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Abstract— This paper presents a distributed algorithm for
finding near optimal dominating sets on grids. The basis for this
algorithm is an existing centralized algorithm that constructs
dominating sets on grids. The size of the dominating set
provided by this centralized algorithm is upper-bounded by⌈
(m+2)(n+2)

5

⌉
for m×n grids and its difference from the optimal

domination number of the grid is upper-bounded by five. Both
the centralized and distributed algorithms are generalized for
the k-distance dominating set problem, where all grid vertices
are within distance k of the vertices in the dominating set.

I. INTRODUCTION

Significant attention has been devoted in recent years to
the study of large-scale sensor and robotic networks due to
their promise in fields such as environmental monitoring [1],
inventory warehousing [2], and reconnaissance [3]. One of
the key objectives in such networks is to ensure coverage of
a given area, where every point in the space is within the
sensing radius of one or more of the agents (i.e., sensors or
robots). Various algorithms have been proposed to achieve
coverage based on differing assumptions on the mobility and
sensing capabilities of the agents [4].

In certain scenarios, the environment may impose restric-
tions on the feasible locations and motion of the agents [5]. In
such cases, it is natural to model the environment as a graph,
where each node represents a feasible location for an agent,
and edges between nodes indicate available paths for the
agents to follow. The coverage capabilities of any given agent
are then related to the shortest-path distance metric on the
graph: an agent located on a node can cover all nodes within
a certain distance of that node. The goal of selecting certain
nodes in a graph so that all other nodes are within a specified
distance of the selected nodes is classical in graph theory,
and is known as the dominating set problem [6]. Versions of
this problem appear in settings such as multi-agent security
and pursuit [7], routing in communication networks [8], and
sensor placement in power networks [9].

Finding the domination number (i.e., the size of a smallest
dominating set) of arbitrary graphs is NP-hard [6]. In fact,
Raz and Safra showed that achieving an approximation ratio
better than c logn for the dominating set problem in general
graphs is NP-hard, where c > 0 is some constant and n is
the number of vertices of the graph [10]. However, there are
several algorithms known for the dominating set problem for
which the ratio between the size of the resulting dominating
set and graph domination number can closely reach the
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c logn bound. The simplest of these algorithms is a greedy
algorithm that at each step adds one vertex to the dominating
set. The vertices that are already in the dominating set
are marked as ‘black’, the vertices that share edges with
black vertices are marked as ‘gray’ and other vertices are
‘white’. At each step, a white vertex that shares the maximum
number of edges with other white vertices are added to
the dominating set and the colour labels of all vertices
are updated according to the aforementioned rules. Another
widely used approximation algorithm for the problem uses
a linear programming relaxation. Both greedy and linear
programming approaches for the dominating set problem
are known to have (lnn+1)-approximation ratios [11], [12],
which are in O(logn).

Even though in general graphs one cannot obtain an
approximation ratio in o(logn), in special types of graphs
better approximation ratios are obtainable. One of the most
important classes of graphs are planar graphs. A planar
graph is a graph that can be drawn in a plane so that
none of its edges intersect except at their ends [13]. The
dominating set problem is still NP-hard for planar graphs;
however, the domination number of this type of graphs can
be approximated within a factor of (1+ε) for an arbitrarily
small ε > 0 [14].

Grid graphs are a special class of graphs that have attracted
attention due to their ability to model and discretize rectangu-
lar environments [15], [16]. Grids can be used in simplifying
the underlying environment and limiting energy consumption
by representing a certain area of the environment with only
one node in the grid [17]. Moreover, grid graphs, due to their
special structure that do not leave any area of environment
unrepresented while transferring the problem environment
into a tractable domain, can successfully provide efficient
area coverage and hence are used very commonly in the
network coverage and delectability literature [15], [18]. All
these application motivated us in studying the dominating set
problem when the underlying graph is a grid.

As discussed above, it is NP-hard to find the domination
number of general or even planar graphs. It can be easily
observed that grid graphs lie in the class of planar graphs
and hence their domination number can be obtained within
a small ratio. However, due to the special structure of grids,
their domination number can in fact be determined optimally,
although the path to obtaining the exact domination number
of grids was not straightforward. For m× n grid graphs,
the size of the optimal dominating set was unknown until
recently, although an upper bound of

⌊
(m+2)(n+2)

5

⌋
− 4 was

shown in [19] for 8 ≤ m ≤ n using a constructive method.
Various attempts have been made in recent years to find a
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tight lower bound on the size of the optimal dominating
set. In [20], the authors used brute-force computational
techniques to find optimal dominating sets in grids of size up
to n = m = 29. The paper [21] showed finally that the lower
bound on the domination number is equal to the upper bound
for 16 ≤ m ≤ n, thus characterizing the domination number
in grids.

In this paper, we make two contributions to the study
of dominating sets on grids, and their application to multi-
agent coverage. First, we provide a distributed algorithm that
locates a set of agents on the vertices of an m× n grid
such that they construct a dominating set for the grid and
the required number of agents is within a constant error
from the optimal. The agents require only limited memory,
sensing and communication abilities, and thus the solution
is applicable to multi-robot coverage applications where the
environment can be discretized as a grid. Our distributed
algorithm is based on a simple constructive method to
obtain near-optimal dominating sets (i.e., that require no
more than 5 vertices over the optimal number) in grids by
Chang et al. [19]. This approach is based on a systematic
tiling pattern that we call a diagonalization. Second, we
generalize Chang’s construction to the k-distance dominating
set problem, where a given vertex can cover all other vertices
within a distance k from it. We show that our distributed
algorithm can also be generalized to work in the k-distance
domination scenario.

In Section II, we introduce the essential models and
notation for formulating the dominating set problem on
grids. In Section III we discuss the constructive centralized
grid domination algorithm. The materials in Section III are
used in Section IV to design a distributed algorithm for the
dominating set problem. Section V generalizes the results in
Sections III and IV to the k-distance dominating set problem.
Finally, Section VI concludes the paper and discusses the
corresponding open problems.

