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Optimal Foraging of Renewable Resources
John J. Enright Emilio Frazzoli

Abstract—Consider a team of agents in the plane searching for
and visiting target points that appear in a bounded environment
according to a stochastic renewal process with a known absolutely
continuous spatial distribution. Agents must detect targets with
limited-range onboard sensors. It is desired to minimize the
expected waiting time between the appearance of a target point,
and the instant it is visited. When the sensing radius is small,
the system time is dominated by time spent searching, and it is
shown that the optimal policy requires the agents to search a
region at a relative frequency proportional to the square root
of its renewal rate. On the other hand, when targets appear
frequently, the system time is dominated by time spent servicing
known targets, and it is shown that the optimal policy requires
the agents to service a region at a relative frequency proportional
to the cube root of its renewal rate. Furthermore, the presented
algorithms in this case recover the optimal performance achieved
by agents with full information of the environment. Simulation
results verify the theoretical performance of the algorithms.

I. INTRODUCTION

A very active research area today addresses the coordination
of several mobile agents: groups of autonomous robots and
large-scale mobile networks are being considered for a broad
class of applications, ranging from environmental monitoring,
to search and rescue operations, and national security. Wide-
area surveillance is one of the prototypical missions for Un-
inhabited Aerial Vehicles (UAVs): low-altitude UAVs on such
a mission must provide coverage of a region and investigate
events of interest as they manifest themselves. In particular,
we are interested in cases in which close-range information
is required on targets detected by onboard sensors, and the
UAVs must proceed to the locations to gather further on-site
information.

We address a routing problem for a team of agents in
the plane: target points appear over time in a bounded en-
vironment according to a stochastic renewal process with a
known absolutely continuous spatial distribution. It is desired
to stabilize the outstanding target queue and minimize the
expected elapsed time between the appearance of a target
point, and the instant it is visited (the system time). This is
a formulation of the Dynamic Traveling Repairman Problem
(DTRP), introduced in [1] and thoroughly developed in [2],
[3]. Numerous algorithms are presented and analyzed in this
series of seminal works. Furthermore, the property of spatial
bias is studied. In particular, they analyze the problem and
develop policies under the constraint that a target’s expected
waiting time must be independent of its location. In addition to
combinatorial and convex optimization, many of the solutions
rely heavily on results from the relatively mature fields of
facility location, probability and queueing theory.
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In an effort to address issues relevant in applications such
as autonomous mobile robotics, this paper focuses on a
variation of the DTRP. We place limitations on the information
available to the vehicles and analyze the effect on the system’s
achievable performance. In particular, we consider the case in
which vehicles are not aware of the location of targets as they
appear, but rather must detect them using on-board sensors
with a limited range.

The recent literature concerning problems of this class
is vast. Some recent work on the routing of nonholonomic
vehicles includes [4], [5]. Many of the new results for the small
sensing radius case are applicable to coverage problems [6],
[7], [8], in which the agents spread out with some sense
of balance, or comb the environment efficiently. This case
also has connections to the Persistent Area Denial (PAD) and
area coverage problems [9], [10], [11], [12]. Other works
are concerned with the generation of efficient cooperative
strategies for several mobile agents to move through a certain
number of given target points, possibly avoiding obstacles or
threats [13], [14], [15], [16]. Trajectory efficiency in these
cases is understood in terms of cost for the agents: in other
words, efficient trajectories minimize the total path length,
the time needed to complete the task, or the fuel/energy
expenditure. A related problem has been investigated as the
Weapon-Target Assignment (WTA) problem, in which mobile
agents are allowed to team up in order to enhance the prob-
ability of a favorable outcome in a target engagement [17],
[18]. In other works addressing UAV task-assigment, target
locations are known and an assignment strategy is sought
that maximizes the global success rate [19], [20] . Moreover,
this work holds a place in the recent wave of investigation
into the cooperative control of multi-agent systems [21], [22].
Other works addressing cooperative task completion by UAVs
include [23], [24], [25].

Song and coworkers considered the problem of searching for
a static object emitting intermittent stochastic signals under a
limited sensing range, and analyze the performance of standard
algorithms such as systematic sweep and random walks [26].
Due to the intermittent signals from the object, robots must
perform a persistent search, thus making the work similar
to ours. However, the authors assumed no prior information
about the location of the target object is available; hence, their
setting is equivalent to the assumption of a uniform spatial
distribution. In our work, we explicitly consider non-uniform
spatial distributions, which lead to different kinds of optimal
policies. Mathew and Mezic presented an algorithm named
Spectral Multiscale Coverage (SMC) to devise trajectories
such that the spatial distribution of a patrol vehicle’s position
asymptotically matches a given function [27]. Similarly, Can-
nata and Sgorbissa describe an algorithm that solves what they
call the Multirobot Controlled Frequency Coverage (MRCFC)
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problem, in which a team of robots are required to repeatedly
visit a set of predefined locations according to a specified
frequency distribution [28]. We show that when attempting
to minimize discovery time, the desired spatial distribution of
the agent’s position is dependent on, but not equivalent to the
underlying spatial distribution of incidents it must find.

The main contributions of this paper are the following. 1)
For the case of small sensing radius, we establish a new lower
bound and 2) a new policy whose performance is tight with the
lower bound. 3) In combination, these two contributions show
that the optimal policy requires that agents search subregions
of the environment at relative frequencies proportional to the
square root of their renewal rates, i.e., searching is biased
towards high density regions, but not as biased as the density
function itself. 4) For the case of high target renewal rate, we
present a new policy that works for agents with limited sensing
capabilities. 5) Comparing the performance of our policy
with a previously known lower bound, we show that–like the
full-information case–the optimal policy requires that agents
search subregions of the environment at relative frequencies
proportional to the cube root of their renewal rates. 6) These
results imply that the limited sensing capabilities do not
adversely affect the optimal performance of the agents in
this case, i.e., we recover the optimal performance of the
full-information heavy load case. 7) Moreover, we provide
scalable, decentralized strategies by which a multi-vehicle
team can operate with the above mentioned algorithms, and
retain optimal performance. Earlier versions of this work only
consider a single agent and uniform spatial distribution [29]
or a single agent and a known absolutely continuous spatial
distribution, but without analysis of the case of high target
renewal rate [30].

This paper is organized as follows. In Sec. II we formulate
the DTRP with limited sensing and review known results. In
Sections III we offer a lower bound for this new problem. In
IV we present algorithms for the single agent, and compare
their performance with lower bounds. In Sec. V we adapt our
algorithms to the multiple vehicle setting. Sec. VI concludes
the paper and notes possibilities for future research.

II. PROBLEM FORMULATIONS AND PREVIOUS RESULTS

In this section, we formally introduce the dynamic vehicle
routing problem we wish to study, without the additional
limitations on sensing or motion constaints. We also review
results of well studied static vehicle routing problems, in which
the vehicles have full information, and travel cost is simply
Euclidean distance. The known performance limits for these
problems serve as reference points for results found on the
problem variations studied herein. They give insight as to how
the new constraints affect the efficiency of the system.

Given a set Dn ⊂ R2 of n points, the two-dimensional
Euclidean Traveling Salesman Problem (ETSP) is the problem
of finding the shortest tour (closed path) through all points in
Dn; let ETSP(Dn) be the length of such a tour. Furthermore,
we will make use of the following remarkable result.

