions f, g : R
m → {−1, 1},

if Y +(g) ⊇ Y +(f) and Y −(g) ⊇ Y −(f), then Pe(g) ≤
Pe(f).

III. OPTIMAL DETECTOR DESIGN FOR n ≥ m/2

In this section we consider the case when half or more

of the measurements can be manipulated by the attacker.

We show that, in this case, the attacker can render the in-

formation provided by the manipulated measurement vector

y useless, forcing the optimal estimate to be determined

exclusively from the the a-priori distribution of θ.

Theorem 1: If n ≥ m/2 then the optimal f∗ is given by1

f∗(y) = 1, ∀y ∈ R
m,

and the corresponding sets Y + and Y − are given by

Y +(f∗) = R
m, Y −(f∗) = ∅. �

The following lemma characterizes the relationship be-

tween Y −(f) and Y +(f) when n ≥ m/2 and provides a

key technical result.

Lemma 2: If n ≥ m/2, then Y −(f) 6= ∅ implies that

Y +(f) = ∅. �

Proof of Lemma 2. We prove this lemma by contradiction.

First it is clear that m−n ≤ n. Now suppose neither Y +(f)
nor Y −(f) is empty. As a result, we can find

y+ = [y+1 , . . . , y
+
m]′ ∈ Y +(f), y− = [y−1 , . . . , y

−
m]′ ∈ Y −(f).

Now let us consider

y = [y+1 , . . . , y
+
n , y

−
n+1, . . . , y

−
m]′.

Thus,

y = y+ + γ1 ◦ (y− − y+),

1Recall that we are assuming that p+ ≥ p−.

where

γ1 = [0, . . . , 0
︸ ︷︷ ︸

n

, 1, . . . , 1
︸ ︷︷ ︸

m−n

]′.

Therefore, γ1 ∈ Γ and thus by the definition of Y +(f),
f(y) = 1. On the other hand,

y = y− + (1− γ1) ◦ (y+ − y−),

where 1 is the one vector. It can be shown that 1− γ1 ∈ Γ.

Hence, f(y) = −1 from the definition of Y −(f), which

contradicts the fact that f(y) = 1.

Proof of Theorem 1. By Lemma 2, we know that either

Y +(f) or Y −(f) must be empty. First suppose that Y −(f)
is empty and hence α(f) = 1. As a result

Pe(f) = p+(1− β(f)) + p−.

The minimum is achieved when Y +(f) = R
m, which

implies that f = 1 and Pe(f) = p−.

On the other hand, if Y +(f) is empty, then the optimal

Y −(f) = R
m, f = −1 and Pe(f) = p+. Since we assume

that p+ ≥ p−, the optimal f is f∗ = 1 and optimal sets are

Y +(f∗) = R
m and Y −(f∗) = ∅.

IV. OPTIMAL DETECTOR DESIGN FOR n < m/2

We now consider the case when less than half the mea-

surements can be manipulated by the attacker, i.e., n < m/2.

We show that the optimal estimator is a threshold rule based

on a Hamming-like distance between the (manipulated) mea-

surement vector and two appropriately defined sets.

To state the necessary condition for optimality, we need

to introduce the following notation: We denote by d : Rm ×
R

m → R
+
⋃{0} the metric induced by the “zero-norm,”

i.e.,

d(x, y) , ‖x− y‖0,

where ‖x‖0 is the “zero-norm” of x, which is defined as the

number of non-zero entries of the vector x. While the “zero-

norm” is not a norm, the function d defined above is a metric.

In fact, d can be viewed as an extension of the Hamming

distance to continuous-valued vectors. The metric d can be

generalized to sets in the usual way: given an element x and

two subsets X,Y of Rm, we define

d(X,Y ) , min
x∈X,y∈Y

d(x, y) d(x, Y ) , d({x}, Y ). (5)

For convenience, we define the distance from any set to the

empty set to be infinity: d(X, ∅) = ∞. The minimum in (5)

is always attainable since d takes only integer values.

We also need to introduce a “truncation function”: Given

an indexed subset I = {i1, i2, . . . , ij} of {1, 2, ...,m}, we

define the function TruncI : Rm → R
|I| by

TruncI(y) =
[
yi1 yi2 · · · yij

]′
.

Suppose that for each indexed subset I ⊂ {1, . . . ,m} of

size m − 2n we have a set SI ⊆ R
m−2n. We want to find

the largest set X ⊆ R
m such that TruncI(X) ⊆ SI for each



I respectively. It is easy to see that X can be defined in the

following way:

X , {y ∈ R
m : TruncI(y) ∈ SI , ∀|I| = m− 2n}. (6)

We define the class of such set X parameterized by SIs

as Xm,n.