II. BACKGROUND

A graph G = (V,E) is defined as a set of vertices V
connected by a set of edges E ⊆ V ×V . We assume the
graph is undirected, i.e., (v,u) ∈ E ⇔ (u,v) ∈ E,∀v,u ∈ V .
A vertex u ∈V is defined as a neighbour of vertex v ∈V , if
(u,v) ∈ E. The set of all neighbours of vertex v is denoted
by N(v). For a set of vertices U ⊆ V , we define N(U) as⋃

u∈U N(u). For a set of vertices U ⊆V , we say the vertices
in N(U) are dominated by the vertices in U . For graph G, a
set of vertices S⊆V is a dominating set if each vertex v∈V
is either in S or is dominated by S.

A dominating set with minimum cardinality is called an
optimal dominating set of a graph G; its cardinality is called
the domination number of G and is denoted by γ(G). Note
that although the domination number of a graph, γ(G), is
unique, there may be different optimal dominating sets [22].

Here, we study the dominating set problem on a special
class of graphs called grid graphs. An m×n grid graph G =
(V,E) is defined as a graph with vertex set V = {vi, j|1 ≤
i ≤ m,1 ≤ j ≤ n} and edge set E = {(vi, j,vi, j′)| | j− j′| =

Fig. 1: In (a), a 12×12 grid G′ is demonstrated and its 10×10 sub-grid G
is highlighted by a red dashed square. G′ is diagonalized by a set U ′ of 28
vertices. In (b), vertices in U ′\V are projected onto their neighbours in G.

1}
⋃
{(vi, j,vi′, j)| |i− i′| = 1} [13]. For ease of exposition,

we will fix an orientation and labelling of the vertices, so
that vertex v1,1 is the lower-left vertex and vertex vm,n is
the upper-right vertex of the grid. We denote the domination
number of an m×n grid G by γm,n = γ(G).

Theorem II.1 (Gonçalves etal, [21]). For an m×n grid with
16≤ m≤ n, γm,n =

⌊
(m+2)(n+2)

5

⌋
−4.

Our distributed grid domination algorithm is based on a
procedure developed by Chang et al. [19]. To obtain the
tools needed in our distributed algorithm, we discuss an
overview of Chang’s algorithm in Section III. These tools
are used in Sections IV and V in the distributed domination
algorithm and in developing the k-distance dominating set
results. Before discussing these tools, we introduce two
useful definitions.

Definition II.2. (Grid Boundary) For an m× n grid G =
(V,E), we define the boundary of G, denoted by B(G), as
the set of vertices with less than 4 neighbours.

Definition II.3. (Sub-Grids and Super-Grids) An m×n grid
G=(V,E) is called a sub-grid of an m′×n′ grid G′=(V ′,E ′)
if G is induced by vertices v′i, j ∈ V ′, where 2 ≤ i ≤ m′− 1
and 2≤ j ≤ n′−1. If G is a sub-grid of G′, G′ is called the
super-grid of G (see Figure 1(a)).

III. OVERVIEW OF CENTRALIZED GRID DOMINATION
ALGORITHM

In [20], Alanko et al. provided examples of optimal dom-
inating sets for n× n grids with 1 ≤ n ≤ 29, obtained via
a brute-force computational method. A visual inspection of
these examples shows that as the size of the grid increases,
the patterns of dominating vertices become more regular in
the interior of grids, with irregularities at the boundaries.
Figure 2 demonstrates some examples of patterns that arise
in the dominated grids in [20].

Among the patterns used to dominate grids, the one
illustrated in Figure 2(b) is the most efficient, since there
is no vertex that is dominated by more than one dominating
vertex in this pattern. Hence, this pattern would be useful in
obtaining dominating sets with near optimal size. We refer
to the structure in Figure 2(b) as a diagonal pattern. Chang
et al. in [19] used these patterns to provide an upper-bound
on the domination number of grids. As the proof on the



upper-bound they obtained was constructive, we could derive
a centralized algorithm for finding near-optimal dominating
sets from their constructions. In this section, we provide an
overview of Chang’s construction and the derived algorithm
from their results which we will use in the subsequent
sections. First, we define the diagonal patterns formally as
follows. Note that the x and y axes are as shown in Figure 2.
Definition III.1. (Diagonal Pattern) A set of vertices U ⊂V
constitutes a diagonal pattern on grid G = (V,E) if there
exists a fixed r ∈ {0,1,2,3,4} such that for any vertex vx,y ∈
U we have y−2x≡ r (mod 5).
Definition III.2. (Diagonalization) A set of vertices U ⊂
V diagonalizes grid G = (V,E) if it constitutes a diagonal
pattern and there exists no vertex v∈V\U that can be added
to U so that U remains a diagonal pattern.

An example of a diagonalization is shown in Figure 1(a).1

The algorithm derived from Chang’s construction consists of
the following two main steps:

(i) Diagonalization: At this step, a set of vertices U that
diagonalizes the grid is provided.

(ii) Projection: Using a process called projection, the ver-
tices that were not dominated by vertices in U are
characterized and new vertices are added to U to
dominate those vertices as well.

We know discuss these two steps in more details. Chang
et al. showed that if a grid G = (V,E) is diagonalized by a
set of vertices U ⊂ V , then for any vertex v ∈ (V\U) that
is not located on the grid’s boundary there exists exactly
one vertex in U that shares an edge with v. In other words,
every node that is not located on the grid’s boundary, B(G),
is dominated by exactly one vertex in U . Moreover, they
proved that if a set of vertices U ⊂ V diagonalizes an m×
n grid G = (V,E), then U contains at most

⌈mn
5

⌉
vertices.