Theorem 1 ([31], [32]): If the locations of the points in
Dn are independently and identically distributed (i.i.d.) with

compact support Q ⊂ R2, then with probability one

lim
n→∞

ETSP(Dn)√
n

= β

∫
Q

√
ϕ(q) dq, (1)

where β > 0 is a constant not depending on the distribution
of the points and where ϕ is the density of the absolutely
continuous part of the distribution of the points.
The current best estimate of the constant is β ≈ 0.7120 [33],
[34]. According to [35], if Q is a “fairly compact and fairly
convex” set in the plane, then (1) provides an adequate esti-
mate of the optimal ETSP tour length for values of n as low as
15. Interestingly, the asymptotic cost of the ETSP for uniform
point distributions is an upper bound on the asymptotic cost
for general point distributions, as can be proved by applying
Jensen’s inequality to (1). In other words, if A is the area of
set Q,

lim
n→∞

ETSP(Dn)√
n

= β

∫
Q

√
ϕ(q) dq ≤ β

√
A

with probability one.
We will present algorithms that require online solutions

of large ETSPs. In practice, these solutions are computed
using heuristics such as Lin-Kernighan’s [36] or approximation
algorithms such as Christofides’ [37]. If the algorithm used in
practice guarantees a performance within a constant factor of
the optimal, the effect on the performances of our algorithms
can be modeled as a scaling of the constant β.

The following is a formulation of the Dynamic Traveling
Repairman Problem (DTRP) [2], [38], [3]. Let Q ⊂ R2 be a
convex, compact domain on the plane, with non-empty inte-
rior; we will refer toQ as the environment. Let A be the area of
Q. Target points are i.i.d. and generated according to a spatio-
temporal Poisson point process, with temporal intensity λ > 0,
and an absolutely continuous spatial distribution described
by the density function ϕ : Q → R+. The spatial density
function ϕ is K-Lipschitz, |ϕ(q1)− ϕ(q2)| ≤ K‖q1 − q2‖
for all q1 and q2 in Q, and bounded above and below,
0 < ϕ ≤ ϕ(q) ≤ ϕ < ∞ for all q in Q, and is normalized
in such a way that

∫
Q ϕ(q) dq = 1. For any t > 0,

P(t) is a random collection of points in Q, representing the
targets generated in the time interval [0, t). The following are
consequences of the properties defining Poisson processes.
• The total numbers of targets generated in two disjoint

time-space regions are independent random variables.
• The total number of targets generated in an interval [t, t+

∆t) in a measurable set S ⊆ Q satisfies

Pr [card ((P(t+ ∆t)− P(t)) ∩ S) = k]

=
exp(−λ∆t · ϕ(S))(λ∆t · ϕ(S))k

k!
,

for all k ∈ N, and hence

E[card ((P(t+ ∆t)− P(t)) ∩ S)] = λ∆t · ϕ(S),

where ϕ(S) is a shorthand for
∫
S ϕ(q) dq.

A service request is fulfilled when one of m mobile agents,
modeled as point masses, moves to the target point associated
with it; m is a possibly large, but finite number. In later sec-
tions, we will introduce limitations on the agent’s awareness of
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targets, and nonholonomic constraints on the agent’s motion.
Let us assume the agents have holonomic (single integrator)
dynamics, and that all agent’s are aware of a target’s location
upon its arrival epoch. Let p(t) = (p1(t), p2(t), . . . , pm(t)) ∈
Qm be a vector describing the positions of the agents at time
t. The agents are free to move, with bounded speed, within
the workspace Q; let v be the maximum speed of the agents.
In other words, the dynamics of the agents are described by
differential equations of the form

d pi(t)

dt
= ui(t), with ‖ui(t)‖ ≤ v, ∀t ≥ 0, i ∈ Im,

where we denote Im = {1, . . . ,m}. The agents are identical,
and have unlimited fuel and target-servicing capacity.

Let D : t → 2Q indicate (a realization of) the stochastic
process obtained combining the target generation process
P and the removal process caused by the agents visiting
outstanding requests. The random set D(t) ⊂ Q represents
the demand, i.e., the service requests outstanding at time t; let
n(t) = card(D(t)).

A motion coordination policy is a function that determines
the actions of each vehicle over time, based on the locally-
available information. For the time being, we will denote
these functions as π = (π1, π2, . . . , πm), but do not explicitly
state their domain; the output of these functions is a velocity
command for each agent. Our objective is the design of motion
coordination strategies that allow the mobile agents to fulfill
service requests efficiently (we will make this more precise in
the following).

A policy π = (π1, π2, . . . , πm) is said to be stabilizing if,
under its effect, the expected number of outstanding targets
does not diverge over time, i.e., if

nπ = lim
t→∞

E [n(t) : agents execute policy π] <∞.

Intuitively, a policy is stabilizing if the mobile agents are able
to visit targets at a rate that is—on average—at least as fast
as the rate at which new service requests are generated.

Let Tj be the time elapsed between the generation of the
j-th target, and the time it is fulfilled. If the system is stable,
then the following balance equation (also known as Little’s
formula [39]) holds:

nπ = λTπ, (2)

where Tπ := limj→∞ E[Tj ] is the system time under policy π,
i.e., the expected time a target must wait before being fulfilled,
given that the mobile agents follow the strategy defined by π.
Note that the system time Tπ can be thought of as a measure
of the quality of service collectively provided by the agents.

At this point we can finally state our problem: we wish
to devise a policy that is (i) stabilizing, and (ii) yields a
quality of service (system time) achieving, or approximating,
the theoretical optimal performance given by

T opt = inf
π stabilizing

Tπ.

In the following, we are interested in designing control
policies that provide constant-factor approximations of the
optimal achievable performance; a policy π is said to pro-

vide a constant-factor approximation of κ if Tπ ≤ κT opt.
Furthermore, a policy is called spatially unbiased if, under its
action, a target’s expected waiting time is independent of its
location and spatially biased otherwise. We shall investigate
how this spatial constraint effects the achievable system time,
i.e., we shall find lower bounds and develop algorithms within
the class of spatially unbiased policies, and without. Moreover,
we are interested in decentralized, scalable, adaptive control
policies, that rely only on local exchange of information
between neighboring vehicles, and do not require explicit
knowledge of the global structure of the network.

The DTRP with general demand distribution is studied
in [3], where the form of the optimal system time in heavy load
is first derived. However, there remained a constant-factor gap
between the lower and upper bounds. The coefficient of the
lower bound was tightened from (2/(3

√
π))

2 to β2/2 in [40]:

lim
λ→∞

T opt

λ
=

β2

2m2v2

(∫
Q

√
ϕ(q) dq

)2

, (3)

within the class of spatially unbiased policies, and

lim
λ→∞

T opt

λ
=

β2

2m2v2

(∫
Q
ϕ(q)2/3 dq

)3

, (4)

within the class of spatially biased policies. As mentioned
in [3],

A ≥
(∫
Q

√
ϕ(q) dq

)2

≥
(∫
Q
ϕ(q)2/3 dq

)3

with equality holding throughout if and only if ϕ(q) = 1/A
for all q ∈ Q. In other words, uniform density is the
worst possible, and any non-uniformity will strictly lower the
optimal system time. This is analogous with the length of the
stochastic ETSP, i.e., Eq. (1). Furthermore, the optimal system
time for spatially biased policies is lower than that of spatially
unbiased policies. This follows intuition as spatially unbiased
waiting time is a constraint limiting the realm of available
policies.