Definition 1: Two sets X1, X2 ∈ Xm,n are called mutu-

ally exclusive if and only if

X1 , {y ∈ R
m : TruncI(y) ∈ SI , ∀|I| = m− 2n},

X2 , {y ∈ R
m : TruncI(y) ∈ R

m−2n\SI, ∀|I| = m− 2n},
for some SIs.

Theorem 2: The optimal estimator f∗ is of the form

f∗(y) =

{

1 d(y,X−) ≥ d(y,X+)

−1 d(y,X−) < d(y,X+),
(7)

where X+, X− ∈ Xm,n are mutually exclusive. Moreover,

X+ ⊆ Y +(f∗) and X− ⊆ Y −(f∗). �

A. Proof of Theorem 2

The remainder of this section is mostly devoted to the

proof of Theorem 2, which requires several intermediate

results.

For a given set I and estimator f , in the sequel we

denote by Y −
I (f) and Y +

I (f) the image of Y −(f) and

Y +(f), respectively, under the function TruncI . As stated

in the following result, it turns out that these sets are always

disjoint:

Lemma 3: if n < m/2, for every estimator f and index

subset I of size |I| = m− 2n, we have

Y −
I (f)

⋂

Y +

I (f) = ∅.

Proof of Lemma 3. We prove the statement by contradiction.

Without loss of generality, we assume that I = {1, . . . ,m−
2n}, and

Y −
I

⋂

Y +

I 6= ∅.
As a result, there exist

y+ = [y1, . . . , ym−2n, y
+

m−2n+1, . . . , y
+
m]′ ∈ Y +(f),

and

y− = [y1, . . . , ym−2n, y
−
m−2n+1, . . . , y

−
m]′ ∈ Y −(f).

Now let us consider

y = [y1, . . . , ym−2n, y
+

m−2n+1 . . . , y
+
m−n, y

−
m−n+1, . . . , y

−
m]′.

It can be easily seen that there are n elements in y that differ

from y+ ∈ Y +(f) and another n elements in y that differ

from y− ∈ Y −(f). As a result, f(y) = 1 from the definition

of Y +(f) and f(y) = −1 from the definition of Y −(f),
which is an absurd.

For every estimator f , it is easy to see that

Y −(f) ⊆ Y−(f)

, {y ∈ R
m : TruncI(y) ∈ Y −

I (f), ∀|I| = m− 2n}.

From Lemma 3, we can conclude that Y +

I (f) ⊆
R2m−n\Y −

I (f) and therefore, Y +(f) is upper bounded by

Y +(f) ⊆ Y+(f)

, {y ∈ R
m : TruncI(y) ∈ R

m−2n\Y −
I (f), ∀|I| = m− 2n}.

Therefore Y−(f),Y+(f) ∈ Xm,n and are mutually exclu-

sive. We will prove that there exists a function g of the

form (7), for which Y−(f) ⊆ Y −(g) and Y+(f) ⊆ Y +(g).
Before that, we want to provide an inequality on the distance

between an arbitrary vector y and the sets Y+(f) and Y−(f),
the proof of which is omitted due to space limit.

Lemma 4: d(y,Y−(f)) + d(y,Y+(f)) ≥ 2n+ 1. �

We can now prove the main technical result needed for the

proof of Theorem 2:

Lemma 5: Consider the function g : R
m → {−1, 1},

defined as

g(y) =

{

1 d(y,Y−(f)) ≥ d(y,Y+(f))

−1 d(y,Y−(f)) < d(y,Y+(f)).
(8)

Then

Y −(f) ⊆ Y−(f) ⊆ Y −(g), Y +(f) ⊆ Y+(f) ⊆ Y +(g).
�

Proof of Lemma 5. We first prove that

Y−(f) ⊆ Y −(g).

Consider an arbitrary y ∈ Y−(f). We need to prove that for

any u ∈ R
m and γ ∈ Γ, g(y+γ ◦u) = −1. From definition,

d(y + γ ◦ u,Y−(f)) ≤ d(y + γ ◦ u, y) ≤ n.

By Lemma 4,

d(y + γ ◦ u,Y+(f)) + d(y + γ ◦ u,Y−(f)) ≥ 2n+ 1,

which implies that

d(y + γ ◦ u,Y+(f)) ≥ n+ 1.

