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On the Effect and Robustness of Zero-crossing Detection Adgithms in
Simulation of Hybrid Systems Jumping on Surfaces

David A. Copp and Ricardo G. Sanfelice

Abstract— Motivated by the fragility to perturbations of
hybrid systems jumping on surfaces and the robustifying
capabilities of zero-crossing detection algorithms, we mmpose
a hybrid simulator model with incorporated zero-crossing de-
tection. First, we reveal the effect of measurement noise anof
discretization to hybrid systems jumping on surfaces. We pove
that, under mild regularity conditions, zero-crossing deection
algorithms have a robustifying effect on the original systen.
Then, we argue that, rather than computing the solutions tohe
discretization of the fragile nominal model, integration £hemes
with zero-crossing detection actually compute the solutios of
a robustified version of the original model. We propose a
mathematical model for the hybrid system with incorporated
zero-crossing detectioras well as a hybrid simulator for it. We
show that both the model and simulator are not only robust,
but also that the hybrid simulator preserves asymptotic staility
properties, semiglobally and practically (on the step sizg of the
original system. An example illustrates the ideas and restd
throughout the paper.

I. INTRODUCTION

We consider dynamical systenwgth a state that expe-
riences instantaneous resets (jumps) when it hissvich-

In state-dependent impulsive control systems, (see, [8]g.,
[9]), jumps occur when the state of the systems belongs to
a surface in the state space of the system.

There are several difficulties associated with systems
jumping on surfaces. For instance, suppose that the value of
the stater of the system is perturbed when nea®ye.g.,
due to measurement noise). Letdenote this perturbation.
Suppose that, for a given solutiont) to system [(IL)E(R)
(using an appropriate notion of solutiory,is zero when
x(t) # S but equal to a nonzero constantvhenz(t) = S.
Then, when the perturbation is added, for any nonzero
e, the same solutionz(t) will not satisfy the condition
x(t) + e(t) € S as before, and therefore, will not jump
at the instant it was jumping without noise. This suggests
that arbitrarily small perturbations téJ(1)}(2) can genera
trajectories that are nowhere close to the trajectoriehef t
nominal system; see [10] for related discussions. The same
issue appears in numerical simulations of such a system
because integration errors introduced by the discretiaati
prevents the computed solution from belonging to the switch

ing surfaceS. Switching surfaces are typically defined asing surface. To remedy this problem, algorithms to detect

the zero-level set of a continuously differentiable fuonti
defining in this way a codimension one submanifoldRdf;

see, e.g., [1], [2], [3]. Denoting the state by which takes
values from a region of operatiof C R™, the continuous

“crossings” of the switching surface are typically empldye

In this paper, we propose a mathematical model for hybrid
systems with zero-crossing detection as well as a hybrid
simulator for it. As a difference to [11], [12], we focus

dynamics of the system are given by a differential equatiogn detection of zero-crossing rather than accurate latatio
whenz is away from the surface. More precisely, the flowsafter revealing the effect of measurement noise and of

are governed by

= f(x) whenz € X'\ S. 1)

discretization to hybrid systems jumping on surfaces, we
show that both the model and simulator are not only robust,
but also that the simulator preserves asymptotic stability

Whenz hits the surface while in the region of operation, theproperties, semiglobally and practically (on the step)siag
state is reset via a difference equation defining the jumpke original system. The results are illustrated in an examp

of the system. More precisely, the new valuexobfter the
jump, denoted:™, is determined via

T = g(x) (2)

In this way, the trajectories are allowed to flow whens
X\ S and are allowed to jump whem € SN X. This

whenz € SN X.

throughout the paper.

The remainder of this paper is organized as follows.
Section ] presents a mathematical model of hybrid systems
with dynamics[(1){(R), a hybrid simulator for it, and issues
with perturbations. A model of a hybrid system with added
zero-crossing detection and associated hybrid simulatr a

model captures the dynamics of control systems in which i Sectior(ll. Our main results appear in Sectiod IV.
controller makes decisions when certain variables belong t

a surface. For instance, in reset control systems (see, e.g.

