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Abstract

This paper addresses the problem of sequence-based controller design for Networked Control Systems
(NCS), where control inputs and measurements are transmitted over TCP-like network connections
that are subject to stochastic packet losses and time-varying packet delays. At every time step, the
controller sends a sequence of predicted control inputs to the actuator in addition to the current
control input. In this sequence-based setup, we derive an optimal solution to the Linear Quadratic
Gaussian (LQG) control problem and prove that the separation principle holds. Simulations
demonstrate the improved performance of this optimal controller compared to other sequence-based
approaches.

1. INTRODUCTION

In Networked Control Systems (NCS), components of a control loop are connected by one or more
digital data networks. The applied data networks can be distinguished into two groups. There are
real-time capable fieldbuses, such as Interbus, PROFIBUS, or Ether-CAT, which guarantee reliable
data transmissions with deterministic latency on the one hand and general-purpose networks such
as Ethernet-(TCP/UDP)/IP, WPAN (IEEE 802.15) or WLAN (IEEE 802.11) that have a stochastic
transmission characteristic on the other hand. While fieldbuses have been the standard in industrial
control systems for more than two decades, there is a trend towards applying general-purpose
networks within the control loop for several reasons. Networks like Ethernet-TCP/IP are not
only cheaper than the commercial fieldbuses but are also based on a wide-spread, nonproprietary,
and standardized communication technology [1]. Furthermore, wireless networks are much more
flexible than, e.g., the wired ring topology of Interbus, and allow for applications not realizable with
fieldbuses such as mobile sensor networks [2] and freely moving objects [3].

However, general-purpose networks can be subject to highly time-varying transmission delays
and to immense data losses. These effects can strongly degrade the performance of a system and
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Figure 1: Considered setup: The sequence-based controller generates control input sequences Uk that are transmitted
to the actuator via a TCP-like network connection that provides acknowledgements for successfully transmitted data
packets. The actuator holds the most recent control input sequence in a buffer and applies the time-corresponding
entry uk of the sequence to the plant. The state xk of the plant is measured (y

k
) and sent via a network to the

controller, which receives no, one, or even more than one measurement (Zk).

even destabilize the control loop [4, 5, 6]. Therefore, new control methods have been developed that
take the stochastic network effects explicitly into account [7].

Our approach belongs to a class of methods called sequence-based control, which is, depending
on the author, also referred to as networked predictive control, packet-based control or receding
horizon networked control [8, 9, 10, 11, 12, 13]. The main idea of this approach is that the controller
sends data packets over the network to the actuator that contain not only the current control
input, but also predicted control inputs for future time instants. The predicted future control
inputs are stored in a buffer attached to the actuator so they can be applied in cases future data
packets are delayed or lost. An assumption made by these methods is that the additional data
sent over the network does not degrade the quality of the connection. For packet-based networks
such as Ethernet-TCP/IP, this assumption usually holds since the process data needed for control
applications is normally much smaller than the size of a data packet.

Depending on the considered system, different approaches for design of sequence-based controllers
have been proposed. One class of these approaches, as for example used in [12, 14, 15, 16], is
based on a nominal feedback-controller that is designed for the nominal system, where the networks
are replaced by transparent connections. Using the nominal controller, future control inputs are
predicted and a sequence-based controller is synthesized. For linear systems, this approach can
provide stability of the system, however, in the presence of packet losses, the resulting controller is
in general not optimal even if the nominal controller is the result of an optimization method, such
as LQG, H2, or H∞.

Another line of sequence-based approaches evolves from Model Predictive Control (MPC) theory
([9, 10, 17]). This is an intuitive connection since MPC-controllers already obtain an optimized
sequence of predicted control inputs over a finite horizon. In standard MPC, only the first control
input of this sequence is applied to the system and the rest is discarded. If instead the whole
sequence is lumped into a data packet and sent to the actuator, a sequence-based controller is derived.
However, like standard MPC, this approach is suboptimal since the real closed-loop optimization
problem is approximated by the much easier open-loop optimization problem, which is suitable for
systems that are far too complex to derive optimal solutions.

In [13], it has been shown, based on [18] and [19], that optimal sequence-based controllers in
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the context of Linear Quadratic Gaussian (LQG) control can be derived for networks that use
a so called TCP-like protocol. The term TCP-like1 characterizes a data network that provides
instantaneous acknowledgments for successfully transmitted data packets [20]. Yet, the approach
in [13] neglects the possibility of time delays by assuming that a data packet is either dropped by
the network or transmitted immediately. In [21], the approach was extended so that time delays
could be incorporated into the sequence-based control design. However, the derived controller is not
optimal since the authors artificially limit the information available to the controller for calculating
control input sequences.