As a result,

d(y + γ ◦ u,Y−(f)) < d(y + γ ◦ u,Y+(f)).

Therefore g(y + γ ◦ u) = −1, which implies that Y−(f) ⊆
Y −(g). Similarly, one can prove that Y+(f) ⊆ Y +(g).

Proof of Theorem 2. Theorem 2 now follows from

Lemma 1, since Y −(f) ⊆ Y −(g) and Y +(f) ⊆ Y +(g)
together imply that Pe(f) ≥ Pe(g).

Combining Lemma 5 and Theorem 2, we have the follow-

ing corollary.

Corollary 1: The optimal X+ and X− of f∗ are the

solutions of the following optimization problem2:

minimize
X+,X−

1− P (y ∈ X+|θ = 1)− P (y ∈ X−|θ = −1)

subject to X+, X− ∈ Xm,n,

X+, X− are mutually exclusive.

2Inner measure should be used if X+ or X− are not measurable.



The key challenge in applying Theorem 2 and Corollary 1

is that they do not provide a construction for the set X+, X−

that lead to the optimal f∗, potentially requiring one to search

for the optimal estimator by ranging over all possible sets in

Xm,n. However, we shall see in Section V that we can use

this general result to find the optimal estimator, at least for

the case m = 2n+ 1.

V. OPTIMAL DETECTOR FOR n = (m− 1)/2

In this section, we construct the optimal detector for the

case where n = (m − 1)/2. From Theorem 2, we know

that the optimal estimator can be constructed by choosing

an ‘appropriate” family of sets SI . It turns out that when

n = (m− 1)/2 this family of sets has a particularly simple

structure:

Theorem 3: If m − 2n = 1, the family of sets S{i} that

give the optimal estimator f∗ in (7) is of the form

S{i} = Ti(ηi), ∀i ∈ {1, 2, ...,m} (9)

where each ηi ∈ R ∪ {−∞,+∞},

Ti(η) ,
{

yi ∈ R : log

(
F (yi|θi = 1)

F (yi|θi = −1)

)

< η
}

.

By convention, Ti(∞) = R and Ti(−∞) = ∅.

Before proving Theorem 3, we note that one can imple-

ment the optimal estimator in (7) without actually computing

d(y,X−) and d(y,X+). When X+ or X− are empty, then

one of the distances in (7) is +∞ and f∗ is simply a constant.

When none of these sets is empty, it is straightforward to

show that

d(y,X−) =
∣
∣{i : yi ∈ Ti(ηi)

∣
∣, d(y,X+) ,

∣
∣{i : yi /∈ Ti(ηi)

∣
∣

and the detection algorithm can be implemented as the

following voting process:

• The detector computes m individual estimates θ̂i by a

Neymann-Pearson detector based on individual (possi-

bly manipulated) measurements y′i:

θ̂i ,

{

−1 y′i ∈ Ti(ηi)

1 y′i /∈ Ti(ηi)

• The optimal estimate θ̂ is obtained by voting:

θ̂ =

{

−1 at least n+ 1 estimates θ̂i = −1

+1 less than n+ 1 estimates θ̂i = −1

A. Proof of Theorem 3

We start by noting that when m − 2n = 1 the sets X−

and X+ are especially simple to compute:

X− =
{
y ∈ R

m : Trunci(y) ∈ S{i}, ∀i = 1, . . . ,m
}
=

m∏

i=1

S{i}

X+ =
{
y ∈ R

m : Trunci(y) ∈ R\S{i}, ∀i = 1, . . . ,m
}

=
m∏

i=1

R\S{i},

where
∏

i S{i} should be interpreted as a Cartesian product.

The following result is a straightforward consequence of the

fact that X− and X+ can be written as Cartesian products:

Lemma 6: If X+ 6= ∅ and X− 6= ∅, then Trunci(X
−) =

S{i} and Trunci(X
+) = R\S{i}.

The following result essentially states that the inner measure

of Cartesian products is the product of inner measure of each

set. The detail of the proof is omitted due to space limit.

Lemma 7: Let

αi = 1− sup{P (yi ∈ S|θ = −1) : S ∈ B(R), S ⊆ S{i}},
βi = sup{P (yi ∈ S|θ = 1) : S ∈ B(R), S ⊆ R\S{i}}.

If X−, X+ 6= ∅, then the following holds:

α = 1−
m∏

i=1

(1 − αi), β =

m∏

i=1

βi.

