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Abstract— In this paper, we consider synchronization prob-
lems for heterogeneous networks of introspective, right-
invertible, discrete-time linear agents with uniform constant
communication delay. We first design decentralized controllers
for solving the output synchronization problem for a set of
network topologies under arbitrary bounded delay. We then
apply the proposed scheme to solve the formation problem
with arbitrarily given formation vectors. Finally, we consider
the output regulation problem, where the output of each agent
has to track an a prior specified reference trajectory, generated
by an exosystem. In this case, we assume that the common
root agent has access to its own output relative to the reference
trajectory. We then solve the problem for a set of network
topologies with delay whose upper bound depends exosystem
and some characteristic of network topologies.

I. INTRODUCTION

The synchronization problem in a network has received

substantial attention due to its wide application areas, e.g.,

some papers [1]–[13], and recent books [14]–[16].

The existing literature can be generally divided into two

categories depending whether the agent models are identical

or not, that is, homogeneous networks (i.e., networks where

the agent models are identical) and heterogeneous networks

(i.e., networks where the agent models are non-identical).

All the aforementioned references focus on homogeneous

networks, however, the recent focus in the literature is

to study the synchronization problem for heterogeneous

networks. The existing results for heterogeneous networks

can be further divided into two categories: introspective
case and non-introspective case. The agents are said to be

introspective (see the definition in [13], [17]) if they possess

self-knowledge about their own states. While most works

[15], [17]–[19] focus the introspective case, few works [13],

[20] consider the non-introspective case.

Although most works focused on the case where the

agent models are continuous-time, synchronization in homo-

geneous networks of discrete-time agents has been studied in
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[4], [7], [12], [21]. In [4], the author consider a network of

first-order agents with fixed topologies and switching topolo-

gies. In [7], the author considers a special case of neutrally

stable agents with full actuation (i.e., B = I). A distributed

observer-based synchronization controller was developed in

[21], which makes additional use of the network by allowing

the agents to exchange information with their neighbors

about their own internal estimates. All the aforementioned

works only consider synchronization for homogeneous net-

works. In our previous work [22], we studied synchronization

for heterogeneous networks of introspective, right-invertible

discrete-time linear agents. This paper extends the above

result to the case where the communication is tolerate the

uniform constant delay.

Due to the ubiquity of communication delay during the

transmission of information, the research has also been

directed to synchronization in networks with time-delays.

While most works in this direction focus on the continuous-

time case, see for instance, [4], [23], [24], Xu et al. [25]

consider state synchronization for homogeneous networks of

non-introspective, non-right-invertible, discrete-time agents

with uniform constant communication delay. This paper is

different from [25] since the agent models are non-identical,

although introspective and right-invertible.

This paper considers synchronization problems for hetero-

geneous networks of introspective, right-invertible, discrete-

time linear agents with uniform constant communication

delay for a set of network topologies. The underlying prin-

ciple is to use pre-compensators and an observer-based pre-

feedback within each agent to yield a network of almost

identical agents by exploiting the self-knowledge and the

right-invertibility property of the agents. Specifically, for the

output synchronization problem, agent models are manipu-

lated to a common model whose system matrix has all its

eigenvalues at 1. We then show that the arbitrary bounded

constant delay can be tolerated. We also apply the proposed

scheme to solve the formation problem for arbitrarily given

formation vectors. Finally, for the output regulation problem,

we show that the upper bound on the uniform constant delay

depends only on the system matrix of the exosystem and

some characteristic of network topologies.

II. NOTATIONS AND PRELIMINARIES

In this paper, the following notations are used. C, Z and

R
+ denote respectively the sets of all complex numbers,

integers and positive real numbers. For any open set D ⊂C,

∂D and D denote its boundary and closure. For z0 ∈C and

r ∈ R
+, D(z0,r) denotes an open disc centered at z0 with
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radius r. In particular we denote:

C
� := D(0,1), C

� := ∂D(0,1).