In this paper, we present the optimal solution to the problem addressed in [13] and [21] also
in the presence of time-varying transmission delays. In detail, we derive an optimal solution for
the sequence-based LQG control problem for NCS with TCP-like network connections subject to
stochastic packet losses and time-varying packet delays. The considered setup is depicted in fig. 1.
The plant is assumed to be partially observable, discrete-time and linear and perturbed by additive
process and measurement noise. The optimal control law is derived by first using state augmentation
to formulate the original networked system as a nonnetworked Markovian Jump Linear System
(MJLS). Then, stochastic dynamic programming is applied on the MJLS. In the derivation, we
prove that the separation principle holds also in the sequence-based setup, what was assumed in
former work but not formally proved.

1.1. Notation
Throughout the paper, random variables such as a are written in bold face letters, whereas

deterministic quantities a are in normal lettering. Furthermore, the notation a ∼ f(a) refers to a
random variable a with probability density function f(a). A vector-valued quantity a is indicated
by underlining the corresponding identifier and matrices are always referred to with bold face
capital letters, e.g., A. The notation ak refers to the quantity a at time step k. For the set
{xa, xa+1, . . . , xb}, we use the abbreviated notation xa:b. The expectation operator is denoted by
E{·} and the Moore-Penrose pseudoinverse of a matrix A by A†. The set of all natural numbers
including zero is indicated with N0 and we use the symbol N>0 for N0\{0}.

1.2. Outline
The remainder of the paper is organized as follows. In the next section, the considered setup is

introduced and the optimal control problem is formulated. The optimal control law is derived in
sec. 3 and compared with the approaches from [13] and [21] in a simulation of a double integrator
system in sec. 4. A summary and an outlook on future work concludes the paper.

1A TCP-like network connection is only an approximation of a realistic Ethernet-TCP/IP network since it is
assumed that the acknowledgements are not subject to time delays. However, the analysis of NCS with TCP-like
connections gives insights into the more complex problem of controlling systems over real TCP connections or even
over networks that do not provide any acknowledgments, such as networks using a UDP protocol. In particular, the
TCP-like case constitutes an upper performance bound for NCS with realistic TCP or UDP network connections.
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2. SYSTEM SETUP & PROBLEM FORMULATION

We consider the system setup depicted in fig. 1. The partially observable plant and the sensor
evolve according to the stochastic, discrete-time, linear equations

xk+1 = Axk + Buk +wk , (1)
y

k
= Cxk + vk , (2)

where xk ∈ Rn denotes the plant state at time step k, the vector uk ∈ Rm the control input applied
by the actuator, and y

k
∈ Rq the measured output. The matrices A ∈ Rn×n, B ∈ Rn×m, and

C ∈ Rq×n are known and we assume that (A,B) is controllable and (A,C) is observable. The terms
wk ∈ Rn and vk ∈ Rq represent mutually independent, stationary, zero-mean, discrete-time, white
noise processes with Gaussian probability distribution that are independent of network-induced
effects. The initial condition of the state x0 is independent of the other random variables and has a
Gaussian distribution. We define

x̄0 = E {x0} and P0 = E
{

(x0 − x̄0) (x0 − x̄0)T
}
.

The data connections between controller and actuator (CA-link) and between sensor and controller
(SC-link) are provided by data networks that are subject to time-varying delays and stochastic
packet losses. By interpreting lost transmissions as transmissions with infinite time delay, we unify
the description of both effects by only considering time-varying but possibly unbounded time delays.
The time delays are described by random processes τCA

k , τSC
k ∈ N0 that specify how many time steps

a data packet will be delayed if sent at time step k. Throughout the paper, we assume that τCA
k and

τSC
k are white stationary processes and that their discrete probability density functions fSC(τSC

k )
and fCA(τCA

k ) are known. Additionally, it is assumed that the components of the control loop
are time-triggered, time-synchronized and have identical cycle times. Furthermore, the employed
network is capable of transmitting large time stamped data packets and uses a TCP-like protocol,
i.e., acknowledgements are provided within the same time step when a packet was successfully
transmitted.