To construct a dominating set for G it only remains to add
some vertices to U so that the resulting set dominates the
vertices on the boundary as well. The vertices located on
B(G) with no neighbour in U are called orphans and are
defined formally as follows.
Definition III.3. (Orphans) Let U ⊂ V be a set of vertices
that diagonalizes grid G = (V,E). A vertex v∈V that has no
neighbour in U is called an orphan (see Figure 1(a)).

To dominate orphans, Chang et al. used the super-grid
of G, denoted by G′ = (V ′,E ′). Since the vertices on the
boundary of G lie inside grid G′, a set of vertices U ′ ⊂ V ′

that diagonalizes G′ dominates all vertices of G. Moreover,
it can be easily seen that the set of vertices U =U ′∩V is a
diagonalization for grid G.

Recall that diagonalization results in every vertex being
dominated by at most one vertex in the diagonal pattern.
Therefore, if a set of vertices U ′ ⊂ V ′ diagonalizes G′ =
(V ′,E ′), that is, the super-grid of G = (V,E), then there are
vertices in B(G) that are dominated by vertices in U ′\V .

1One can also define a diagonal pattern as a set of vertices whose (x,y)
coordinates satisfy x−2y≡ r (mod 5), for some fixed r. This corresponds
to swapping the x and y axes. For the proofs we only analyze the case
mentioned in Definition III.1; the other case can be treated similarly.

Fig. 2: Examples of dominating vertex patterns that appear in optimally
dominated grids. The black vertices are the dominating vertices. The red
line segments form regions so that in each region there exist one black
vertex and at most four white vertices dominated by that black vertex.

Hence, the orphan of a vertex v∈U ′\V is a vertex u∈ B(G)
such that u ∈ N(v), and is denoted by u = orphan(v).

Corollary III.4. For an m×n grid G, the number of orphans
is O(n+m).

Since by diagonalizing G′ the orphans in G, i.e, vertices
in N(U ′\U)∩V , are dominated by the dominating vertices
on the boundary of G′, a procedure called projection is
introduced that projects the dominating vertices in B(G′)
inside sub-grid G. Hence, projection results in having all
vertices in G being dominated. This procedure is defined
formally as follows.

Definition III.5. (Projection) Consider a grid G= (V,E) and
its super-grid G′ = (V ′,E ′). For a set U ′ ⊆V ′, its projection
is defined as the set U ′′ =

(
N(U ′\V )∪U ′

)
∩V . Similarly,

we say a vertex v ∈U ′\V is projected if it is mapped to its
neighbour in V .

Figure 1(b) shows an example of a projection. For grid
G = (V,E), its super-grid G′ = (V ′,E ′) and set U ′ ⊂ V ′

that diagonalizes G′, by performing projection, the size of
the obtained dominating set of G is between |U ′| − 4 and
|U ′|. This is due to the fact that a vertex v ∈ U ′ located
at any corner of G′ has no neighbour in V and hence, after
projection it is not mapped into V . Since G′ has four corners,
for U ′′, the result of projection of U ′, we have |U ′| − 4 ≤
|U ′′| ≤ |U ′|. Hence |U ′|, that is, the number of dominating
vertices used in diagonalizing the super-grid of G, is an
upper-bound on the number of dominating vertices used to
fully dominate G by diagonalization and projection. Since the
size of super-grid of and m×n grid G is (m+2)× (n+2),
therefore, |U |′ ≤

⌈
(m+2)(n+2)

5

⌉
. Hence,

⌈
(m+2)(n+2)

5

⌉
is an

upper-bound on the number of dominating vertices used
to dominate grid G by Chang’s algorithm. The following
theorem reflects this upper-bound.

Theorem III.6 (Chang et al., [19]). For any m× n grid
G = (V,E) with m,n ∈ N, a dominating set S ⊂ V can be
constructed in polynomial-time, such that |S| ≤

⌈
(m+2)(n+2)

5

⌉
.

Moreover, for grids with 16≤m≤ n we have |S|− γm,n ≤ 5.



The upper-bound on the difference between the cardinality
of the provided dominating set S from the domination
number of an m×n grid G with 16≤m≤ n, γm,n, is obtained
by virtue of Theorem II.1. An example of constructing dom-
inating sets for grids using diagonalization and projection is
shown in Figure 1.

In the following lemma we show that although in diagonal
patterns no vertex is covered by more than one dominating
vertex, using a simple greedy algorithm does not necessarily
result in diagonalizing the grid or using at most

⌈
(m+2)(n+2)

5

⌉
dominating vertices to dominate the grid.
Lemma III.7. The size of the dominating set obtained by a
greedy algorithm on an m×n grid G might be as large as⌈m

3

⌉⌈ n
3

⌉
+2
⌊m

3

⌋⌊ n
3

⌋
.

Proof. As discussed in Section I, after the first vertex v is
added to the dominating set S, greedy algorithm chooses a
vertex that does not share any neighbours with v. Although
this is also a property of diagonal patterns, the set of all
the closest vertices around v that can be added to S using
diagonal patterns has size at most four (see Figure 2(b)).
However, there are 12 vertices around v that do not share
any neighbours with v and hence candidate to be added to S
in a greedy algorithm, Figure 3(a). At each step of a greedy
algorithm one of these 12 vertices is chosen arbitrarily. How-
ever, choosing only all red vertices or all blue vertices would
start developing a diagonal pattern. Other combinations of
candidate vertices would fail to diagonalize the grid and
some vertices of the graph would be dominated by more than
one dominating vertex. Hence, the size of the constructed
dominating set would be greater than

⌈
(m+2)(n+2)

5

⌉
.

In particular, the algorithm might add all the green vertices
to S and repeat the same pattern in the grid, Figure 3(b).
However, using this pattern, between any four green vertices
there remains a set of four vertices that are not dominated
by any vertex in S. These vertices are highlighted by dotted
rectangles in Figure 3(b). To dominate each of these sets
of vertices at least two extra dominating vertices should be
added to S. Therefore, the number of obtained dominating
vertices would be at least

⌈m
3

⌉⌈ n
3

⌉
+ 2

⌊m
3

⌋⌊ n
3

⌋
, which is

much greater than the size of the dominating set obtained
by Chang’s construction, i.e.,

⌈
(m+2)(n+2)

5

⌉
.