In addition to the above formulation of the DTRP, we add
a constraint on the information available to the agents. Agents
are not aware of a target’s existence or location upon its
arrival epoch. Rather, they must detect targets with limited-
range onboard sensors, i.e., they must come within the local
vicinity of the target. Let us call this variation the Limited
Sensing DTRP. Formally, this means the set D(t) is in general
not entirely known to all agents, due to the fact that the sensing
range is limited. For the sake of simplicity, we will model the
sensing region of an agent as a disk of radius r centered at
the agent’s position; indicate with

d(pi) = {q ∈ R2 : ‖pi − q‖ ≤ r}
the sensing region for the i-th agent. Other shapes of the
sensor footprint can be considered with minor modifications
to our analysis, and affect the results at most by a constant.
We will assume that the sensor footprint is small enough that
it is contained within Q for at least one position of the agent;
moreover, we will be interested in analyzing the effect of a
limited sensor range as r → 0+.
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III. LOWER BOUNDS ON THE OPTIMAL SYSTEM TIME

Every target must be detected by an agent’s sensor before
it is serviced. Let T detect

j be the time elapsed between the
generation of the j-th target, and the time it is first detected
by any agent’s sensor. Consider an alternative scenario we call
the Detection DTRP, in which targets are fulfilled at the instant
they are first detected, and T

detect

π := limj→∞ E[T detect
j ] is

the detection time under policy π. For all targets, T detect
j ≤ Tj ,

and thus
inf

π stabilizing
Tπ ≥ inf

π stabilizing
T

detect

π .

In other words, a lower bound on the achievable detection time
is also a lower bound on the achievable system time, T opt. We
leverage this fact in the following theorem.

Theorem 2: The optimal system time for the DTRP with
limited sensing satisfies

lim
r→0+

T optr ≥
A

4mv
, (5)

within the class of spatially unbiased policies and

lim
r→0+

T optr ≥
1

4mv

(∫
Q

√
ϕ(q) dq

)2

, (6)

within the class of spatially biased policies.
Proof: The probability that a target’s location is within a

sensor footprint at the time of arrival is bounded by

Pr[q ∈ ∪mi=1d(pi)] ≤ ϕmπr2.
In this case, T detect

j = 0. However, for any fixed number of
vehicles m and distribution ϕ,

lim
r→0+

Pr[q ∈ ∪mi=1d(pi)] ≤ lim
r→0+

ϕmπr2 = 0,

and therefore,

lim
r→0+

Pr[q /∈ ∪mi=1d(pi)] = 1.

In this limit, from the perspective of a point q ∈ Q, the actions
of a given stabilizing policy π are described by the following
(possibly random) sequence of variables: the lengths of the
time intervals during which the point is not contained in any
sensor footprint, Yk(q). In the following, we use the notation

E [Yπ(q)] = lim
k→∞

E [Yk(q) : agents execute policy π] .

Due to random incidence [35], [41], a target’s detection time,
conditioned upon its location, can be written as

lim
r→0+

E
[
T detect|q

]
= lim
r→0+

Pr[q /∈ ∪mi=1d(pi)] ·
E
[
Y 2
π (q)

]
2 E [Yπ(q)]

=
E [Yπ(q)]

2
+ Var [Yπ(q)]

2 E [Yπ(q)]

≥ 1

2
E [Yπ(q)]

where E
[
Y 2
π (q)

]
and Var [Yπ(q)] are, respectively, the second

moment and variance of the sequence Yk(q) under the actions
of policy π. In other words, for fixed E [Yπ(q)], the system
time is minimized if Var [Yπ(q)] = 0. This occurs under the

actions of a deterministic policy with exactly regular time
intervals between searching location q.

Define f(q) as the—time averaged—frequency at which
point q is searched under the actions of a policy. Note that
f(q) = 1/E [Yπ(q)], and so

T
detect

=

∫
Q
ϕ(q) E

[
T detect
j |q

]
dq

≥ 1

2

∫
Q

ϕ(q)

f(q)
dq.

The m-vehicle system is capable of searching at a maximum
rate of 2mvr (area per unit time), and so the average searching
frequency is bounded by

∫
Q f(q)/A dq ≤ 2mvr/A. Recalling

T opt ≥ T
detect

we have the following minimization problem:

2T opt ≥ min
f

∫
Q

ϕ(q)

f(q)
dq subject to∫

Q
f(q) dq ≤ 2mvr and f(q) > 0.

Since the objective function is convex in f(q) and the con-
straints are linear, the above is an infinite-dimensional convex
program. Relaxing the constraint with a multiplier, we arrive
at the Lagrange dual:

2T opt ≥ min
f(q)>0

[∫
Q

ϕ(q)

f(q)
dq + Γ

(∫
Q
f(q) dq − 2mvr

)]
=

∫
Q

min
f(q)>0

[
ϕ(q)

f(q)
+ Γf(q)

]
dq − 2mvrΓ.

Differentiating the integrand with respect to f(q) and setting
it equal to zero, we find the pair

f∗(q) =

√
ϕ(q)

Γ∗
(7)

and

Γ∗ =

(
1

2mvr

∫
Q

√
f∗(q) dq

)2

satisfy the Kuhn-Tucker necessary conditions for optimal-
ity [42], and since it is a convex program, these conditions
are sufficient to insure global optimality. Upon substitution,
(6) is proved. On the other hand, the constraint of unbiased
service requires that

E
[
T detect
j |qj = q

]
=

1

2f(q)
= T

detect
, ∀q ∈ Q.

Substituting into
∫
Q f(q) dq ≤ 2mvr, we get

A

2T
detect

≤ 2mvr.

Rearranging and recalling T opt ≥ T
detect

, we arrive at (5).
Oftentimes, a tight lower bound offers insight into the

optimal solution of a problem. Assuming that this lower bound
is tight, Eq. (7) suggests that in the spatially biased small
sensing-range case, the optimal policy searches a point q at
regular intervals at a relative frequency proportional to

√
ϕ(q).
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Moreover, we have presented new lower bounds on the optimal
system time related to the searching capability of the agents
and the necessary struture of any stabilizing policy. In the
following sections, we will use these bounds to evaluate the
performance of our proposed policies for the case of small
sensor range.

IV. ALGORITHMS AND POLICIES FOR A SINGLE AGENT

In this section, we present four policies for the single-
vehicle Limited Sensor DTRP, and prove their respective op-
timality in different limiting cases and classes of the problem,
namely, the case of small sensor range (spatially unbiased and
biased), and the case of heavy load (spatially unbiased and
biased). To begin, we present two algorithms (subroutines used
by the policies) by which an agent can service targets in a
given region of the environment. The first is designed for the
small-sensor case, and the second is designed for the heavy
load case. We analyze their properties in their respective cases.

In the following, we consider a convex subregion S ⊆ Q
of area AS . The targets in S are generated by a local
Poisson process with time-intensity λS = λϕ(S) and spatial
distribution ϕS(q) = ϕ(q)/ϕ(S) for all q ∈ S . Note that ϕS
is normalized such that ϕS(S) = 1. The first algorithm is
designed for the case of small sensing-range.

SWEEP-SERVICE

The description of this algorithm requires the use of an
inertial Cartesian coordinate frame. The algorithm is defined
as follows.
• Partition S into elements of width 2r with lines parallel

to the x-axis.
• Define a strip as the bounding rectangle of an element of

the partition, with sides parallel to the coordinate axes,
and minimum side-lengths.

• Plan a path running along the longitudinal bisector of
each strip, visiting all strips from top-to-bottom, connect-
ing adjacent strip bisectors by their endpoints.

• Execute this path and visit targets as they are detected
in the following manner. If a target is detected in the
current strip and it is in front of the agent (with respect
to the direction the agent is moving on the path), then
the agent continues on the path until its position has the
same x-coordinate as the target’s. It then departs from
the path, moving directly to the target, returning to the
point of departure, and continuing on the path. If a target
is detected outside the current strip, or behind the agent,
then it is ignored.

We now analyze the length Lswp(S) of the path planned by
the algorithm.

Proposition 3: The length Lswp(S) of the path planned by
SWEEP-SERVICE for region S satisfies

lim
r→0+

Lswp(S)r ≤ AS
2

Proof: Consider a grid of squares with sides of length 2r
parallel to the coordinate axes. Denote Nsq(S) as the number
of squares with nonzero intersection with S. The sum of the

Fig. 1. Depiction of an agent executing SWEEP-SERVICE.

lengths of all strips can be bounded by 2rNsq(S). Bound
the region S with a rectangle whose sides are parallel with
the coordinate axes, and denote the length of its perimeter
P (S). The length of the path between the endpoints of the
strip bisectors can be bounded above by P (S). Thus, the total
path length satisfies

Lswp(S) ≤ 2rNsq(S) + P (S).