For any k1,k2 ∈ Z, and k1 ≤ k2,

[k1,k2] := {k ∈ Z|k1 ≤ k ≤ k2} .
For column vectors x1, . . . ,xn, the stacking column vector of

x1, . . . ,xn is denoted the column vector by [x1; . . . ;xn].
A matrix D = [di j] ∈ R

N×N is called a row stochastic

matrix if di j ≥ 0 for any i, j ∈ {1, . . . ,N}, and ∑N
j=1 di j = 1

for i ∈ {1, . . . ,N}. The matrix D can be associated with a

directed graph (digraph) G = (V ,E ), where V = {1, . . . ,N}
and an arc ( j, i) ∈ E if di j > 0. G is undirected if di j = d ji
for any i, j ∈ {1, . . . ,N}. Otherwise, G is directed. A directed
path from vertex i1 to ik is a sequence of vertices {i1, . . . , ik}
such that (i j, i j+1) ∈ E for j = 1, . . . ,k−1. A directed graph

G contains a directed spanning tree if there is a node r such

that there exists a directed path between r and every other

node. For such a case, node r is often called a root.

III. HETEROGENEOUS NETWORKS

Consider a heterogeneous network of N discrete-time

introspective linear agents of the form⎧⎪⎪⎨
⎪⎪⎩

xi(k+1) = Aixi(k)+Biui(k),
yi(k) = Ci

yxi(k),
zi(k) = Ci

zx
i(k),

ζ i(k) = ∑N
j=1 di j(yi(k−κ)− y j(k−κ)), i ∈ V ,

(1)

where xi ∈ R
ni , ui ∈ R

mi , yi,ζ i ∈ R
p, zi ∈ R

qi and κ is an

unknown integer satisfying κ ∈ [0, κ̄ ], with the integer κ̄ ≥ 0.

The matrix D = [di j] ∈ R
N×N is a row stochastic matrix,

and moreover, dii > 0. This D matrix defines a communica-

tion topology that can be captured by a digraph G = (V ,E ).
We make the following assumption regarding the digraph G.

Assumption 1 The digraph G contains a directed spanning
tree, and the matrix D is a row stochastic matrix with dii > 0

for all i ∈ V .

Under Assumption 1, it follows from [6, Corollary 3.5]

that the matrix D has a simple eigenvalue at 1 with corre-

sponding right eigenvector 1, and the remaining eigenvalues

are strictly within the unit circle. Let λ1, ...,λN denote the

eigenvalues of the matrix D such that λ1 = 1 and |λi|< 1, i∈
{2, ...,N}. We then define a set of communication topologies:

Definition 1 For a given δ ∈ (0,1], let Gδ denote a set of
communication topologies, such that for each topology G ∈
Gδ , Assumption 1 holds and |λi|< δ , i ∈ {2, ...,N}.

The following assumption on the agent dynamics is also

made throughout the paper.

Assumption 2 For each agent i ∈ {1, . . . ,N},
1) (Ai,Bi) is stabilizable;
2) (Ai,Ci

y) is detectable;
3) (Ai,Bi,Ci

y) is right-invertible;

4) (Ai,Ci
z) is detectable.

Remark 1 Right-invertibility of a triple (Ai,Bi,Ci
y) means

that, given a reference output yr(k), there exist an initial
condition xi(0) and an input ui(k) such that yi(k) = yr(k)
for all the non-negative integers k. For example, every
single-input single-output system is right-invertible, unless
its transfer function is identically zero.

IV. OUTPUT SYNCHRONIZATION

In this section, we consider the output synchronization

problem for heterogeneous networks with unknown uniform

constant communication delay. The definition of output syn-

chronization is given as follows:

Definition 2 A heterogeneous network (1) is said to achieve
output synchronization if

lim
k→∞

(yi(k)− y j(k)) = 0, ∀i, j ∈ V .

Next, we formulate the output synchronization problem.

Problem 1 Consider a heterogenous network of N agents
(1). For a given set Gδ and a given integer κ̄ ≥ 0, the
output synchronization problem with a set of communication
topologies Gδ for any κ ∈ [0, κ̄ ] is to find, if possible, a linear
dynamical controller{

x̂i(k+1) = Ai
cx̂i(k)+Bi

cζ i(k)+Ei
czi(k),

ui(k) = Ci
cx̂i(k)+Di

cζ i(k)+Mi
czi(k) (2)

for each agent i ∈ V , such that the output synchronization
can be achieved for the network with any communication
topology G ∈ Gδ and κ ∈ [0, κ̄ ].