IV. DISTRIBUTED GRID DOMINATION

In the preceding section, a centralized algorithm was
discussed that produced a dominating set S for a given m×n
grid G such that |S| ≤

⌈
(m+2)(n+2)

5

⌉
. In this section, we show

how to achieve the same upper-bound in a distributed way.

A. Model and Notation

Here we assume that the environment is an m× n grid
G = (V,E) with m,n ∈ N. The goal is to dominate the grid
environment in a distributed fashion using several robots (or
agents) without any knowledge of environment size. Initially,
there exist k agents in the environment, where k can be
smaller or greater than the number of agents needed to

(a) (b)

Fig. 3: In Figure (a), after adding the black vertex to the dominating set,
the next vertex added to that set can be any of the blue, red or green
vertices, without dominating any vertex by two dominating vertices. In (b),
a dominating set is built by starting from the black vertex and keep adding
the green vertices shown in (a) to the set. Each dotted rectangle contains
four vertices that are not dominating by the obtained dominating set.

dominate the grid. The following assumptions are made for
the grid and agents.

Grid Assumptions: Agents can be located only on the
vertices of the grid and are able to move between the grid
vertices only on the edges of the grid. At each moment,
a vertex can contain more than one agent. We refer to the
vertices using the standard Cartesian coordinates defined in
Section II.

Agent Assumptions: The agents, denoted by a1, . . . ,ak, are
initially located at arbitrary vertices on the grid. The agents
have three modes: (a) sleep, (b) active, and (c) settled. The
mode of an agent a and the vertex it is located at are denoted
by mode(a) and v(a), respectively. Only agents in the active
and settled modes are able to communicate. At the beginning
of the procedure, all the agents are in the sleep mode. During
each epoch, that is, a time interval with a specified length,
one agent goes to active mode. The activation sequence of
agents is arbitrary (e.g., it can be scheduled in advance or
it can be random). The active agent can communicate with
the settled agents to perform the distributed dominating set
algorithm. Once an agent activates and performs its part in
the algorithm, it goes to settled mode. Ultimately, all the
settled agents go back to sleep mode and will not activate
again.

Here, each agent is equipped with suitable angle-of-arrival
(bearing) and range sensors. Using these sensors, agent
a computes the coordinates of other agents in its own
coordinate frame Σa with its origin at v(a) and an arbitrary
orientation, fixed relative to agent a. Each agent also has
a compass to determine its heading direction. Additionally,
agents are equipped with short-ranged proximity sensors to
sense the environment boundary. Agents are able to sense
the boundary only if they are on a vertex v whose neighbour
is a boundary vertex of the grid, i.e., N(v) ∩ B(G) 6= /0.
The compass helps agents to distinguish which of the four
boundary edges they are approaching.

B. Overview of Algorithm

The main idea in this algorithm is to implement the
diagonal pattern defined in Section III on grid G = (V,E),
using communications among active and settled agents. A
special unit called a module is defined for the active and
settled agents. A module is a cross-like shape consisting of



the agent at its center with the associated dominated vertices
in the arms of the cross (see Figure 2(b)). For each module
m, the vertex that contains the agent, i.e., the center vertex,
is referred to as the module center, denoted by c(m). As an
agent moves on the grid to contribute to the diagonal pattern,
its module moves with it as well. Modules m1 and m2 with
module centers c(m1) = vi, j and c(m2) = vi′, j′ can connect to
each other if vi′, j′ ∈ {vi+1, j+2,vi+2, j−1,vi−1, j−2,vi−2, j+1} (see
Figure 4(f)). This condition is called the module connection
condition. The set of centers of the connected modules
is called a cluster. We will later show that the module
connection condition ensures that the module centers are a
diagonalization of the vertices covered by the modules in the
cluster.

Valid Slots: Let G′ = (V ′,E ′) be the super-grid of G.
A vertex va,b ∈ V ′ is called a slot if there exists a mod-
ule m in the cluster with center vi, j such that va,b ∈
{vi+1, j+2,vi+2, j−1,vi−1, j−2,vi−2, j+1} and va,b is not already
a center for a module in the cluster. For a settled agent a
located at v(a), denote the set of all its slots by slots(a).
Recall that the orphan of a vertex v ∈V ′\V , i.e., orphan(v),
is a vertex u ∈ B(G) such that u ∈ N(v). The set of all valid
slots for settled agent a, denoted by vslots(a), is defined as
(slots(a)∩V )∪ orphan(slots(a)\V ). Newly activated agents
can settle only on the valid slots of the settled agents.

Updating Valid Slots: When an active agent settles, it
creates the list of its valid slots as follows. If a settled agent
a cannot sense the boundary (i.e., it has no neighbour on the
boundary), slots(a)\V = /0 and hence vslots(a) = slots(a).
Conversely, a settled agent can also determine which of its
slots lie outside the grid boundary (Figure 5(a)). Each newly
settled agent marks the vertices on the grid boundary that
are neighbours of slots(a)\V as orphans and so vslots(a) =
(slots(a) ∩V ) ∪ orphan(slots(a)\V ) (Figure 5(b)). By the
definition of valid slots, no valid slot exists in an orphan’s
neighbourhood. Therefore, each orphan needs one agent to
be located on itself or one of its neighbours to be dominated.
For simplicity we always put an agent on the orphan itself.

When an agent activates, it transmits a signal to find
the settled agents on the grid and waits for some specified
time for a response from them. Since there is no settled
agent in the environment when the first agent activates, it
receives no signal and concludes it is the first one activated.
Thus, the agent stays at its initial location and goes to the
settled mode. Subsequently, each active agent translates to
the closest settled agent.2

C. Distributed Grid Domination Algorithm

During the distributed grid domination algorithm, active
agents can either contribute to grid diagonalization by lo-
cating on non-orphan valid slots or can settle on orphans. In
each epoch, the set of the non-orphan vertices containing the
previously settled agents is called the cluster and is denoted
by C, while the set of occupied orphans is denoted by P.