But the number of squares satisfies [43]

lim
r→0+

Nsq(S)r2 =
AS
4

and so

lim
r→0+

Lswp(S)r ≤ lim
r→0+

(2Nsq(S)r2 + P (S)r) =
AS
2
.

SNAPSHOT-TSP

The second algorithm is designed for the heavy load case.
This algorithm requires that the subregion S ⊆ Q has a size
and shape such that it can be contained in the sensor footprint
of the agent, i.e., there exists a position p such that ‖p−q‖ ≤ r
for all q ∈ S . Let psnap be one such position. The algorithm
is defined as follows.
• Move to location psnap and take a snapshot, i.e., store

in memory, the locations of all targets outstanding at the
current time, called tsnap.

• Compute a minimum-length tour of all points in the
snapshot.

• Generate a uniformly distributed (in terms of path length)
random starting position on the tour (not necessarily a
target’s location).

• Randomly select a direction (clockwise or counterclock-
wise) with equal probability.

• Move to the starting position and execute the tour in
the chosen direction, ignoring all targets that appear after
tsnap.

We now analyze the length of the tour computed by the
algorithm. Define the set of targets in the snapshot as Dsnap

and denote the cardinality of this set as nsnap.
Proposition 4: Assuming that all targets generated before

some past time tclear were cleared from S, and the set of
targets outstanding at the current time t is the set generated
by the local Poisson process in the time interval (tclear, t] of
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length ∆t = t − tclear, the length of the tour computed by
SNAPSHOT-TSP satisfies

lim
λ→∞

E [ETSP(Dsnap)]√
λ

= β
√

∆t

∫
S

√
ϕ(q) dq.

Proof: The points in the set Dsnap are i.i.d. with compact
support S ⊂ R2, and nsnap → ∞ almost surely as λ → ∞.
By Theorem 1

lim
nsnap→∞

ETSP(Dsnap)
√
nsnap

= β

∫
S

√
ϕS(q) dq.

Thus as nsnap →∞,

E [ETSP(Dsnap)] = E

[
β
√
nsnap

∫
S

√
ϕS(q) dq

]
= β E

[√
nsnap

] ∫
S

√
ϕS(q) dq.

Define the length of the time interval over which Dsnap was
generated as ∆t = tsnap−tclear. The random variable nsnap is
Poisson with mean E [nsnap] = λS∆t. By Jensen’s inequality,

E
[√
nsnap

]
≤
√

E [nsnap].

However, as λS → ∞, the above inequality approaches
equality, i.e.,

lim
λS→∞

E
[√
nsnap

]
√
λS

=
√

∆t

and thus

lim
λS→∞

E [ETSP(Dsnap)]√
λS

= β
√

∆t

∫
S

√
ϕS(q) dq.

Substituting λS = λϕ(S) and ϕS(q) = ϕ(q)/ϕ(S), we arrive
at the claim.

The reader might find the choice of taking a snapshot at a
particular instant and ignoring all targets generated thereafter
peculiar. One might suggest that the agent could easily service
newly generated targets whose locations happen to coincide
with the vicinity of targets already in the current snapshot.
However, with the described method, the sets of points in the
snapshot are i.i.d. from the given Poisson process, and this
allows us to apply Theorem 1 to the tour computed for each
snapshot.

We now present four policies, each of which is designed
for one of the four cases: small sensing-range (spatially biased
and unbiased) and heavy load (spatially biased and unbiased).
Some of the policies we present require a partition of the
environment Q into tiles (S1,S2, ...,SK), i.e., ∪Kk=1Sk = Q
and Sk ∩ S` = ∅ if k 6= `. Each policy has different
required properties of the partition, however, let us define
some of the properties here. An equitable partition with
respect to a measure ψ : Q → R+ is a partition such that
ψ(Sk) = ψ(S`) for all k, ` ∈ IK . Note that this condition
implies ψ(Sk) = ψ(Q)/K for all k ∈ IK . A convex partition
is one whose subsets are convex.

A. The Unbiased Region Sweep (URS) Policy
The policy is defined in Algorithm 1. The index i is a label

for the current phase of the policy.

for i← 1 to ∞ do
Execute SWEEP-SERVICE on the environment Q

end
Algorithm 1: URS Policy

Theorem 5: Let T opt be the optimal system time for the
single-agent Limited Sensing DTRP over the class of spatially
unbiased policies. Then the system time of a single agent
operating on Q under the URS policy satisfies

TURS

T opt

= 1 as r → 0+. (8)

Proof: Define a phase of this policy as the time interval
over which the agent performs one execution of SWEEP-
SERVICE on the region Q. Denote the length of the i-th
phase by T phase

i , and the number of targets visited during
the i-th phase by ni. Assuming that the policy is stabilizing,
ni is finite. The expected length of the i-th phase T phase

i ,
conditioned on ni, satisfies

E
[
T phase
i |ni

]
≤ Lswp(Q) + 2rni + diam(Q)

v
.

Applying Proposition 3,

lim
r→0+

E
[
T phase
i |ni

]
r ≤

lim
r→0+

Lswp(Q)r + 2nir
2 + diam(Q)r

v
=

A

2v
.

In other words, in the limit as r → 0+, the length of the phase
does not depend on the number of targets serviced, so long as
it is finite. In expectation, a target waits one half of a phase
to be serviced, independent of its location. Therefore

lim
r→0+

TURSr ≤
A

4v
,

and moreover, the policy is spatially unbiased. Combining the
above result with the lower bound on the optimal system time
within the class of spatially unbiased policies in Theorem 2
and substituting m = 1, the claim is proved.

Theorem 5 shows that the optimal spatially unbiased policy
for small sensing range simply searches the entire environment
with equal frequency. In this case, the constraint on spatial bias
does not allow the agent to leverage non-uniformity in the
distribution of targets, ϕ, in order to lower the system time.
We performed numerical experiments of the URS policy and
results are shown in comparison with the lower bound (Eq. (5))
in Fig. IV-A on a log-log plot. The URS policy provides near-
optimal performance for very small values of sensing radius
r.

B. The Biased Tile Sweep (BTS) Policy

This policy requires that ϕ be a piecewise uniform density,
i.e., Q1,Q2, . . . ,QJ be a partition of Q such that ϕ(q) =
µj ∀q ∈ Qj , j = 1, 2, . . . , J . Let us assume that each subset
Qj is convex, as a non-convex subset can be further partitioned
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Fig. 2. Simulation performance of the URS policy for a single agent with
unit velocity in a unit square environment and uniform spatial distribution.
Results are compared with the theoretical lower bound (Eq. (5)) as radius
r approaches zero on a log-log plot. The URS policy provides near-optimal
performance for very small values of r.

into convex subsets. Let us denote Aj = Area(Qj), j =
1, 2, . . . , J.

This policy requires a tiling of the environment Q with
the following properties. For some positive integer K ∈ N,
partition each subset Qj into Kj = K/

√
µj convex tiles, each

of area Aj /Kj = Aj
√
µj/K. We assume K is chosen large

enough that an integer Kj can be found such that K/Kj is
sufficiently close to √µj . In other words, it requires a convex
and equitable partition of each region Qj with respect to a
constant measure ψ. This can be done with the following
simple method. Partition Qj into strip-like tiles of equal
measure with Kj parallel lines. Let us give the tiles of Qj
an ordered labeling Sj,1,Sj,2, . . . ,Sj,Kj . The BTS policy is
defined in Algorithm 2. The index i is a label for the current
phase of the policy.