[4], [5], [6], [7]), the output of the controller is reset t@m

whenever its input and output satisfy an algebraic condlitio
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Il. HYBRID SYSTEMSJUMPING ON SURFACES

In this paper, we model systems and their simulators
within the hybrid systems framework of [13] and [14]. In
this way, we write systeni{1)42) as

o {n

reX\S=C

zreSNX =:D. ®)



Following [13], a solution to a hybrid system is a functionA. Nonrobustness to measurement noise

defined on a hybrid time domain satisfying certain condi- ag pointed out in Sectiofll I, when noise is present in

tions. A setE) C Rxo x N is acompact hybrid time domain the measurements of the state solutions to?{ may fail

if S to jump due to never belonging to the surface. In fact, for

[ O (£, t541] % {51) every nominal solution t@, it is possible to construct an

g2+l J arbitrarily small measurement noise sigaab thatz+e € S

never holds. A hybrid systeri with data(C, f, D, g) and

for some finite sequence of tim@s= ¢y < t; < t3... <t;. measurement noise: dome — R” is denotedH¢ and is

The setE is a hybrid time domainf for all (7,J) € E, given by

EN([0,T]x0,1,...J) is a compact hybrid domain. Byybrid

arc or hybrid trajectorywe understand a pair consisting of ~ #H° {

a hybrid time domainrdom 2 and a functionz : doma —

R" such that, for each, ¢ — (¢, ) is locally absolutely A solutionto H with measurement noise that is, a solution

continuous fort, j) € dom z. A hybrid arcé : dom¢ — R* 10 He for a given measurement noisgconsists of a hybrid

is asolutionto a hybrid systen with data(C, f, D, g) if ~ arc¢®:dom¢® — R" satisfying

Jj=0

t = flz+e) x4+eelC

zt = glx+e) x4+e€D. (10)

(S0) ¢(0,0) € CUD; (S0 ¢°(0,0) +¢(0,0) € CU D;
(S1) For eachj € N and each I, := (S1) For' each j ¢ N and each I =
{t : (t,j) € dom ¢ } with nonempty interior intl;, '{tt I (t,j) € dom¢® }  with  nonempty interior
int /;,

o(t,j) e C for all ¢ € int I; orr - . .

0T ] ) I (t,j)+el(t,j)eC for all ¢ € int I;

¢(t,j) = f(¢(t,5))  for almost allt € int I}; ¢°(t,§) = f(¢°(t,j) +e(t,§)) for almost allt € int I;;
(S2) For each(t,j) € dom¢ such that(t,j + 1) € (SZ°) For each(t,j) € dom¢¢ such that(t,j + 1) €
dom ¢, dom ¢¢,

o(t,j) € D, ¢(t,j+1)=g(¢t,5). (6) ¢°(t,j)+et,j) €D, ¢°(t,j+1)=g(¢°(t,j) +elt, ))).

Now, we consider an example of a hybrid system model The following result formalizes the fact that arbitrarily
that includes switching surfaces. small measurement noise may prevent solutiong{/tfrom

o - . jumping onS. Below, we say that a functioh: R™” — R"
Example 2.1:(unicycle avoiding obstacle) C0n5|deram0-is locally bounded on an open sék if for each compact

bile robot of the unicycle type being steered towards atarge . - C O there exists a compact s& ¢ R" such that
while avoiding a circular obstacle [2]. Let = [¢T,q]T, (K) C K’

where¢ = [¢,&] T is the vehicle position(¢5,£5) is the i _ _ _
obstacle position, and is the controller stateg € {1,2}, Proposition 2.2: (no jumps du_e to measurement noise)
whereg — 1 means go towards the target, ape- 2 means SUPPOS& = (C, /. D, g) as in (3) is such that

go away from obstacle. The modes are chosen depending ort) / : R" = R" andg : R™ — R™ are locally bounded
the robot's radial distance from the obstacle. Two circular _ ©ON an open set containing; _

surfacesS, with radii a,,as > ay, are defined around the 2) SN &' is a codimension one submanifold Bf.

obstacle for this purpose. Then, for eache > 0, eachT > 0, and eachzg € X,
The closed-loop system is given by every solutiong® to H with measurement noise and
¢°(0,0) = =z satisfiesdom¢® C [0,7] x {0}, for some

X = R*x{1,2}, (6) (solution dependent) measurable functiondom e — ¢B.