2Note that for completeness of the algorithm, it is not necessary for
the active agents to go to the closest settled agents. An active agent can go
toward any arbitrary settled agent to occupy its valid slot.

At the beginning of the algorithm C = P = /0. It should be
mentioned that C and P are not saved by any agent, and
are used only to aid in the presentation of the algorithm.
Moreover, we denote the set of all settled agents at each
moment by As, where at the beginning of the algorithm
As = /0. Also if agent a is already settled and is now in sleep
mode done(a) = 1, otherwise done(a) = 0.

Algorithm 1: DISTRIBUTED GRID DOMINATION

Input: An m×n Grid and a set of agents A
1 while ∃ agent a ∈ A with mode(a) = sleep and done(a) = 0

do
2 mode(a) := active, a sends out signal to As (Figure 4(b)).
3 if As 6= /0 then
4 At least one agent in As sends a signal out to a.

5 if a receives no signal then
6 mode(a) := settled (Figure 4(a)).
7 As := {a}.
8 C := {v(a)}.
9 Skip to Line 22.

10 if vslots(As) 6= /0 then
11 Agent a computes the closest settled agent s ∈ As and

notifies As.
12 Agent s sends the coordinates of vslots(s) to a.
13 Agent a moves toward the closest v ∈ vslots(s).
14 if v(a) = v then
15 mode(a) := settled (Figure 4(d)).
16 As := As∪{a}.
17 if v(a) and v(s) satisfy the module connection

condition then
18 C :=C∪{v(a)}.
19 else
20 P := P∪{v(a)} (Figure 5(c)).
21 mode(a) := sleep.

22 for i = 1→ |As| do
23 if v(As(i)) ∈C and mode(As(i)) 6= sleep then
24 Update vslots(As(i)) (Figures 4(e) and 5(d)).
25 if vslots(As(i)) = /0 then
26 mode(As(i)) := sleep (Figure 4(f)).
27 done(As(i)) := 1.

28 else
29 Break.

30 The remaining non-activated agents leave the grid.

Remark IV.1. (Comments on Algorithm)
1) Since agents can move only on the grid edges, the distance
between two vertices can be computed simply by adding
their x-coordinate and y-coordinate differences, i.e., ∆x and
∆y. There exist many shortest paths between any two vertices
and agent a arbitrarily chooses one of them to traverse; for
instance it can first traverse on the x-coordinate and then on
the y-coordinate.
2) In Step 11, agent a locates s in Σa (i.e., coordinate frame
of a), while vslots(s) is computed by s in Σs in Step 12. In
Step 13, agent a converts the coordinates of vslots(s) from Σs
to Σa for traversing, using relative sensing techniques [23].
3) When an agent settles, all settled agents wait for a
specified amount of time for the next agent to activate. If no



Fig. 4: Non-activated agents are marked by black crosses and the already
settled agents are shown by black circles. Agents in C have red crosses as
their modules. Figure (a) shows the first active agent, as in Step 6. In (b),
an active agent is highlighted by a blue square. Step 13 is depicted in (c),
where a dashed blue square shows the closest valid slot to the active agent.
In (d), the active agent moves to the valid slot and joins C, as in Step 15.
In (e), the list of valid slots is updated as in Step 4. In (f), the grey circle
shows an agent that goes from settled to sleep mode.

agent activates, Algorithm 1 halts and the previously settled
agents construct a subset of a dominating set of the grid. This
happens when the initial number of agents is not sufficient
to dominate the grid.
4) If the agents are equipped with GPS, then they can
agree on a fixed diagonalization (i.e., agree on a value of
r), and move to the vertices U in the diagonalization. At
this point, only orphan vertices exist. The remaining agents
can move along the boundary to find and cover all orphans
and consequently dominate the grid. Hence, in this paper we
study the case that agents are not armed with GPS.

D. Distributed Algorithm Analysis

We now prove that the set of vertices determined by
Algorithm 1, i.e., C ∪ P, creates a dominating set for the
grid. Recall that at each epoch, C is the set of non-orphan
vertices containing the previously settled agents and P is the
set of occupied orphans.
Lemma IV.2. During the operation of Algorithm 1, the
module connection condition forces the vertices in C to
create a diagonal pattern.

Proof. This will be proved using induction on the size of
C during the operation of the algorithm. According to the
module connection condition, the module of agent a located
at vertex v(a) = vi′, j′ /∈C can connect to the module of vertex
vi, j ∈ C if vi′, j′ ∈ {vi+1, j+2,vi+2, j−1,vi−1, j−2,vi−2, j+1}. The
base of induction is |C| = 0, when the first agent is about
to be added to C. In this case, the first agent settles at its
current location v(a)= vi, j and establishes the value r≡ j−2i
(mod 5).

For |C|> 1, C already has a diagonal pattern and an active
agent a at v(a) = vi′, j′ aims to join it by connecting to a
module centered at vi, j. Since vi, j is already in C, j−2i≡ r
(mod 5). It can be seen that for a vertex vi′, j′ that satisfies the
module connection condition with respect to vi, j we have j′−

Fig. 5: Non-activated agents are marked by black crosses and the already
settled agents are shown by black circles, with red crosses as their modules.
In (a), a settled agent, highlighted by a solid blue square, realizes one of its
slots, shown by a dashed blue square, is outside the grid boundary. In (b),
the settled agent replaces the slot outside the grid boundary with its orphan
and name the resulting set as its valid slots. In (c), the active agent locates
at the orphan. Figure (d) shows that an agent on an orphan has no valid
slot.

2i′ ≡ r (mod 5). Therefore, the resulting set has a diagonal
pattern.