Initialize kj ← 1 for j = 1, 2, . . . , J
for i← 1 to ∞ do

for j ← 1 to J do
Execute SWEEP-SERVICE on tile Sj,kj
if kj < Kj then kj ← (kj + 1)
else kj ← 1

end
end

Algorithm 2: BTS Policy

Example 6: In order to illustrate the application of the
BTS policy on a specific problem instance, we consider the
environment and piece-wise constant density function shown
in Fig. 6. This example is made up of four subregions, Qj ,
each of constant density, µj , indicated in the drawing. We do
not specify the areas of the subregions as their magnitudes
are not relevant to the algorithm. For the example to be well
posed, we can assume that the areas are such that ϕ(Q) = 1.
In fact, the absolute values of the µj’s are not relevant either.
In order to apply the BTS policy, all we need to know are
the relative magnitudes of the µj’s. In other words, how much

more likely is it that a target appears in Q1 rather than Q2?
Towards the end of making the relative magnitudes clear, this
example’s lowest density subregion has a density of 1. Any
given piecewise-constant density can be normalized to such a
form.

The first step of the algorithm is to choose our scaling
constant, a positive integer K ∈ N. Since the highest density is
µ1 = 36 and K1 = K/

√
µ1 in order to ensure that K1 ≥ 1, we

must set K ≥ 6. The beneficial aspect of setting K arbitrarily
large is that it allows us to make K/Kj arbitrarily close to√
µj for each j. But in practice, there is a cost associated with

increasing K: it increases the frequency of transition moves
between sweeping tiles. In the limit as r → 0+ these transition
costs are negligible as the time required to sweep an individual
tile dwarfs them, but for small but fixed r, these transition costs
must be balanced with the benefit of designing the ideal ratio’s
between the Kj’s. In this particular example, we don’t have
to make a trade-off between the transition costs and the ideal
ratio’s of the Kj’s. We can set K to its minimum feasible
value, K = 6, and then Kj = 6/

√
µj for each j, resulting in

K1 = 1,

K2 = 2,

K3 = 3,

K4 = 6.

Each subregionQj is divided into Kj tiles of equal measure,
Sj,1,Sj,2, ...,Sj,Kj

,, as shown in Fig. 6. Then the agent
performs SWEEP-SERVICE on the tiles in the following
repeating sequence. During each phase, one tile from each
subregion is swept:

phase1 : {S1,1,S2,1,S3,1,S4,1},
phase2 : {S1,1,S2,2,S3,2,S4,2},
phase3 : {S1,1,S2,1,S3,3,S4,3},
phase4 : {S1,1,S2,2,S3,1,S4,4},
phase5 : {S1,1,S2,1,S3,2,S4,5},
phase6 : {S1,1,S2,2,S3,3,S4,6}.

Again, the relative magnitudes of the areas of the subregions
are irrelevant to the algorithm. The subregions in this example
are of equal area only for clarity and simplicity. Of course,
the absolute magnitudes of the areas relative to the agent’s
sensing radius will directly influence the system time achieved
by the algorithm. Also, the subregions need not be convex
as convexity is not required to compute an efficient path
coverage. Furthermore, the subregions need not be connected.
We only require that the time required to travel between them
be negligible relative to the time required to perform path
coverage sweeps on them.

Theorem 7: If ϕ is a piecewise uniform density and T opt is
the optimal system time for the single-agent Limited Sensing
DTRP over the class of spatially biased policies, then the
system time of a single agent operating on Q under the BTS
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(b) Tiling created by BTS policy.

Fig. 3. Example environment and resultant tiling created by BTS policy.

policy satisfies

TBTS

T opt

= 1 as r → 0+. (9)

Proof: The total distance traveled between tiles during a
phase is no more than J diam(Q). Assuming that the policy
is stabilizing, the number of targets serviced during the i-th
phase ni is finite. The expected length of the i-th phase T phase

i ,
conditioned on ni, satisfies

E
[
T phase
i |ni

]
≤
∑J
j=1 Lswp(Sj,kj ) + 2rni + J diam(Q)

v
.

Applying Proposition 3,

lim
r→0+

E
[
T phase
i |ni

]
r ≤

lim
r→0+

∑J
j=1 Lswp(Sj,kj )r

v
+ lim
r→0+

2nir
2 + J diam(Q)r

v

=

∑J
j=1 Aj /Kj

2v

=

∑J
j=1 Aj

√
µj

2Kv
.

Conditioned upon its location q ∈ Qj , a target waits one half
of Kj phases to be serviced,

E
[
TBTS|q ∈ Qj

]
=

1

2
KjT

phase

=
1

2

K
√
µj
T phase.

Noting that Pr[q ∈ Qj ] = µj Aj and unconditioning on q ∈
Qj to find the system time,

TBTS =

J∑
j=1

Pr[q ∈ Qj ] · E
[
TBTS|q ∈ Qj

]
=

J∑
j=1

(Aj µj) ·
(

1

2

K
√
µj
T phase

)

=
KT phase

2

J∑
j=1

Aj
√
µj .

Thus,

lim
r→0+

TBTSr =

K
2

J∑
j=1

Aj
√
µj

 lim
r→0+

T phaser

=
1

4v

 J∑
j=1

Aj
√
µj

2

.

If ϕ is a piecewise uniform density and m = 1, the lower
bound on the optimal system time within the class of spatially
biased policies in Theorem 2 takes on the form

lim
r→0+

T optr ≥
1

4v

 J∑
j=1

Aj
√
µj

2

.

Combining, the claim is proved.
Theorem 7 shows that the optimal spatially biased policy

for small sensor-range searches a point in the environment at
regular intervals at a relative frequency proportional to

√
ϕ(q),

as was suggested by Eq. (7) in the proof of the corresponding
spatially biased lower bound in Theorem 2.

We performed numerical experiments of the BTS policy
for a single agent. As shown in Fig. IV-B (a), the spatial
distribution of the target-generation process was piece-wise
uniform with a density of ϕ1 = 1 + 10ε in the smaller region
of area 0.1 and ϕ2 = 1 + 10ε/9 in the larger region of area
0.9. We varied ε from 0 to 0.89. This tested the algorithm’s
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performance under a large range of spatial distributions: from
uniform (ε = 0) to one in which targets appear in the
smaller region with a 99% probability (ε = 0.89). Results
are shown in comparison with the lower bound (Eq. 6) in Fig.
IV-B (b) on a semi-log plot. The BTS policy provides near-
optimal performance for a large range of spatial distributions,
i.e., the BTS policy adapts the distribution of the searching
agent’s position in order to exploit the spatially biased target-
generation process and thereby reduce the expected system
time overall. In other words, the searching agent provides
higher quality of service to the targets in the higher density
regions. Specifically, under the BTS policy, a target’s expected
quality of service will scale (relative to other targets in other
regions) with the inverse square root of its region’s density.

0.1

0.9

1.0

ϕ2 = 1− 10�/9

ϕ1 = 1 + 10�

(a) Drawing of the environment and spatial distribution
(parameterized using ε) used for the numerical experi-
ments on the BTS policy.
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(b) Simulation performance of the BTS policy for a single agent in a unit
square environment with unit velocity and sensing radius r = 0.00625.
Results are compared with the theoretical lower bound (Eq. 6) for varying
spatial distribution on a semi-log plot. The parameter ε was varied from 0
to 0.89, i.e., the spatial distribution varied from uniform to one in which
99% of the incidents occuring in the subregion with 10% of the area.

Fig. 4. Numerical experiments of the BTS policy.