0 3—q The simulation of{ can be interpreted as the numerical
S — U (S, % {q}) ) computation of the solutions to the discretized version of
- qe“’é} . 4 . s #, defining a simulator. Ahybrid simulator for# will be
S = {£eR?  (§-&)*+ (& &) =ai}, (9  given by the family of system&* parameterized by step size

s satisfyings € (0, s*], with s* > 0 being the maximum

fla) = [ ZZ?;E:EZ:S)) ] o) = { I3 } % B. Properties of numerical simulations &f

where v is the tangential velocity of the robot, and the . . .
functionk(q, &) defines the mode-based controller which th step size. The data of the hybrid simula®r is denoted

. 5. f%,D?, ¢%). For simplicity, we will assume that the
robot should use in order to steer the robot to the target 9 (C S ’g.) : plictty, w .
region of operationt’ is not discretized. Following [14], a
away from the obstacle.

As pointed out in Sectio I, arbitrarily small measuremenrgybrld simulator?i* for the hybrid systent is written as
noise can prevent the robot from switching modes when Hs{ zf = fixs) 1, €X\S*=C"
reaching a boundary. This could lead the robot to collide zf = g°(zs) 2, €S8 NX =D
with the obstacle or move away from the target. Next weComparing# with 7¢, the dynamics for the flows o
will discuss these nonrobust propertiés. have been replaced by the integration scherhe= f*(z,),

(11)



where f° is constructed fromf. The jump map ofH has

been replaced by the discretized mgipwhile the flow and

jump setsC' and D have been replaced by the discretized sets ~_J

C?® and D?, whereS® is the discretization of. Being that el

the dynamics of the hybrid simulat@t® are purely discrete, .

the solutions toH*® are given on discrete versions of hybrid N wx"j

time domains. Instead df, j), we use(k, j) to parametrize R R g e
. s . 1 1

SO'““‘_’”? to#®. (S.ee [14] fOI‘. more det.a_lls') L . (a) Solution of robot missing modeb) Solution of robot missing mode

A similar behavior to that in Propositidn 2.2 highlighting change and never reaching target. change.

lack of robustness to measurement noise arises in numerical _ . ,

simulations of hybrid systems, where the numerical appro%'g'dé' C?‘;";’ggg_sTtﬁéhtgrgg'tciysdl‘;gﬁ%7'2)0E)>_‘a@ 2.1 thwndt capture

imations play the role of measurement noise. For example,

when implementing the hybrid systefd in a simulator,

the discretization in time produced by the ODE solver mayace. In general, these algorithms involve a memory state
prevent jumps from being triggered since the conditiore  and a function that changes sign according to the location of

§° may never hold. To illustrate this, consider the case of with respect taS. We call such a function aero-crossing
the flow mapf being discretized with an Euler integrationfynction

scheme. It follows that for every* > 0 and eachry € X,

every solutiong® to s .With some step size € (0, s"] function on a set¥ C R™ for a switching surfaceS is
and ¢°(0,0) = xo satisfiesdom¢® C N x {0}, wheres iven by a functiomh : X — R that implicitly characterizes

is a (solution dependent) step size. In fact, fix the initiag . : i
N ' d splitst’ int b &1, Xo C R™ as follows:
conditionzy € X. Suppose that for each € (0,s*] and and spiits& Into subspacest, 4> ¢ as foflows

every solutiong® to H,, we haveg®(k*,0) € S° for some SNX = {zxeX:h(z)=0}, (12)

k*l e N (dependir;]g ons (and)¢5).f'l'(he?, by d)e)fifnition (r)1f X {z € X : h(z) <0}, (13)

solution to#H?*, we havep®(k,0) = f*(¢*(k—1,0)) for eac

k=1,2,...,k* with ¢*(0,0) = zy. Equivalently, we can X = {zeX:hx)>0} (14)

write that¢* (k*,0) = f*o f*o...0 f*(xo) =: (f*)* (z0), whereX = SUX; U Xs.