Theorem IV.3. The number of agents used to dominate an
m×n grid G = (V,E) by Algorithm 1 is upper-bounded by⌈
(m+2)(n+2)

5

⌉
. For grids with 16 ≤ m ≤ n, the number of

agents used is upper-bounded by γm,n +5.

Proof. We first prove Algorithm 1 is correct and then show
the upper-bound holds. Let G′ = (V ′,E ′) be the super-grid
of G and C denote the non-orphan vertices occupied by
previously settled agents when the algorithm finishes. By
Lemma IV.2, C constitutes a diagonal pattern and by the
condition in Step 10 of the algorithm no other agent can be
added to C; therefore, C diagonalizes G. Moreover, orphans
are neighbours of the vertices in V ′\V that are initially
detected as slots by the settled agents and hence diagonalize
G′ by Lemma IV.2. Thus, locating one agent on each orphan
is equivalent to the projection process. Hence, if a sufficient
number of agents exist in the grid, Algorithm 1 provides
a dominating set for G (from Theorem III.6). Consequently,
the algorithm is complete, meaning it always finds a solution,
if one exists.

Furthermore, since Algorithm 1 performs diagonalization
and projection on G, from Theorem III.6 it immediately
follows that the number of agents used in the algorithm, na,
is upper-bounded by

⌈
(m+2)(n+2)

5

⌉
. Also by Theorem II.1,

for 16≤ m≤ n we have na− γm,n ≤ 5.

Note that while the agents do not form a dominating set for
G, an active agent finds a valid slot in at most n+m steps.
A step is a specified time duration within which an agent



(a) (b) (c)

Fig. 6: A 10×15 grid is depicted with agents shown in blue. In (a) the initial
configuration of the agents is shown and (b) shows the agents configuration
when Algorithm 1 is finished. In (c), all non-settled and non-asleep agents
leave the grid

performs its basic operation, such as traversing an edge or
transmitting signals. Since the number of agents needed to
dominate an m×n grid is less than mn, Algorithm 1 takes at
most mn(m+n) steps to construct a dominating set for G.

E. Simulations

To augment and examine the results discussed in this sec-
tion, we simulated Algorithm 1 on various grids and different
initial configurations of agents on grid vertices. Figure 6(a)
demonstrates a 10× 15 grid graph with 41 agents located
randomly on it. The first agent that activates is located on
vertex (5,9) and hence stays on that vertex. Figure 6(b)
shows the location of agents when Algorithm 1 is complete.
It can be seen that every vertex is dominated. However, there
are some agents located at vertices (such as (6,5),(6,12) and
(7,15)) that are never activated in the algorithm. These are
the additional agents that are not required to dominate the
grid and they are removed in Figure 6(c).

V. k-DISTANCE DOMINATION ON GRIDS

In this section we generalize Chang’s algorithm for grid
domination, discussed in Section III, to the k-distance domi-
nating set problem, where a vertex dominates all the vertices
within distance k from it. Before defining the problem
formally, let d(u,v) denote the shortest path distance between
vertices v,u ∈ V in G = (V,E). Moreover, vertex u ∈ V is
defined as a k-neighbour of vertex v ∈ V , if 0 < d(u,v) ≤
k. The set of all k-neighbours of v is denoted by Nk(v).
Moreover, for a set of vertices W ⊂V and a vertex v∈V\W ,
we have u = friendk(v,W ) if (a) u ∈W , (b) u ∈ Nk(v), and
(c) d(v,u)≤ d(v,w),∀w ∈W .
Definition V.1. (k-Distance Dominating Set Problem) Given
a graph G = (V,E), the k-distance dominating set problem
is to find a set of vertices S ⊆ V such that for every vertex
v ∈ V\S there exists a vertex u ∈ S where u ∈ Nk(v). The
cardinality of a smallest k-distance dominating set for G is
called the k-distance domination number of G and is denoted
by γk(G) [24].

We say that vertex u ∈ S k-distance dominates v ∈V\S if
d(u,v)≤ k. The regular dominating set problem is a special
case of the k-distance dominating set problem, where k = 1.
Therefore, k-distance domination is also NP-hard on general

graphs. However, to the best of our knowledge the k-distance
domination number of grids is not known and the complexity
of the problem is open. In Section V-A, we generalize the
approaches in Sections III and IV to provide a k-distance
dominating set for an m×n grid graph G.

A. Centralized k-Distance Domination on Grids

Before discussing the k-distance domination algorithms on
grids we introduce the following definitions.

Definition V.2. (k-Sub-Grids and k-Super-Grids) An m× n
grid G = (V,E) is called a k-sub-grid of an m′ × n′ grid
G′ = (V ′,E ′) if G is induced by vertices v′i, j ∈ V ′, where
k+1≤ i≤m′−k and k+1≤ j≤ n′−k. If G is a k-sub-grid
of G′, G′ is called the k-super-grid of G.

Lemma V.3. For an m×n grid G = (V,E), |Nk(v)| ≤ 2k2 +
2k+1.

Proof. Since G is a grid, the k-neighbours of v form a
diamond around it with a diameter of 2k + 1 (see the red
regions in Figure 7). Thus |Nk(v)| is upper-bounded by the
area of this region, which is

⌈
(2k+1)2

2

⌉
= 2k2 +2k+1.

In what follows we define Nk
max = 2k2 +2k+1.

Definition V.4. (k-Diagonal Pattern) A set of vertices U ⊂
V constitutes a k-diagonal pattern on grid G = (V,E) if
there exists a fixed 0 ≤ r < Nk

max,r ∈ Z+ such that for any
vertex vx,y ∈U we have ky− (k+ 1)x ≡ r (mod Nk

max) (see
Figure 7).

Definition V.5. (k-Diagonalization) A set of vertices U ⊂V
k-diagonalizes grid G = (V,E) if it constitutes a k-diagonal
pattern and there exists no vertex v∈V\U that can be added
to U so that U remains a k-diagonal pattern.