C. The Unbiased Tile TSP (UTTSP) Policy

This policy requires a tiling of the environment Q with
the following properties. For some positive integer K ∈ N,

partition Q into tiles S1,S2, . . . ,SK such that∫
Sk

√
ϕ(q)dq =

1

K

∫
Q

√
ϕ(q)dq, k = 1, 2, . . . ,K.

In other words, it requires a convex and equitable partition
of the environment Q with respect to the measure ψ where
ψ(q) =

√
ϕ(q) for all q ∈ Q. Furthermore, the size and shape

of each tile must be such that it can be contained in the sensor
footprint of an agent, i.e., for each Sk there exists a point pk
such that ‖pk − q‖ ≤ r for all q ∈ Sk. For example, if each
tile can be bounded by a rectangle, neither of whose side-
lengths exceeds r/

√
2, then this property is achieved. A tiling

with all these properties can be constructed with the following
simple method. First, partition Q into strip-like tiles of equal
measure with K1 parallel lines. If K1 is sufficiently large, then
the width of the thinnest tile is less than or equal to r/

√
2.

Next, partition each of the K1 strip-like tiles into K2 tiles of
equal measure using lines perpendicular to the first set. If K2

is sufficiently large, then the height of all tiles is less than or
equal to r/

√
2. The UTTSP policy is defined in Algorithm 3.

The index i is a label for the current phase of the policy.

for i← 1 to ∞ do
for k ← 1 to K do

Execute SNAPSHOT-TSP on tile Sk
end

end
Algorithm 3: UTTSP Policy

Theorem 8: Let T opt be the optimal system time for the
single-agent Limited Sensing DTRP over the class of spatially
unbiased policies. Then the system time of a single agent
operating on Q under the UTTSP policy satisfies

TUTTSP

T opt

= 1 as λ→∞. (10)

Proof: Let us denote T tsp
k,i as the time required to execute

the tour of the targets in tile Sk computed by SNAPSHOT-
TSP in the i-th phase. Including the time traveling between
tiles, we note that

T phase
i ≤

K∑
k=1

T tsp
k,i +

K diam(Q)

v
.

Applying Proposition 4, the time required for the first tile in
the (i + 1)-th phase T tsp

1,i+1, conditioned on the length of the
i-th phase T phase

i , satisfies

lim
λ→∞

E
[
T tsp
1,i+1|T phase

i

]
√
λ

=
β
√
T phase
i

v

∫
S1

√
ϕ(q) dq

=
β
√
T phase
i

Kv

∫
Q

√
ϕ(q) dq.

Since the choice of the first tile, and the epoch of the phase,
is arbitrary, the expected time to visit all targets in a tile is
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uniform over all tiles. Summing over all tiles, we get

lim
λ→∞

E
[
T phase
i+1 |T phase

i

]
√
λ

=

K · lim
λ→∞

E
[
T tsp
1,i+1|T phase

i

]
√
λ

+ lim
λ→∞

K diam(Q)

v
√
λ

=
β
√
T phase
i

v

∫
Q

√
ϕ(q) dq.

From the equation above, it can be verified that

E
[
T phase
i+1 |T phase

i

]
≥ T phase

i

if T phase
i ≤ β2λ

v2

(∫
Q

√
ϕ(q) dq

)2

and

E
[
T phase
i+1 |T phase

i

]
≤ T phase

i

if T phase
i ≥ β2λ

v2

(∫
Q

√
ϕ(q) dq

)2

.

Thus, the sequence of phases exhibits a fixed-point, from
which

lim
i→∞

E
[
T phase
i

]
=
β2λ

v2

(∫
Q

√
ϕ(q) dq

)2

.

Substituting, as i→∞,

E
[
T tsp
1,i

]
=
β
√
λ
√
T phase
i

Kv

∫
Q

√
ϕ(q) dq

=
β2λ

Kv2

(∫
Q

√
ϕ(q) dq

)2

=
T phase
i

K
.

Note that the above is quantity is independent of the specific
tile. In expectation, a target waits one half of a phase to enter
a snapshot. Because of the randomization in starting point
and direction performed in SNAPSHOT-TSP, in expectation,
a target waits one half of the time required to visit all targets
in its snapshot. Thus,

E
[
TUTTSP

]
=

1

2
T phase +

1

2

T phase

K

=

(
1 +

1

K

)
β2λ

2v2

(∫
Q

√
ϕ(q) dq

)2

.

Since the system time is independent of the location of the
target, the policy is spatially unbiased. Using the optimal
system time for the full-information DTRP in heavy load
within the class of spatially unbiased policies in Eq. (3) with
m = 1 as a lower bound, we see that for large K, the claim
is proved.

Although the constraint on spatial bias does not allow the
policy to service denser regions with higher frequency, Theo-
rem 8 shows that non-uniformity in the spatial distribution of
targets, ϕ, still leads to a lowering of the optimal system time.
This is due to the efficiency gained by the ETSP tours due to

non-uniformity, evident in Theorem 1.

D. The Biased Tile TSP (BTTSP) Policy

This policy requires that ϕ be a piecewise uniform density,
i.e., Q1,Q2, . . . ,QJ be a partition of Q such that ϕ(q) =
µj ∀q ∈ Qj , j = 1, 2, . . . , J . Let us assume that each subset
Qj is convex, as a non-convex subset can be further partitioned
into convex subsets. Let us denote Aj = Area(Qj), j =
1, 2, . . . , J.

This policy requires a tiling of the environment Q with
the following properties. For some positive integer K ∈ N,
partition each subset Qj into Kj = K/µ

1/3
j convex tiles, each

of area Aj /Kj = Aj µ
1/3
j /K. We assume K is chosen large

enough that an integer Kj can be found such that K/Kj is
sufficiently close to µ1/3

j . Furthermore, the size and shape of
each tile must be such that it can be contained in the sensor
footprint of an agent, i.e., for each Sk there exists a point
pk such that ‖pk − q‖ ≤ r for all q ∈ Sk. The grid-like
equitable tiling described for the UTTSP policy, applied here,
would require that each Kj be factorable into possibly large
numbers K1 and K2. This is undesirable because the numbers
Kj must maintain specific ratios related to the density µj in
their domain Qj as described above. However, this scenario
does have one simpler facet: the density functions within
each Qj are constant. One example of a method for reaching
convex and equitable partitions is given in [44]. Heuristically
speaking, the proposed algorithms converge to configurations
in which all cells are approximately hexagonal for constant
measure ψ and large Kj . Hence, for sufficiently large K,
these hexagonal tiles fit within a circle of radius r. Let us
give the tiles of Qj an ordered labeling Sj,1,Sj,2, . . . ,Sj,Kj .
The BTTSP policy is defined in Algorithm 4. The index i is
a label for the current phase of the policy.

Initialize kj ← 1 for j = 1, 2, . . . , J
for i← 1 to ∞ do

for j ← 1 to J do
Execute SNAPSHOT-TSP on tile Sj,kj
if kj < Kj then kj ← (kj + 1)
else kj ← 1

end
end

Algorithm 4: BTTSP Policy

Theorem 9: If ϕ is a piecewise uniform density and T opt is
the optimal system time for the single-agent Limited Sensing
DTRP over the class of spatially biased policies, then the
system time of a single agent operating on Q under the BTTSP
policy satisfies

TBTTSP

T opt

= 1 as λ→∞. (11)

Proof: Assume, for now, that the sequence of phases
exhibits a fixed-point, from which

lim
i→∞

E
[
T phase
i

]
= T phase

ss ,
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where T phase
ss denotes the steady-state phase length. Denote

T tsp
j,kj ,i

as the time required to execute the tour of the targets
in tile Sj,kj computed by SNAPSHOT-TSP in the i-th phase.
Any tile in Qj waits Kj phases between snapshots. Applying
Proposition 4 with the fixed-point assumption, as i→∞,

lim
λ→∞

E
[
T tsp
j,kj ,i

]
√
λ

=
β

v

√
KjT

phase
ss

∫
Sj,kj

√
ϕ(q) dq

=
β

v

√
KjT

phase
ss

Aj

Kj

√
µj

=
β

v

√
T phase
ss

K
Aj µ

2/3
j .