where(f*)*" denotesk* compositions off*. By continuity For Examplé 211, a zero-crossing functibion X = R? x

in s of the resulting map, we have that(k*,0) cannot be {1,2} for S as in [8) is given by

in §¢ for eachs.
Now, we illustrate this issue by revisiting Examplel2.1. hx) = he(z) == (& — &) + (& — &)° — a]
Example 2.3:(unicycle avoiding obstacle (revisited)) For and the setst; and X, become

the hybrid system in Example_2.1, consider a hybrid sim-
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Definition 3.1 (zero-crossing functionpA zero-crossing

ulator H* with ¢° = g, S* = S, and f* given by the Xo= ({E€eR? : hi(6) <0} x{1})
Euler integration scheme, i.egfs(:c}r = x + sf(r) = U({EeR? : hy() <0} x{2}),
z + s [veos(k(g, €)), vsin(k(q, £)),0] . The robot changes

steering modes when it crosses the surf&gein order to Xo = ({€€R® @ hi(§) >0} x{1})
steer the robot away from the obstacle and towards the target U ({5 ER? : ho(€) >0 } % {2}) _

Figure[d shows a solution of a robot using the controller in
[2] starting at(&1,£2) = (0,0) moving towards the green
target while operating in modg = 1. The obstacle is A version of the hybrid systertf with zero-crossing de-
at (¢9,¢3) = (35,35) with radius smaller tham,, while tection capabilities is denotelco = (Crop, fze0, Dzcos zen)
a; = 15 anday = 20. Figure[1(d) shows a solution whereand is given by

the robot enters surfac8,, changes mode tg = 2 to i F(2)
move away from the obstacle, and then, due to discretization { 3 } = [ 0 } = fzeo() (2,2) € Creo
effects, steps ove¥; and fails to change mode backge= 1. N

Figure[1(D) represents the opposite situation, Wher.e a jump[ 5C+ } — [ g(x) ] = guo(z)  (2,2) € Do,
to modeq = 2 is not triggered and a collision with the < h(g(x))

obstacle could take place. Both of these cases can occur dMﬁereZ cRisa memory staté is azero-crossing function

(15)

to numerical error in the simulation on X for S, and
I1l. A HYBRID MODEL FOR HYBRID SYSTEMS JUMPING Copr = {(z,2)€XXR : h(z)z>0}, (16)
ON SURFACES WITH ZERGCROSSING DETECTION Diw = {(z,2)€X xR : h(z)2<0}. (17)

A. A hybrid system model & with zero-crossing detection the memory state is added here to keep track of whether
For the simulation of nonlinear systems, software packagéise stater is in the side ofS with h negative ¢ € ;)
use special algorithms to capture when solutions hit a supr in the side ofS with h positive ¢ € X3). At jumps, if



g(x) € Xy, thenh(g(x)) < 0, soz is reset toh(g(z)) so that
after the jumpe is in the flow set; similarly ifg(x) € X» at
the jump. In this way, solutions flow whéei(z) andz have
the same signi(z)z > 0) and jump whenh(z) evaluated

along the solution attempts to take a different sign front th

of z (h(z)z <0).
B. A numerical simulation model 6,

A. Nominal Properties of{,,

GivenH as in [3), we are interested in the conditions on
the data of a hybrid syster¥ under which#,., has basic
regularity properties leading to robustness to pertuobati

%o that end, the following mild conditions are imposed on

the data ofH{.
Assumption 4.1Given a hybrid syster{ = (C, f, D, g)