Every time step, the measurement y
k

is sent to the controller. Due to transmission delays and
packet losses, it is possible that the controller receives no, one, or even more than one measurement.
The set of received measurements at time step k ∈ N>0 is defined as the set Zk according to

Zk =
{
y

m
: m ∈ {0, 1, · · · , k} ,m+ τSC

k = k
}
. (3)

After processing Zk, the sequence-based controller generates a control input sequence Uk that
is sent over the network to the actuator. Entries of that sequence are denoted by uk+m|k with
m ∈ {0, 1, ..., N} and N ∈ N0. The index specifies that the control input is intended to be applied at
time step k +m and was generated at time step k. This way, a sequence of length N + 1 generated
at time step k is described by

Uk =
[
uT

k|k uT
k+1|k . . . uT

k+N |k

]T
. (4)

Attached to the actuator is a buffer, in which the actuator stores the sequence with the most recent
information among all received sequences, i.e., the sequence that was generated last (according to
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the time stamps). If a sequence arrives out of order, the actuator does not change the content of
the buffer and the received sequence is discarded. After updating the buffer, the actuator applies
the control input of the buffered sequence that corresponds to the current time step. Since we do
not assume that the time delays are bounded, it may happen that the buffer runs empty. In this
case the controller applies a time-invariant default control input ud. Furthermore, the actuator
initializes the buffer at time step k = 0 with a sequence of default control inputs. The described
actuator procedure can formally be summarized by

uk = uk|k−θk
, (5)

θk = min
({
n ∈ N0 : m+ τCA

m = k − n,m ∈ N0
}
∪ {N + 1}

)
, (6)

uk|k−N−1 = ud . (7)

Remark 1 The random variable θk can be interpreted as the age of the sequence buffered in the
actuator, i.e., the difference between time step of generation and actual time step. If no appropriate
control input is buffered in the actuator, θk is set to N + 1 and the default control input ud is applied
according to (7).

As we consider a TCP-like protocol, the controller can always infer which control input has been
applied to the plant. Therefore, at time step k, the controller has access to the past realizations of
θk. Based on the previous passages, we can summarize the information available to the controller
at time step k by the information set Ik according to

Ik =
{
x̄0,P0,Z1:k, U0:k−1, θ0:k−1

}
. (8)

At every time step k, the controller maps the available information to a control input sequence Uk.
Denoting the mapping function at time step k with µk, the control law is given by the set of all µk

with k ∈ {0, 1, . . . ,K − 1}, where K is the terminal time. A control law is called admissible if

Uk = µk(Ik) , ∀ k ∈ {0, 1, . . . ,K − 1} (9)

holds. In this paper, we are interested in finding an admissible control law that minimizes the
cumulated linear quadratic cost function

CK
0 = E

{
CK +

K−1∑
k=0

Ck

∣∣∣U0:K−1, x̄0,P0

}
, (10)

with stage cost

CK = xT
KQKxK , (11)

Ck = xT
k Qkxk + uT

k Rkuk , (12)

where K ∈ N>0 is the terminal time step, Qk is positive semidefinite, and Rk is positive definite.
Summarizing the optimal control problem, we seek to find an admissible control law according

to (9) that minimizes the cost (10) - (12) subject to the system dynamics (1), the measurement
equations (2), (3), and the actuator logic (5) - (7).
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3. DERIVATION OF THE OPTIMAL CONTROLLER

In order to derive the optimal controller, we model the system as a MJLS in sec. 3.1. Based on
this model, we derive the optimal controller via stochastic dynamic programming in sec. 3.2.

3.1. System Modeling
According to (5) and (7), the control input applied by the actuator at time step k is given by

uk = uk|k−θk
, uk|k−N−1 = ud , (13)

where θk is described by (6). As mentioned in remark 1, the random variable θk can be interpreted
as the age of the sequence buffered in the actuator. Furthermore, it has been shown in [15] and [22]
that θk can be described as state of a Markov chain with transition matrix T according to

T =



p00 p01 0 0 · · · 0
p10 p11 p12 0 · · · 0
p20 p21 p22 p23 · · · 0
...

...
...

... . . . ...
...

...
...

...
... p(r−1)(r)

pr0 pr1 pr2 pr3 · · · prr


, (14)

with

pij = Prob [θk+1 = j|θk = i] , r = N + 1 .