Remark 2 Since (Ai,Ci
z) is detectable, one can always de-

sign a local stabilizing measurement feedback controller so
that the network achieves output synchronization in the sense
that limk→∞ yi(k) = 0. Such a case is not interested in this
paper. We are aiming to reach synchronization with a non-
trivial and possibly desirable synchronization trajectory.

The following theorem is concerned with the output syn-

chronization problem as defined in Problem 1.

Theorem 1 For a given set Gδ , and an arbitrarily given
integer κ̄ ≥ 0, Problem 1 is solvable via N decentralized
controllers of the form (2).

We shall prove Theorem 1 by explicitly constructing the

synchronization controller of the form (2) via a two-step

design procedure. First, we design a local pre-compensators

and an local observer-based pre-feedback for each agent to

make the agents almost identical to a new common model

except for different geometrically decreasing sequences.We

then show that such geometrically decreasing sequences are

irrelevant and the output synchronization problem in the orig-

inal heterogenous network of agents (1) can be reduced to

the state/output synchronization problem in a homogeneous

network with the same communication topology.
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A. Towards Homogeneous Networks

For introspective agents, Xu et al. [22] show that their

self-knowledge about their own states provide us additional

freedom to manipulate their internal dynamics through the

use of pre-feedbacks so as to disguise them as being almost

identical to the rest of the network, which is recapped in the

following Lemma.

Lemma 1 [22] Consider a heterogeneous network of N
agents of the form (1). Let nd denote the maximum order
of infinite zeros of (Ai,Bi,Ci). Suppose a triple (A,B,C) is
given such that

1) rank(C) = p.
2) (A,B,C) is invertible, of uniform rank nq ≥ nd and has

no invariant zeros.
Then for each agent i ∈ V , there exists a compensator{

ξ i(k+1) = Ai
hξ i(k)+Bi

hzi(k)+Ei
hvi(k),

ui(k) = Ci
hξ i(k)+Di

hvi(k), (3)

such that the interconnection of (1) and (3) can be written
in the following form:⎧⎨

⎩
x̄i(k+1) = Ax̄i(k)+B

(
vi(k)+di(k)

)
,

yi(k) = Cx̄i(k),
ζ i(k) = ∑N

j=1 di j(yi(k−κ)− y j(k−κ)),
(4)

where di are generated by{
ei(k+1) = Ai

se
i(k),

di(k) = Ci
se

i(k), (5)

and Ai
s is Schur stable.

Remark 3 We have the following observations
1) The properties that (A,B,C) is invertible and has no

invariant zero implies that (A,B) is controllable and
(A,C) is observable.

2) The triple (A,B,C) is arbitrarily assignable as long
as the properties 1) and 2) in Lemma 1 are fulfilled.
They play a role as design parameters. We shall use
this freedom in various places in this paper.

Remark 4 Lemma 1 shows that we can design a pre-
compensator of the form (3) to make the agent models iden-
tical to a new common model characterized by a priori given
triple (A,B,C), except for different geometrically decreasing
sequences injected in the range space of B. Moreover, we
may freely choose the matrix A as long as the properties
listed in Remark 3 are satisfied.

B. Connection to Homogeneous Networks

The resulting network can be viewed as a homogenous

network (4) affected by the different geometrically decreas-

ing sequences di generated by (5). Next, we show that the

injection of such sequences is irrelevant for solving the out-

put synchronization problem, which in turn implies that the

output synchronization problem in the original heterogenous

network of agents (1) can be reduced to the state/output

synchronization problem in a homogeneous network with the

same communication topology.

In order to tolerate the arbitrarily given upper bound κ̄
on the uniform unknown communication delay κ , we need

to choose the triple (A,B,C) in Lemma 1 such that all the

eigenvalues of the matrix A are located at 1. Such a triple

(A,B,C) always exists and takes the following form:

A = A0 +B0F, B = B0, C =C0, (6)

where

A0 =

[
0 I(nq−1)p
0 0

]
, B0 =

[
0

Ip

]
, C0 =

[
Ip 0

]
, (7)

and F is such that A0 +B0F has all the eigenvalues at 1.

Such an F exists due to the fact that (A0,B0) is controllable.