Given a hybrid systen#{ as in [3) and its augmentation as in [3) with associated set¥ and S, the following

with zero-crossing detectiofl,co = (Cucos freps Dzcos Gzcn)

in (I5), ahybrid simulatorfor H,c, is given by the family
of systemsH:., parameterized by step sizesatisfyings €

(0,s*], s* > 0. The data of the hybrid simulatok;., is

given by (Cs,, fap: Diacos 95ep)- The hybrid simulatorHs
is given by

IR Iy

[ xi} _ [hg"sﬁ“)))} — g5 (w4,25) € Diy,

Zs

(s, 25) € Creps
(18)

Czen
DS

ZCD

{(xs,25) € X XR : h¥(zs)zs >0}, (19)
{(xs,25) € X X R : h¥(zs)zs <0 }.(20)

The dynamics of the component for the flows ofl,., have
been replaced by the integration scherie= f*(z;), where
f* is constructed fromf. The jump map ofH,., has been
replaced byy:., while the flow and jump set€’, and D,

have been replaced by the sét§, and D:.,, respectively.

zcp?

The functionh?® is the discretization of the switching function

h. The memory state variable has been replaced by
The operation ofz, is equivalent to that of in #H,,, but

conditions hold:

1) X is closed (relative tdR™);

2) f:R™— R™is continuous ont’;

3) ¢g: R™ — R™ is continuous onY;

4) There exists a continuous zero-crossing functioon
X for S.

The following lemma shows that, under these assumptions,
‘H.co has regular data.

Lemma 4.2: (regularity of data of,.,) Suppose that a
hybrid systemH = (C, f, D, g) as in (3) with associated
setsX and S satisfy Assumption 4.1. Then, the datathf,
is such thatC,., and D,, are closed, andf,c, and g,c, are
continuous.

When the flows of the hybrid system are transversal to
the switching surface and the jump map does not map points
back to the jump set, the construction®f., is such that it
captures all of the solutions tH (and vice versa).

Proposition 4.3: (properties of solutions #,,) Given a
hybrid systemti = (C, f, D, g) as in (3) with associated
setsX and S, assume the following:

discretized. Being that the dynamics of the hybrid simulato 1) f:R" — R™ is continuous ont’;

Hs., are purely discrete, the solutions ¢}, are given on
discrete versions of hybrid time domains as in [14].
Figure[2 shows a solution to Example]2.1 using g,

framework and the control modes defined in [2]. Notice that

the mode changes are made successfully,
reaches the target.

-20 0 40 60 80

2051

Fig. 2. Solution to ExamplE—2.1 usirls.,. Solution starts from(0, 0).

IV. MAIN RESULTS

In this section, we state properties &f,.,, results on
measurement noise and robustness, and properties of
simulation framework for hybrid systems incorporatingaeer
crossing detection.

2) There exists a continuously differentiable zero-crossing
functionh on X for S such that
(Vh(z), f(z)) #0

VreD; (21)

and the unlcycl%) The jump mapy satisfiesg(z) ¢ D for all z € D.

Then, for every solution to H there exists a solutiorp to
H,eo Such thaty = v, wherey, denotes the: component
of 4. Furthermore, for every solutiogh to H,., there exists
a solutiong to H such thal Ve = O

B. Robustness to measurement noisé{gf

The following result establishes th&{,., is robust to
measurement noise. It is proven by embedding the hybrid
system#,, with measurement noise denoted#s,.,, into
an inflated version of{,.,. More precisely, givere; > 0,
H.co is inflated via an outer perturbation giving the perturbed

hybrid system

HEL - x € EfZCD(fL"f'fflIB%)
ze s ANNNS gZCD(x+51B)

x e CZL

x € D3, (22)

queThere exist solutiong)’ to Hzcp that start fromD and initially jump
ue to the value of, that is, (0,1) is an element olom¢’. For such
solutions, the equivalenceé, = ¢ holds for the solution td4zcp defined
asy(t,j) =/ (¢,j + 1) for each(t, ) € domy’.



whereco denotes the closed convex hull operation, (BO) f° is such that, for each compact skt C R",
there existsp € K, ands* > 0 such that for each

Cio = {2€R" : (@+aB)NCu#0 } z € C*NK and eachs € (0, s*],

€1 o no.