Moreover, for a grid G = (V,E) and its k-super-grid G′ =
(V ′,E ′), the k-projection is defined as a special mapping from
the vertices in V ′\V to their k-neighbours in V . It is defined
formally as follows.

Definition V.6. (k-Projection) Consider a grid G = (V,E)
and its k-super-grid G′ = (V ′,E ′). The k-projection for a set
U ′⊆V ′ is defined as the set U ′′= {u∈V | ∃v∈U ′\V s.t. u=
friendk(v,V )}∪{U ′∩V} (see Figure 9).

Lemma V.7. Let U be a set of vertices that k-diagonalizes a
grid G = (V,E). For any two vertices vx,y,vx′,y′ ∈U we have
d(vx,y,vx′,y′)≥ 2k+1.

Proof. Since vx,y,vx′,y′ ∈ U , we have y = 1
k ((k + 1)x + r +

qNk
max) and y′ = 1

k ((k + 1)x′ + r + q′Nk
max), where r,q ∈ Z

and 0 ≤ r < Nk
max. We define ∆q = q′− q, ∆1 = x′− x and

∆2 = y′−y = k+1
k ∆1+

Nk
max
k ∆q. The shortest distance between

vx,y,vx′,y′ is equal to |∆1|+ |∆2|. From ∆2 =
k+1

k ∆1+
Nk

max
k ∆q it

can be observed that as ∆1 grows, ∆2 grows faster compared
to ∆1. Hence |∆1|+ |∆2| is minimum when ∆2 = 0 and |∆1|=
|N

k
max

k+1 ∆q|. Note that the minimum (non-zero) distance occurs
for ∆q = 1 and also it is an integer, hence it is lower-bounded
by
⌈

2k2+2k+1
k+1

⌉
= 2k+1.



Lemma V.8. Consider a grid G = (V,E) and its k-super-
grid G′ = (V ′,E ′). If U ′ ⊂ V ′ k-diagonalizes G′, then each
vertex in V is k-dominated by exactly one vertex from U ′.

Proof. For each vertex vx,y ∈ V let rvx,y ≡ ky − (k +

1)x (mod Nk
max). Consider any vertex v ∈ V and its k-

neighbourhood Nk(v). The distance between any two vertices
in J = {v}∪Nk(v) is at most 2k. Also, there are exactly Nk

max
vertices in this set. Thus, for any two distinct vertices u,w∈ J
we have ru 6= rw by Lemma V.7. Hence each vertex u∈Nk(v)
has a distinct value of ru. Consequently, for the value of r
that corresponds to the diagonalization U ′, there is exactly
one vertex in the k-neighbourhood of v such that rv = r and
thus v is k-dominated by exactly one vertex from U ′.

Lemma V.9. If a set of vertices U ⊂ V k-diagonalizes an
m×n grid G=(V,E), then U contains at most

⌈
mn

Nk
max

+ Nk
max
4

⌉
vertices.

Proof. Since U k-diagonalizes G, it constitutes a k-diagonal
pattern on G such that no more vertices can be added to
it while maintaining a k-diagonal pattern. Therefore, among
each Nk

max consecutive vertices in any row or column there
is exactly one vertex from U . Hence, the number of vertices
of U in a row/column of t vertices is at most

⌈
t

Nk
max

⌉
.

Thus, there are at most Nk
max vertices from U in any Nk

max×
Nk

max grid. Hence, in any Nk
maxq×Nk

max p grid with p,q∈Z+,
there are at most Nk

max pq vertices from U . For an m×n grid
G= (V,E) with m= qNk

max+a, n= pNk
max+b and 0≤ a,b<

Nk
max, we partition V into the four following sets:

V1 = {vi, j| 1≤ i≤ qNk
max,1≤ j ≤ pNk

max},

V2 = {vi, j| qNk
max +1≤ i≤ m,1≤ j ≤ pNk

max},

V3 = {vi, j| 1≤ i≤ qNk
max, pNk

max +1≤ j ≤ n},

and

V4 = {vi, j| qNk
max +1≤ i≤ m, pNk

max +1≤ j ≤ n}.

As stated, |V1 ∩U | ≤ pqNk
max. Grid V2 has a columns each

having Nk
max p vertices, hence |V2 ∩U | ≤ pa. Similarly, we

have |V3∩U | ≤ qb. In summary, we so far have |(V1∪V2∪
V3)∩U | ≤ pqNk

max +qb+ pa. Note that pqNk
max +qb+ pa =

mn
Nk

max
− ab

Nk
max

.
It remains to upper-bound |V4 ∩U |. Without loss of gen-

erality assume that a ≤ b. Since the number of rows and
columns in V4 are less than Nk

max, in each row/column at
most one dominating vertex can exist. Since a ≤ b, then
|V4 ∩U | ≤ a. Therefore |V ∩U | = |U | ≤ mn

Nk
max
− ab

Nk
max

+ a.

Maximum of − ab
Nk

max
+a takes place when b has its minimum

value, i.e., b = a. Moreover, for − a2

Nk
max

+a we have that the

maximum is Nk
max
4 and it happens when a = Nk

max
2 . This results

in |U | ≤
⌈

mn
Nk

max
+ Nk

max
4

⌉
.

Theorem V.10. For an m × n grid G = (V,E), a k-
distance dominating set S ⊂ V can be constructed using

k-diagonalization and k-projection in polynomial-time such
that |S| ≤

⌈
(m+2k)(n+2k)

Nk
max

+ Nk
max
4

⌉
.

Proof. The proof follows from Lemmas V.3, V.8 and V.9 and
by replacing the diagonalization and projection operations
with the k-diagonalization and k-projection operations in the
proof of Theorem III.6 [19].