For solving the output synchronization problem for a

network of N agents (4) with the above triple (A,B,C) and

(5) with a set of possible communication topologies Gδ , we

consider N following decentralized controllers

{
χ i(k+1) = Acχ i(k)+Bcζ i(k),

vi(k) = Ccχ i(k), (8)

for each agent i ∈ V , where χ i ∈ R
nc . Note that Ac,Bc

and Cc are designed parameters, independent of the specific

topology G ∈ Gδ , and will be determined later.

Define x̃i = [x̄i; χ i]. Then the closed-loop of the system (4),

(5), and the controller (8) can be written as

⎧⎪⎪⎨
⎪⎪⎩

x̃i(k+1) =

[
A BCc
0 Ac

]
x̃i(k)+

[
0

Bc

]
ζ i(k)+

[
B
0

]
di(k),

yi(k) =
[
C 0

]
x̄i(k),

ζ i(k) = yi(k−κ)−∑N
j=1 di jy j(k−κ).

Next, define x̃ = [x̃1; . . . ; x̃N ], d = [d1; . . . ;dN ],

Ā =

[
A BCc
0 Ac

]
, B̄ =

[
0

Bc

]
, C̄ =

[
C 0

]
, Ē =

[
B
0

]
. (9)

Then the overall dynamics of the N agents can be written as

x̃(k+1) = (IN ⊗ Ā)x̃(k)+
(
(IN −D)⊗ B̄C̄

)
x̃(k−κ)

+(IN ⊗ Ē)d(k).

Define η = [η1; . . . ;ηN ] = (T ⊗ Ipnq+nc)x̃, where η i ∈
C

pnq+nc and T is such that JL = T (IN − D)T−1 is in the

Jordan canonical form with (1,1)-th element of JL, JL(1,1)=
0. We then obtain the dynamics of η as follows:

η(k+1) = (IN ⊗ Ā)η(k)+(JL⊗ B̄C̄)η(k−κ)+(T ⊗ Ē)d(k).

Let us recalled the following lemma from [22],

Lemma 2 [22] Consider the network of N agents (4) with
di generated by (5), and controllers (8). If limk→∞ η i(k) = 0,
where i ∈ {2, . . . ,N}, then limk→∞(yi(k)−y j(k)) = 0, for any
i, j ∈ V .
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Next, we define η̄ = [η2; . . . ;ηN ]. Taking the dynamics of

d into account yields[
η̄(k+1)
e(k+1)

]
=

[
IN−1 ⊗ Ā (ĪT ⊗ Ē)C̄s

0 Ās

][
η̄(k)
e(k)

]

+

[
J̄L ⊗ B̄C̄ 0

0 0

][
η̄(k−κ)
e(k−κ)

]
, (10)

where e = [e1; . . . ;eN ], C̄s = blkdiag{Ci
s}N

i=1, Ī = [0, IN−1],
Ās = blkdiag{Ai

s}N
i=1, which is Schur stable due to its block

diagonal structure and the fact that all the Ai
s for i ∈ V are

Schur stable. Also J̄L is such that JL = blkdiag(0, J̄L).
Suppose that the system (10) is globally asymptotically

stable, then limk→∞ η̄(k) = 0. It then follows from Lemma 2

below that limk→∞(yi(k)− y j(k)) = 0 for any i, j ∈ V . We

then note that the system (10) is globally asymptotically

stable if and only if

det

(
zI −

[
IN−1 ⊗ Ā (ĪT ⊗ Ē)C̄s

0 Ās

]
− z−κ

[
J̄L ⊗ B̄C̄ 0

0 0

])

= 0

(11)

for any z /∈ C
�.

Due to the upper block-triangular structures of both ma-

trices in (11) and the fact that Ās is Schur stable, it is easy

to see that (11) holds if and only if

det
(
zI − (IN−1 ⊗ Ā)− z−κ(J̄L ⊗ B̄C̄)

) 
= 0, ∀z /∈ C
�. (12)

Note that IN−1⊗ Ā and J̄L⊗ B̄C̄ are of upper block-triangular

structure. We then have the following lemma.