We are now ready to prove Theorem 3 by leveraging the

independence of yi.

Proof of Theorem 3. It is easy to see that if X+ (X−) is

empty, then f = −1 (f = 1), which implies that S{i} =
Ti(∞) (S{i} = Ti(−∞)). Now assume that X+ and X−

are not empty, by Lemma 7,

Pe(f) = 1− p+
m∏

i=1

βi − p−
m∏

i=1

(1 − αi).

Suppose the optimal αi, βi are α∗
i , β

∗
i . As a result, we know

that

P ∗
e = 1−



p+
∏

j 6=i

β∗
j



βi −



p−
∏

j 6=i

(1− α∗
j )



 (1 − αi)

= a∗iαi − b∗i βi + c∗i ,

where

a∗i =



p−
∏

j 6=i

(1− α∗
j )



 , b∗i =



p+
∏

j 6=i

β∗
j



 , c∗i = 1− a∗i .

By the Bayes Risk Criterion [9], the optimal S{i} must be

of form (9), with ηi = log(a∗i /b
∗
i ).

Remark 1: It can be shown that βi is a function of αi

(which corresponds to the ROC curves of the Neymann-

Pearson detector of yi), when S{i} is of the form (9). Due

to Corollary 1, we know that

P ∗
e = min

αi

1− p+
m∏

i=1

βi − p−
m∏

i=1

(1 − αi),

which can be solved numerically. �

VI. I.I.D. GAUSSIAN CASE

We now specialize our results for i.i.d. Gaussian measure-

ment yi. In particular, we assume that

yi = aθ + vi,

where a > 0 is constant and vis denote i.i.d. Gaussian

variables. Without loss of generality, we assume that these
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(a) m = 1, n = 0
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(b) m = 3, n = 1
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(c) m = 5, n = 2

Fig. 1. Probability of Error v.s. Threshold ζ

variables have zero mean and unit variance. It is easy to

prove that S{i} in Theorem 3 are of the form

S{i} = T (ηi) = {yi ∈ R : yi < ζi}, (10)

with ζi = ηi/2a. Moreover, the following results uses

symmetry to provide an even tighter characterization of the

sets corresponding to the optimal estimator.

Theorem 4: In the case of i.i.d. Gaussian measurements

and m− 2n = 1, the optimal worst-case probability of error

is given by

P ∗
e = 1− sup

ζ

p+ [Q(ζ − a)]
m
+ p− [Q(−ζ − a)]

m
, (11)

where

Q(x) ,
1√
2π

∫ ∞

x

e−
u2

2 du.

Moreover, the Sis of the optimal estimator f∗ in (7) are

symmetric and of the form

S{i} = {yi ∈ R : yi < ζ}, ∀i ∈ {1, 2, ...,m} (12)

for any ζ ∈ R∪ {−∞,+∞} that achieves the supremum in

(11). �

Proof. The proof uses the fact that Q(x) is a logarithmically

concave function. The detailed proof is omitted due to space

limit.

Remark 2: The main difference between Theorem 4 and

3 is that all the individual thresholds in Theorem 4 are

essentially the same, which reduces the search space further

from R
m to R.

In Figure 1 we plot the probability of error versus the

threshold ζ for different pairs of m,n. The parameters are

chosen as follows:

p+ = 0.6, p− = 0.4, a = 1.

The optimum for m = 1, n = 0 is ζ = −0.202, Pe = 0.154.

The optimum for m = 3, n = 1 is ζ = −0.508, Pe = 0.380.

For the case m = 5, n = 2, the optimal ζ is actually −∞.

Therefore, the optimal detector is simply f∗ = 1.

VII. CONCLUSION

In this paper we consider the problem of designing de-

tectors able to minimize the probability of error in the

face of n corrupted measurements due to integrity attacks

on a subset of the sensor pool. The problem is posed as

a minimax optimization where the goal is to design the

optimal detector against all possible attacker’s strategies. We

show that if the attacker can manipulate at least half of the

m measurements (n ≥ m/2) then the optimal worst-case

estimator should ignore all m measurements and be based

solely on the a-priori information. When the attacker can

manipulate less than of half of the measurements (n < m/2),

we show that the optimal estimator is a threshold rule

based on a Hamming-like distance between the manipulated

measurement vector and two appropriately defined sets. For

a particular case (m = 2n+1) we were able to compute the

optimal detector, showing that it consists of a simple voting

scheme. We further apply the results to n = (m− 1)/2 case

and i.i.d. Gaussian case.
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