In other words, the fixed-point assumption implies that

lim
i→∞

E
[
T tsp
j,kj ,i

]
= T tsp

j,kj ,ss
=
β

v

√
λT phase

ss

K
Aj µ

2/3
j ,

for kj = 1, 2, . . . ,Kj . Summing over all tiles in a phase, and
including distance traveled between tiles,

lim
λ→∞

E
[
T phase
ss

]
√
λ

=

J∑
j=1

lim
λ→∞

E
[
T tsp
j,kj ,ss

]
√
λ

+ lim
λ→∞

J · diam(Q)

v
√
λ

=
β

v

√
T phase
ss

K

J∑
j=1

Aj µ
2/3
j .

The above implies that

T phase
ss =

β2λ

Kv2

 J∑
j=1

Aj µ
2/3
j

2

.

We now investigate the expected system time of a target,
conditioned upon its location q ∈ Qj . The time a target waits
before entering a snapshot, T−snap, is one half of Kj phases,
i.e.,

E
[
T−snap|q ∈ Qj

]
=

1

2
KjT

phase
ss

=
1

2
KT phase

ss µ
−1/3
j .

Unconditioning on the location of the target,

E
[
T−snap

]
=

J∑
j=1

Pr [q ∈ Qj ] · E
[
T−snap|q ∈ Qj

]
=

J∑
j=1

(Aj µj) ·
(

1

2
KT phase

ss µ
−1/3
j

)

=
1

2
KT phase

ss

J∑
j=1

Aj µ
2/3
j

=
β2λ

2v2

 J∑
j=1

Aj µ
2/3
j

3

.

Because of the randomization in starting point and direction
performed in SNAPSHOT-TSP, in expectation, the time a
target waits after entering a snapshot, T+

snap, is one half of

the time required to visit all targets in its snapshot.

E
[
T+
snap|q ∈ Qj

]
=

1

2
T tsp
j,kj ,ss

=
1

2

β

v

√
λT phase

ss

K
Aj µ

2/3
j .

Unconditioning on the location of the target,

E
[
T+
snap

]
=

J∑
j=1

Pr [q ∈ Qj ] · E
[
T+
snap|q ∈ Qj

]
=

J∑
j=1

(Aj µj) ·

1

2

β

v

√
λT phase

ss

K
Aj µ

2/3
j


=

β

2v

√
λT phase

ss

K

J∑
j=1

A2
j µ

5/3
j

=
β2λ

2v2
1

K

 J∑
j=1

Aj µ
2/3
j

 J∑
j=1

A2
j µ

5/3
j

 .

Combining,

TBTTSP = E
[
T−snap

]
+ E

[
T+
snap

]
=
β2λ

2v2

 J∑
j=1

Aj µ
2/3
j

3

+
1

K

β2λ

2v2

 J∑
j=1

Aj µ
2/3
j

 J∑
j=1

A2
j µ

5/3
j

 .

Namely, for large K, we have

lim
λ→∞

TBTTSP

λ
=

β2

2v2

 J∑
j=1

Aj µ
2/3
j

3

.

If ϕ is a piecewise uniform density and m = 1, then the
optimal system time for the full-information DTRP in heavy
load within the class of spatially biased policies in Eq. (4)
takes on the form

lim
λ→∞

T opt

λ
=

β2

2v2

 J∑
j=1

Aj µ
2/3
j

3

. (12)

Using the above as a lower bound for the Limited Sensor
DTRP in heavy load, we see that for large K, the claim is
proved.

Theorem 9 shows that the optimal spatially biased policy for
heavy load services targets in the vicinity of a point q at regular
intervals at a relative frequency proportional to ϕ(q)1/3.

V. MULTIPLE AGENTS WITH EQUITABLE REGIONS OF
DOMINANCE

We have presented four algorithms and proven them optimal
in four respective cases of the single-vehicle Limited Sensing
DTRP. We wish to adapt these policies to the multiple-vehicle
scenario, retaining optimality, with minimal communication
and collaboration among the agents. Towards this end, con-
sider the following strategy. Given a single-vehicle policy
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π, partition the environment Q into regions of dominance
V(Q) = (V1,V2, ...,Vm) where ∪m`=1V` = Q and V`∩Vh = ∅
if ` 6= h. Each vehicle executes policy π on its own region
of dominance. In other words, agent ` is responsible for all
targets appearing in V` and ignores all others.

The control policies to reach convex and equitable partitions
proposed in [44] are distributed and can be performed through
m mobile agents, where each agent only need communicate
with agents in neighboring cells of the partition. We do not
pursue this facet of the multi-agent system further, as these
methods are available and well studied. In the following
theorems, we show that if the regions of dominance are a
convex and equitable partition of Q with respect to a designed
measure ψ, then the decentralized strategy achieves an optimal
system time. However, the appropriate measure ψ depends on
the problem parameters (small sensing radius or heavy load)
and spatial constraints (biased or unbiased). Moreover, it is a
function of the spatial distribution of targets ϕ in three of the
four cases.

Some of the single-vehicle policies in the previous section
require the knowledge of certain properties of the environ-
ment such as its target generation rate, and its spatial target
distribution. A single-vehicle policy operating on a subregion
V` ⊆ Q takes as input the local target-generation process of
V` with time intensity λ` = λϕ(V`) and spatial distribution
ϕ` : V` → R+ where ϕ`(q) = ϕ(q)/ϕ(V`) if q ∈ V` and
ϕ`(q) = 0 otherwise. Note that ϕ` is normalized such that
ϕ`(V`) = 1.

Theorem 10: Let T opt be the optimal system time for the
m-agent Limited Sensing DTRP over the class of spatially
unbiased policies, and let V(Q) be a convex and equitable
partition of Q with respect to measure ψ where ψ(q) = 1 for
all q ∈ Q. If each agent ` ∈ Im operates on its own region
of dominance V` under the URS policy, then the system time
satisfies

TURS/ERD

T opt

= 1 as r → 0+. (13)

Proof: Denoting A` = Area(V`), we apply Theorem 5 to
find the system time of a target, conditioned upon its location,

E
[
TURS/ERD|q ∈ V`

]
=

A`

4vr
.

Since ψ(V`) = A`, the equitable partition implies that A` =
A /m for all ` ∈ Im. Hence

E
[
TURS/ERD|q ∈ V`

]
=

A

4mvr
,

and since the above is independent of the targets location,
it is in fact the unconditioned system time. Moreover this
implies that the strategy is spatially unbiased. Combining with
Theorem 2, the claim is proved.

Theorem 11: Let ϕ be a piecewise uniform density, let T opt

be the optimal system time for the m-agent Limited Sensing
DTRP over the class of spatially biased policies, and let V(Q)
be a convex and equitable partition of Q with respect to
measure ψ where ψ(q) =

√
ϕ(q) for all q ∈ Q. If each agent

` ∈ Im operates on its own region of dominance V` under the

BTS policy, then the system time satisfies

TBTS/ERD

T opt

= 1 as r → 0+. (14)

Proof: We apply Theorem 7 to find the system time of a
target, conditioned upon its location,

E
[
TBTS/ERD|q ∈ V`

]
=

1

4vr

(∫
V`

√
ϕ`(q) dq

)2

.

Substituting ϕ`(q) = ϕ(q)/ϕ(V`) we get

E
[
TBTS/ERD|q ∈ V`

]
=

1

4vr

1

ϕ(V`)

(∫
V`

√
ϕ(q) dq

)2

.