Lemma 3 Consider the network of N agents (4) with di

generated by (5), and controllers (8). Let Ā, B̄ and C̄ be
defined by (9). If the following systems

η̃(k+1) = Āη̃(k)+(1−λi)B̄C̄η̃(k−κ) (13)

are globally asymptotically stable for all λi, i ∈ {2, . . . ,N},
which are the eigenvalues of D that are not equal to 1, and
for any κ ∈ [0, κ̄ ], then limk→∞(yi(k)−y j(k)) = 0, ∀i, j ∈ V .

Note that the system given by (13) can be viewed as the

closed-loop system of{
x(k+1) = Ax(k)+Bu(k),

z(k) = (1−λi)Cx(k−κ), (14)

and a compensator{
χ(k+1) = Acχ(k)+Bcz(k),

u(k) = Ccχ(k). (15)

Remark 5 Lemma 3 shows that if the compensator of the
form (15) simultaneously stabilizes the N −1 systems of the
form (14), then limk→∞(yi(k)− y j(k)) = 0 for any i, j ∈ V .

We now need to design the parameters Ac, Bc and Cc to

solve the simultaneous stabilization problem. Let us choose

Ac = A+KC, Bc =−K, Cc = βFε , (16)

where K is such that A+KC is Schur stable, β > 1
1−δ , and

Fε =−(B′Pε B+ I)−1B′Pε A,

where ε > 0 is a low-gain parameter and Pε = P′
ε > 0 is

the unique solution of the following discrete-time algebraic

Riccati equation

Pε = A′Pε A+ εI −A′Pε B(B′Pε B+ I)−1B′Pε A. (17)

We then have the following lemma, which is a slight different

version of [25, Theorem 1].

Lemma 4 For a given set Gδ , and an arbitrarily given
integer κ̄ ≥ 0, the compensator (15) with parameters Ac,Bc
and Cc given by (16) simultaneously stabilizes the N − 1

systems (14).

We are now ready to prove Theorem 1.

Proof: [Proof of Theorem 1] For a given set Gδ , and an

arbitrarily given integer κ̄ ≥ 0, it follows from Lemmas 1, 3,

and 4 that there exists an ε∗ ∈ (0,1], such that for ε ∈ (0,ε∗],
the composition of (3) and (8) with Ac,Bc and Ck given by

(16), solves Problem 1.

V. FORMATION

In this section, we consider the formation problem. The

definition of formation is given as follows.

Definition 3 Given a family of vectors {h1, . . . ,hN}, where
hi ∈R

p for i ∈ V . The heterogeneous network (1) is said to
achieve formation if limk→∞ [(yi(k)−hi)− (y j(k)−h j)] = 0

for any i, j ∈ V .

We assume that the network infrastructure provides each

agent with the following information

ζ̂ i(k) =
N

∑
j=1

di j [(yi(k−κ)−hi)− (y j(k−κ)−h j)] . (18)

Then the agent i ∈ V has the following dynamical equations:⎧⎪⎪⎨
⎪⎪⎩

xi(k+1) = Aixi(k)+Bi(k)ui(k),
yi(k) = Ci

yxi(k),
zi(k) = Ci

zx
i(k),

ζ̂ i(k) = ∑N
j=1 di j [(yi(k−κ)−hi)− (y j(k−κ)−h j)] .

Let us formulate the formation problem to be solved.

Problem 2 Consider a heterogeneous network of N agents
(1). For a given set Gδ , a given integer κ̄ ≥ 0, and a given
family of formation vectors {h1, · · · ,hN}, where hi ∈ R

p for
i ∈ V , the formation problem with a set of communication
topologies Gδ for any κ ∈ [0, κ̄ ] is to find, if possible, a linear
dynamical controller{

x̂i(k+1) = Ai
cx̂i(k)+Bi

cζ i(k)+Ei
czi(k),

ui(k) = Ci
cx̂i(k)+Di

cζ i(k)+Mi
czi(k) (19)

for each agent i∈V , such that the formation can be achieved
for the network with any network communication topology
G ∈ Gδ and κ ∈ [0, κ̄ ].

Theorem 2 For a given set Gδ , an arbitrarily given integer
κ̄ ≥ 0 and an arbitrarily given family of formation vectors
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{h1, · · · ,hN}, where hi ∈R
p for i ∈ V , Problem 2 is solvable

via N decentralized controllers of the form (19).

Proof: The proof follows from the proofs of [22,

Theorem 3] and Theorem 1. Due to the limitation of the

space, we have omitted the proof.