Dio = A &R = (w4 aB)N Do 0} F(e) € x+ s conf(a 4 pls)B) + sp(s)B:  (23)
This perturbed hybrid system is such that it captures ahef t
solutions toHS,, with measurement noise: dome — ¢;B.
Under the conditions in Assumptién 4.1, it follows that gver si 0,
solution to HZl, is close — in an appropriate sense and on lim ¢%(z) = g(x) Vo € R™; (24)
compact hybrid time domains — to an unperturbed solution to 80
H,eo. Then, the equivalence result in Proposifiod 4.3 permits
relating these solutions to those #f.

Before presenting the robustness result, we introduce a * 0,
notion of closeness of hybrid arcs from [13]. The same lim h%(z) = h(z) Vr € R™. (25)
property can be defined for two discrete arcs as well as for 510
a hybrid arc and a discrete arc; see [14] for more details.

Definition 4.4: (T, J, u)-closeness) Giverl’,.J > 0 and Integration schemes such as Euler as in Example 2.3 and
i > 0, two hybrid arcsz; : domz; — R”™ andz, : Runge-Kutta satisfy condition (B0). Conditions (B1) and

(B1) ¢® is such that for any positive sequentg}2°,,

(B2) h* is such that for any positive sequentg }°,,

dom zo — R™ are (T, J, u)-closeif (B2) hold when the perturbed functions are continuous in
(@) for all (¢,5) € doma, with t < T,j < J there the step size; see also [14, .Examples 4.8 and 4.9]. _
existss such that(s, j) € domas, |t — s| < », and When the d_ata of_the su_nulatcSHS an(_j zero-crossing
function associated witf{ satisfy Assumption 416, the data
|z1(t, §) — z2(s,§)| < n, of H:., have regularity properties guaranteeing closeness
(b) for all (t,5) € domas with t < T,j < J there between_ the so_lutions t’H and its simulations obtained via
existss such that(s, j) € dom =y, |t — s| < p, and H: .. This fact is stated in the next lemma.
. , Lemma 4.7: (regularity of data oH:.,) AssumeH® =
jw2(t;7) = 21(s,9)| < - (C*, 5, D%, ¢°) and h* are such that Assumptidn 4.6 hold.

Then’H§CD = (Ozscm fzscov Dzscov gzsco) is such thatfzsco andgzsco
satisfy (BO) and (B1) in Assumptibn ¥.6, afifl and D¢ are
such that
(B3) for any positive sequenge; }5°, such thats; “\, 0,
limsup,_,., C* C C, limsup,_, ., D* C D, where

Theorem 4.5: (robustness @&f,., to measurement noise)
Suppose that a hybrid systefh= (C, f, D, g) as in (@) with
associated setd” and S satisfy Assumption 4.1 and itefs 2
and[3 of Propositioi 4]13. LeK C R™ be a compact set
such that every maximal solutignto H with ¢(0,0) € K . s 1 . .
is either bounded or complete. Then, for evggry> 0 and lim sup; oo C*!, imsup; o, 13  are the outer limits
every(T,J) € R>o x N there existss* > 0 such that, for of the sequence of se®*, D*, respectively.
every measurable signal: dome — ¢B, 0 < ¢ < &*, every  Hybrid simulatorsH;., with data satisfying (B0)-(B3) are

solution ¢ to He., witH? ¥E(0,0) € K + B, 1¢(0,0) = such that, on finite simulation horizo(ig, J), their solutions
h(1£(0,0)), is such that there exists a solutignto H with approximate the solutions t&/ with arbitrary precision.
#(0,0) € K such thaty¢ and ¢ are (T, J, 1) close. The following result states this key relationship betwesa t
solutions toH and its simulations vigHs.,. Recall that,
C. Properties ofH;, as pointed out in Section_Il1B solutions & cannot be

As pointed out in Sectiofi B, a hybrid simulator for "éProduced by with arbitrary precision.