Unconditioning on the location of the target,

TBTS/ERD =

m∑
`=1

Pr [q ∈ V`] · E
[
TBTS/ERD|q ∈ V`

]
=

m∑
`=1

ϕ(V`) ·
1

4vr

1

ϕ(V`)

(∫
V`

√
ϕ(q) dq

)2

=
1

4vr

m∑
`=1

(∫
V`

√
ϕ(q) dq

)2

.

But the equitable partition with respect to ψ(q) =
√
ϕ(q)

implies that∫
V`

√
ϕ(q) dq =

1

m

∫
Q

√
ϕ(q) dq, ∀` ∈ Im,

and so

TBTS/ERD =
1

4mvr

(∫
Q

√
ϕ(q) dq

)2

.

Combining with Theorem 2, the claim is proved.
Theorem 12: Let T opt be the optimal system time for the

m-agent Limited Sensing DTRP over the class of spatially
unbiased policies, and let V(Q) be a convex and equitable
partition ofQ with respect to measure ψ where ψ(q) =

√
ϕ(q)

for all q ∈ Q. If each agent ` ∈ Im operates on its own region
of dominance V` under the UTTSP policy, then the system
time satisfies

TUTTSP/ERD

T opt

= 1 as λ→∞. (15)

Proof: We apply Theorem 8 to find the system time of a
target, conditioned upon its location,

E
[
TUTTSP/ERD|q ∈ V`

]
=

β2

2v2
λ`

(∫
V`

√
ϕ`(q) dq

)2

.

Substituting ϕ`(q) = ϕ(q)/ϕ(V`) and λ` = λϕ(V`) we get

E
[
TUTTSP/ERD|q ∈ V`

]
=
β2λ

2v2

(∫
V`

√
ϕ(q) dq

)2

.

But the equitable partition with respect to ψ(q) =
√
ϕ(q)

implies that∫
V`

√
ϕ(q) dq =

1

m

∫
Q

√
ϕ(q) dq, ∀` ∈ Im,
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and so

E
[
TUTTSP/ERD|q ∈ V`

]
=

β2λ

2m2v2

(∫
Q

√
ϕ(q) dq

)2

.

Since the above is independent of the targets location, it is in
fact the unconditioned system time. Moreover this implies that
the strategy is spatially unbiased. Combining with Eq. (3), the
claim is proved.

Theorem 13: Let ϕ be a piecewise uniform density, let T opt

be the optimal system time for the m-agent Limited Sensing
DTRP over the class of spatially biased policies, and let V(Q)
be a convex and equitable partition of Q with respect to
measure ψ where ψ(q) = ϕ(q)2/3 for all q ∈ Q. If each
agent ` ∈ Im operates on its own region of dominance V`
under the BTTSP policy, then the system time satisfies

TBTTSP/ERD

T opt

= 1 as λ→∞. (16)

Proof: We apply Theorem 9 to find the system time of a
target, conditioned upon its location,

E
[
TBTTSP/ERD|q ∈ V`

]
=

β2

2v2
λ`

(∫
V`
ϕ`(q)

2/3 dq

)3

.

Substituting ϕ`(q) = ϕ(q)/ϕ(V`) and λ` = λϕ(V`) we get

E
[
TBTTSP/ERD|q ∈ V`

]
=
β2λ

2v2
1

ϕ(V`)

(∫
V`
ϕ(q)2/3 dq

)3

.

Unconditioning on the location of the target,

TBTTSP/ERD =

m∑
`=1

Pr [q ∈ V`] · E
[
TBTTSP/ERD|q ∈ V`

]
=

m∑
`=1

ϕ(V`) ·
β2λ

2v2
1

ϕ(V`)

(∫
V`
ϕ(q)2/3 dq

)3

=
β2λ

2v2

m∑
`=1

(∫
V`
ϕ(q)2/3 dq

)3

.

But the equitable partition with respect to ψ(q) = ϕ(q)2/3

implies that∫
V`
ϕ(q)2/3 dq =

1

m

∫
Q
ϕ(q)2/3 dq, ∀` ∈ Im,

and so

TBTTSP/ERD =
β2λ

2m2v2

(∫
Q
ϕ(q)2/3 dq

)3

.

Combining with Eq. (4), the claim is proved.
In summary, we have offered four policies, each of which

performs optimally for the four cases studied: small sensing-
range (spatially biased and unbiased) and heavy load (spatially
biased and unbiased). In addition, we have offered a method
by which to adapt the four policies to a multi-vehicle setting,
retaining optimality, with minimal communication or collab-
oration. In particular, the agents partition the environment
into regions of dominance, and each vehicle executes the
single-vehicle policy on its own region, ignoring all others.
However, the nature of the partition varies in the different
cases addressed. Each scenario requires regions of dominance

TABLE I
OPTIMAL SYSTEM TIME FOR THE DTRP WITH LIMITED SENSING.

spatially unbiased spatially biased
r → 0+ A

4mvr
1

4mvr (
∫ √

ϕ dq)2

λ→∞ β2λ2

2m2v2 (
∫ √

ϕ dq)2 β2λ2

2m2v2 (
∫
ϕ2/3 dq)3

equitable with respect to a measure appearing in the optimal
system time of the corresponding single-vehicle case. In the
spatially unbiased small sensing-range case, the regions of
dominance are equitable with respect to area. Interestingly,
the spatially biased small sensing-range case, and the spatially
unbiased heavy load case both require regions of dominance
equitable with respect to measure ψ where ψ(q) =

√
ϕ(q) for

all q ∈ Q. Finally, the spatially biased heavy load case requires
regions of dominance equitable with respect to measure ψ
where ψ(q) = ϕ(q)2/3 for all q ∈ Q.

We have shown that in heavy load, the limited information
gathering capabilities of the agents have no effect on their
achievable performance. We suggest the intuitive explanation
that in heavy load, the environment is dense with targets,
and so the searching component added to the DTRP is non-
existent. On the other hand, for small sensing range, the lack of
information gathering capability detracts from the achievable
performance of the system. However, the presented policies
for these cases were still proved optimal through new lower
bounds related to the searching capability of the agents and
the necessary structure of any stabilizing policy.

VI. CONCLUSIONS

We have addressed a multi-agent problem with information
constraints we call the DTRP with limited sensing. Our
analysis yields precise characterizations of the system time,
and the parameters describing the capabilities and limitations
of the agents and the nature of the environment appear (or
don’t appear) in these expressions, giving insight into how
the parameters affect (or don’t affect) the efficiency of the
system. We summarize the characterizations of the optimal
system times for the four cases studied in Table VI.

In terms of methods and approaches, we note the path taken
in the small-sensor case. In order to place lower bounds on
the achievable performance of any algorithm, we carefully
relax constraints to arrive at a convex optimization problem
whose solution offers insight into the structure of the optimal
algorithm. Using this structure as guidance, we design a
provably optimal algorithm. Moreover, we have made use of
results from the mature fields of combinatorial optimization
and probability theory.

Another interesting result is that the limited sensing capa-
bility has no impact on performance when the target arrival-
rate is high. In other words, this lack of global information
does not hinder an agent from efficient routing choices. This
result assumes knowledge of prior statistics on the global
environment. Perhaps through proper mechanism design, a
game-theoretic approach [18], [21] might integrate the learning
of the global structure of the environment and the adaptation
of policy choices. Consider a team of agents with limited
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sensing and no communication [45] operating in a common
environment. From the perspective of an individual agent,
there might not be any observed difference between i) a region
with low target-arrival rate, and ii) a region with high target-
arrival rate that is frequently serviced by other agents. Does
this difference matter? In either case, the agent should search
for target-rich regions in order to maximize both its own utility
(target-servicing rate) and the value it is adding to the multi-
agent system.
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