VI. OUTPUT REGULATION

In Section IV, we consider the output synchronization

problem. Note that for this problem, we do not impose

any restriction on the synchronization trajectories. The focus

is to solve this problem for a large set of communication

topologies and a large delay. On the other hand, it is

important to consider the related problem of regulating the

outputs toward a desired reference trajectory, generated by

an autonomous exosystem{
xr(k+1) = Arxr(k), xr(0) = x0

r ,
yr(k) = Crxr(k),

(20)

where xr ∈ R
r and yr ∈ R

p.

Assumption 3 For the exosystem (20),
1) (Ar,Cr) is observable, and
2) Ar has all its eigenvalues in the closed unit circle.

We introduce the following definition.

Definition 4 A heterogeneous network of N agents (1) is
said to achieve output regulation if limk→∞(yi(k)−yr(k)) = 0

for any i ∈ V .

For solving the output regulation problem, we consider a

subset Gs of G1, where G1 is the set of the network topologies,

each of which satisfies Assumption 1. We assume that all the

topologies in the given set Gs have a common root. Without

loss of generality, we assume that the common root is agent

1. This (root) agent 1 measures its own output relative to

output yr of the exosystem, that is, agent 1 has access to the

quantity ψ1 = d(y1−yr), where d = d11
2 > 0, while ψ i = 0 for

i ∈ {2, . . . ,N}. Therefore, the agent i ∈ V has the following

dynamical equations:⎧⎪⎪⎨
⎪⎪⎩

xi(k+1) = Aixi(k)+Biui(k),
zi(k) = Ci

zx
i(k),

yi(k) = Ci
yxi(k),

ζ̄ i(k) = ∑N
j=1 di j(yi(k−κ)− y j(k−κ))+ψ i(k−κ).

Let us formulate the output regulation problem as follows:

Problem 3 Consider a heterogeneous network of N agents
(1) and an exosystem (20). For a given set Gs ⊂G and a given
integer κ̄ ≥ 0, the output regulation problem with exosystem
(20) and a set of communication topologies Gs for any κ ∈
[0, κ̄] is to find, if possible, a linear dynamical controllers
linear dynamical controller{

x̂i(k+1) = Ai
cx̂i(k)+Bi

cζ̄ i(k)+Ei
czi(k),

ui(k) = Ci
cx̂i(k)+Di

cζ̄ i(k)+Mi
czi(k)

(21)

for each agent i ∈ V , such that the output regulation can be
achieved for the network with any communication topology
G ∈ Gs and κ ∈ [0, κ̄ ].

Some preliminary work is needed before we present the

main result. Let Ḡ denote an expanded network constructed

from G∈ Gs by adding the exosystem as node 0 and the edge

from exosystem to agent 1 with weight d = d11
2 . Therefore,

ζ̄ i(k) for i ∈ V can be written as

ζ̄ i(k) =
N

∑
j=0

d̄i j(yi(k−κ)− y j(k−κ)),

where y0 := yr, and

D̄ = [d̄i j] =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
d11
2

d11
2 d12 · · · d1N

0 d21 d22 · · · d2N
...

...
...

. . .
...

0 dN1 dN2 · · · dNN

⎤
⎥⎥⎥⎥⎥⎦
∈ R

(N+1)×(N+1).

This matrix D̄ is also a row stochastic matrix and defines

an expanded topology Ḡ. Also note that the digraph Ḡ
has a directed spanning tree rooted at agent 0. From [6,

Corollary 3.5], it is easy to see that the matrix D̄ has a simple

eigenvalue at 1 while the remaining eigenvalues are strictly

within the unit circle. Let λ̄1, . . . , λ̄N+1 denote the eigenvalues

of Ḡ, such that λ̄1 = 1 and |λ̄i|< 1 for all i ∈ {2, . . . ,N+1}.

Assumption 4 There exists a δ̄ < 1, such that for each
expanded network, we have |λ̄i|< δ̄ , i ∈ {2, . . . ,N +1}.

We are now ready to present our main result.

Theorem 3 Consider a heterogeneous network (1) and an
exosystem (20). For a given Gs ⊂ G and a given integer
κ̄ ≥ 0 such that κ̄ωmax < arccos(δ̄ ), where ωmax = max{ω ∈
[−π,π]|det(e jω I − Ar) = 0}, Problem 3 is solvable via N
decentralized controllers of the form (21).