# that simply discretizes its dynamics may not be capable Theorem 4.8: (closeness between solutionsHoand

of reproducing the jumps of the solutions 10; see, e.g., Hj.,) Suppose that a hybrid systetd = (C, f, D, g) as
[11], [12]. As a consequence, solutions # cannot be in () with associated setd” and S satisfy Assumption 4.1
reproduced by{* with arbitrary precision. In this section, we and items 2 anf]3 of Propositi¢n 4.3. Furthermore, suppose
present conditions on the data%f that guarantee that when 75, satisfies Assumptidn 4.6. Then, for every compact set
zero-crossing detection is incorporated to it, resultinghie /& C R", everye > 0, and every simulation horizon
hybrid simulator;.,, solutions toH can be reproduced with (7', J) € R>o x N there existss® > 0 with the following
arbitrary precision. To this end, the following conditioms ~property: for anys € (0, s*] and any solution);(0,0) € K

the data ofH® are imposed. there exists a solutiom to H with ¢(0,0) € K such that

Assumption 4.6The dataf® and ¢g° of the hybrid sim- Yz and¢ are (T J, )-close.

ulator H* = (C*, f*, D*,¢*) for the hybrid systent{ = Theoren 4B is illustrated in the system of Exanipld 2.1
(C,f,D,g) and the associated zero-crossing function by plotting the solutions for different step sizes. In Figid,
satisfy the following: both the exact solution and simulation solutions are pibtte

The closeness between the exact solution (in black) and the
2y¢ denotes the: component ofy while ¢ the z component. simulated solutions (in blue) can be seen. The simulations



solutions converge to the exact solution as the step size isOur final result follows from [14, Theorem 5.4] and

decreased.

0 5 0 15 2 é— 25 30 35 40

(a) Solution to Exampl€ 21 with (b) Zoomed in solution to Exam-
decreasing step size. ple[21 with decreasing step size.

Fig. 3. Closeness between solutions of Exanfiplé 2.1. Sokitgiart from

(0,0).

D. Application to hybrid system${ with asymptotically
stable compact sets

establishes that the semiglobally asymptotically stabtda
H:.,, denotedA,, converges tod as the step size becomes
smaller. In other words, the sed;, depends continuously
on the step size. Belowy denotes the Hausdorff distance
between two sets.

Theorem 4.10: (continuity of asymptotically stable sets)
Suppose the assumptions of Theofem 4.9 hold. Then, there
existss* > 0 such that for eachs € (0, s*], the hybrid
simulator #;., has a semiglobally pre-asymptotically stable
compact setd, satisfyingdy (As, A) — 0 ass \,0.

V. CONCLUSION

A mathematical framework for theoretical study of zero-
crossing detection algorithms and their effect in simolati
of hybrid systems was introduced. Unlike previous work in
the literature, the proposed framework allows for anahltic
study of these properties. The effect of perturbations in
hybrid systems jumping on surfaces was highlighted and

In this section, we consider the case when a compagt hybrid model and simulator incorporating zero-crossing

set is asymptotically stable for the hybrid systémin (3).
More precisely, there exists a compact gett R" with the
following properties:

« stableif for eache > 0 there exist® > 0 such that each
solution ¢ with |¢(0,0)| 4 < ¢ satisfies|¢(t,5)[a < €
for all (¢,) € dom ¢;

« attractiveif there exists, > 0 such that every solution
¢ with |¢(0,0)| 4 < u is bounded and if it is complete
satisfieslim; j)edom ¢,t+j—o0 [#(t: 7)]4 = 0;

« asymptotically stabléf stable and attractive.

detection were proposed. We establish that when zero-
crossing detection is incorporated, the resulting system i

robust to measurement noise and to discretization effacts i
numerical simulation. Our results suggest that integnatio

schemes with zero-crossing detection algorithms actually
compute the solutions of a robustified version of the fragile
nominal model.
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