Lemma V.11. If S⊂V is a k-distance dominating set for an
m×n grid G = (V,E), |S| ≥

⌈
mn

Nk
max

⌉
Proof. According to Lemma V.3, a vertex v∈V k-dominates
at most Nk

max vertices. Hence, at least
⌈

mn
Nk

max

⌉
dominating

vertices are needed to k-dominate an m× n grid. Note that
we use |S| ≥

⌈
mn

Nk
max

⌉
instead of |S| ≥

⌊
mn

Nk
max

⌋
since dominating

vertices in the k-neighbourhood of vertices on the grid
boundary do not have all their k-neighbours in V .

Corollary V.12. Let S be a k-distance dominating set for
an m×n grid G = (V,E) obtained by k-diagonalization and
k-projection and let L denote the lower-bound for S from
Lemma V.11. For any constant k ∈ Z+, the approximation
ratio |S|L satisfies limn,m→∞

|S|
L = 1.

Proof. From Theorem V.10 and Lemma V.11, we have

|S|
L
≤
⌈
(m+2k)(n+2k)/Nk

max +Nk
max/4

⌉
dmn/Nk

maxe
.

Therefore,

(m+2k)(n+2k)/Nk
max +Nk

max/4
mn/Nk

max +1
≤ |S|

L
,

and

|S|
L
≤ (m+2k)(n+2k)/Nk

max +Nk
max/4+1

mn/Nk
max

.

Hence, we have

(m+2k)(n+2k)+(Nk
max)

2/4
mn+Nk

max
≤ |S|

L
,

and

|S|
L
≤ (m+2k)(n+2k)+(Nk

max)
2/4+Nk

max

mn
.

For constant k we have

lim
n,m→∞

(m+2k)(n+2k)+(Nk
max)

2/4
mn+Nk

max
=

lim
n,m→∞

(m+2k)(n+2k)+(Nk
max)

2/4+Nk
max

mn
= 1.

Therefore by the Squeeze Theorem limn,m→∞
|S|
L = 1.

For a graph G, its k-th power, denoted by Gk = (V ′,E ′), is
a graph with the same vertex set as G, i.e., V =V ′, in which
two distinct vertices share an edge if and only if their distance
in G is at most k [13] (see Figure 8). Hence, in Gk each
vertex is connected to the vertices it k-distance dominates
in G. We finish this section with the following remark that



Fig. 7: A 2-diagonal pattern and a 3-diagonal pattern are depicted. Observe
that the structure is similar to the regular diagonal pattern.

(a) (b)

Fig. 8: Figures (a) and (b) show a 3× 3 graph and its second power,
respectively. Vertices within distance two are connected to each other in
(b).

relates the k-distance dominating set problem in grids to the
regular dominating set problem in their k-th power graphs.
Remark V.13 (k-th Power of Grids). It might seem that a
reasonable approach for k-distance domination on a grid G
is to simply take the k-th power of the graph to obtain Gk,
and then perform regular domination algorithms on Gk. Note
that by the definition of Gk, a regular dominating set in Gk

is equivalent to a k-distance dominating set in G and hence
γ(Gk) = γk(G). Unfortunately, Gk is no longer a grid (e.g.,
there are diagonal edges connecting vx,y to vx+1,y+1 for k ≥
2). In fact, it is not even a planar graph for m× n grids
with m,n≥ 2. Therefore, as discussed in Section I, choosing
dominating vertices greedily in Gk might obtain a dominating
set with size as large as (ln(|V |)+1)γk(G).

B. Distributed k-Distance Domination on Grids

Using the algorithm explained in Section V-A, a dis-
tributed k-distance domination algorithm can be designed
for grids. In practice, the k-distance dominating set problem
corresponds to settings where agents are equipped with
longer range sensory equipment and can sense vertices up
to distance k from them. Therefore, the goal is to arrange
the agents on the grid vertices in a distributed way such that
for each vertex there exists at least one agent with distance
at most k from it.

This algorithm is similar to Algorithm 1 in Section IV-C,
except for two modifications. The first modification is that
module m2 and module m1 with module centers c(m1) = vi, j
and c(m2) = vi′, j′ can now connect to each other if vi′, j′ ∈
{vi+k, j+k+1,vi+k+1, j−k,vi−k, j−k−1,vi−k−1, j+k} (see Figure 7).
These constitute the slots. The second modification is the
definition of orphans. If U ′ is a set of vertices that k-
diagonalizes the k-super-grid of G, vertex v∈V is an orphan
if it satisfies the two following conditions: (a) v has no k-
neighbour in U ′∩V , and (b) v is in the k-neighbourhood of

Fig. 9: A 16× 16 grid G and its 2-super-grid G′ are shown by solid
and dashed squares, respectively. Both grids are 2-diagonalized. The black
circles are the vertices that 2-diagonalize G. The union of red and black
circles 2-diagonalizes G′. The green circles are the 2-projections of the red
circles onto G. Before projection these vertices are called orphans.

a vertex u ∈U ′\V with the same x or y coordinates. Hence,
valid slots are defined for each settled agent as the union of
its slots located inside the grid and the orphans of its slots
located outside the grid (see Figure 9).

VI. SUMMARY AND OPEN PROBLEMS

In this paper we studied the dominating set and k-distance
dominating set problems on m× n grids. We discussed a
construction from [19] to obtain dominating sets for grids
with near optimal size and generalized it to work in the
k-distance domination scenario. We used these methods in
distributed algorithms and showed that the resulting domi-
nating sets are upper-bounded by

⌈
(m+2k)(n+2k)

2k2+2k+1 + 2k2+2k+1
4

⌉
.

The difference between the acquired upper-bound and the
domination number of grid is at most five, for 16 ≤ m ≤ n
and k = 1. However, via a more detailed case-based analysis
in the grid corners, our distributed procedure can be used to
obtain optimal dominating sets for 16≤ m≤ n.

There are many open problems in this area. The k-
domination number of grids is still unknown. It is also of
interest to find centralized and distributed algorithms for
dominating sub-graphs of grids, that is, grids with some of
their vertices or edges missing. Generalizing these algorithms
to the cases where the underlying graphs are cubic or hyper-
cubic grids is another direction of this research.
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