Proof: For the given exosystem (20), from [22, Ap-

pendix B], we know that there exists another exosystem{
x̃r(k+1) = Ãrx̃r(k), x̃r(0) = x̃0

r ,
yr(k) = C̃rx̃r(k),

(22)

such that for all x0
r ∈R

r, there exists x̃0
r ∈R

r̃ for which (22)

produces the same output as the original exosystem (20).

Furthermore, we can find a matrix B̃r such that the triple

(Ãr, B̃r,C̃r) is invertible, of uniform rank nq, where nq is an

integer greater than or equal to the maximal order of infinite

zeros of (Ai,Bi,Ci), i∈V and all the observability index (see

[26, Theorem 4.3.1]) of (Ar,Cr), and has no invariant zeros.

The new exosystem can be rewritten as:{
x̃r(k+1) = Ãrx̃r(k)+ B̃r(vr(k)+dr(k)), x̃r(0) = x̃0

r
yr(k) = C̃rx̃r(k),

(23)

where vr(k) = 0 and dr(k) = 0 for all k ≥ 0.

Following from the constructive proof of Lemma 1 in [22],

we design a pre-compensator (3) for each agent i ∈ V such
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that the interconnection of (1) and (3) are almost identical

to the exosystem system (23), that is,⎧⎨
⎩

x̄i(k+1) = Ãrx̄i(k)+ B̃r(vi(k)+di(k)),
yi(k) = C̃rx̄i(k),
ζ̄ i(k) = ∑N

j=0 d̄i j(yi(k−κ)− y j(k−κ)),
(24)

where di is given by (5).

It is then easy to see that the output regulation for a

heterogeneous network of N agents is converted to the output

synchronization problem for an expanded network of N +1

agents by adding the exosystem system as agent 0 and the

edge from agent 0 to agent 1 with weight d. Let us define

x̄0 := x̃r, v0 := vr, and d0 := dr, then the agent i, where

i ∈ {0,1, . . . ,N} has the following dynamics:⎧⎨
⎩

x̄i(k+1) = Ãrx̄i(k)+ B̃r(vi(k)+di(k)),
yi(k) = C̃rx̄i(k),
ζ̄ i(k) = ∑N

j=0 d̄i j(yi(k−κ)− y j(k−κ)).
(25)

We then design the following controller{
χ i(k+1) = (Ãr + K̃rC̃r)χi − K̃rζ̄ i,

vi(k) = β̃ F̃ε χ i, i ∈ {0,1, . . . ,N}, (26)

where β̃ > 1
1−δ̄ , the matrix K̃r is such that Ãr + K̃rC̃r is

Hurwitz stable, and

F̃ε =−(B̃′
rP̃ε B̃+ I)−1B̃′

rP̃ε Ãr,

where ε > 0 is a low-gain parameter and P̃ε = P̃′
ε > 0 is

the unique solution of the following discrete-time algebraic

Riccati equation

P̃ε = Ã′
rP̃ε Ãr + εI − Ã′

rP̃ε B̃r(B̃′
rP̃ε B̃r + I)−1B̃′

rP̃ε Ãr.

For agent 0, we choose χ0(0) = 0 in (26). Therefore, v0(k) =
0 for all k ≥ 0 as desired since ζ̄ 0(k) = 0 for all k ≥ 0. It

then follows from Theorem 1 and [25, Theorem 2] that there

exist β̃ and ε∗ such that for all ε ∈ (0,ε∗], the composition

of (3) and (26), solves the output synchronization for a set

of the expanded network topologies. Hence, limk→∞(yi(k)−
yr(k)) = 0 for all i ∈ {1, . . . ,N}.

VII. CONCLUSION

In this paper, we consider heterogeneous networks of

introspective, right-invertible, discrete-time linear agents. We

propose a decentralized control scheme for solving the output

synchronization problem for a set of network topologies

under arbitrary bounded communication delay. We then

apply the proposed scheme to solve the formation problem

with arbitrary formation vectors. Finally, we solve the output

regulation problem for a set of network topologies with uni-

form constant delay whose upper bound depends exosystem

and some characteristic of network topologies.
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