The elements of T in the upper right triangle are zero as θk can only increase by one per time step.
The remaining entries can be calculated by

p(i−1)(i) = 1−
i−1∑
s=0

qs for i ∈ [1, 2, · · · , N + 1] ,

pij = qj for j ≤ i ,where i, j ∈ [0, 1, · · · , N + 1] ,

where qi is the probability that a sequence is delayed for i ∈ N0 time steps. The qi’s can directly be
derived from fCA(τCA

k ). For a detailed derivation of the transition matrix we refer to [15].
With θk, we can describe which sequence is buffered at time step k. To summarize all control

inputs of sequences that could be buffered, we introduce the vector

η
k

=



[uT
k|k−1 uT

k+1|k−1 · · · uT
k+N−1|k−1]T

[uT
k|k−2 uT

k+1|k−2 · · · uT
k+N−2|k−2]T

...
[uT

k|k−N+1 uT
k+1|k−N+1]T

uk|k−N

ud


, (15)

with η
k
∈ Rd and d = m + m ·

∑N
i=1 i. The vector η

k
contains the default control input ud and

all control inputs of the former sent sequences Uk−1, · · · , Uk−N that still could be applied by the
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1kU 1|1  kku 1| kku 1|1  kku du

2kU 2|2  kku 2|1  kku 2| kku du

kku | kku |1 kku |2 du

3kU 3|3  kku 3|2  kku 3|1  kku du

k – 3      k – 2       k – 1          k k + 1          k + 2        k + 3

kU

k


Figure 2: Representation of control input sequences Uk−3, . . . , Uk, whereas control inputs corresponding to the same
time step are vertically aligned. The default control ud is added to the end of every sequence. The control inputs that
could be applied by the actuator at time step k are marked by the green doted rectangle and the control inputs that
are part of η

k
are marked by the red dashed rectangle.

actuator either in the current time step or in the future. This is illustrated in fig. 2, where the
relevant control input sequences are depicted for the case of N = 2. Therefore, the control input
applied by the actuator at time step k is either part of η

k
or of Uk.

Combining η
k

and θk, the following state space model of network and actuator can be derived

η
k+1 = Fη

k
+ GUk , (16)

uk = Hkηk
+ JkUk , (17)

with

F =


0 0 0 0 · · · 0
0 I 0 0 · · · 0
0 0 0 I · · · 0
...

...
...

... . . . ...
0 0 0 0 · · · I

 ,
Jk =

[
δ(θk,0) I 0

]
, G =

[
0 I
0 0

]
,

Hk =
[
δ(θk,1) I 0 δ(θk,2) I 0 · · · δ(θk,N) I

]
.

Thereby, the terms 0 denote matrices with all elements equal to zero and I the identity matrix, each
of appropriate dimension. The expression δ(θk,i) is the Kronecker delta, which is defined as

δ(θk,i) =
{

1 if θk = i
0 if θk 6= i

.

Defining the augmented state
ξ

k
=
[
xT

k ηT
k

]T
(18)
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and combining (1), (16), and (17), it holds that

ξ
k+1 =

[
A B ·Hk

0 F

]
ξ

k
+
[
B · Jk

G

]
Uk +

(
wk

0

)
(19)

= Ãkξk
+ B̃kUk + w̃k . (20)

The derived model (20) links the generated control input sequences with the state of the plant
and the buffered control inputs. Due to the stochastic parameter θk, the augmented system is a
Markovian Jump Linear System.

3.2. Calculation of the Control Law
In the following, we will use the MJLS model (20) to derive the optimal control law by dynamic

programming.

Remark 2 In literature, there are several solutions to the LQG control problem of MJLS, e.g., [23].
However, these solutions cannot be applied directly since the mode, i.e., θk is supposed to be known
at time step k. In our problem θk is only known with a delay of one time step. Another difference
is that the weighting matrices Q̃k and R̃k are stochastic.

We define the minimal expected cost-to-go J∗k by

J∗k = min
Uk

E
{
Ck + J∗k+1|Ik

}
, (21)

J∗K = E {CK |IK} . (22)

According to dynamic programming theory [24] it holds, that

J∗0 = min
U0:K−1

CK
0 ,

where CK
0 denotes the expected cumulated cost (10). Before we can use (21), we have to express

the stage cost (11) - (12) in terms of the augmented system state ξ
k
. It holds, that

CK = xT
KQKxK = ξT

K

[
QK 0
0 0

]
ξ

K
= ξT

K
Q̃KξK

, (23)

Ck = xT
k Qkxk + uT

k Rkuk

= xT
k Qkxk +

(
Hkηk

+ JkUk

)T
Rk

(
Hkηk

+ JkUk

)
=
(
xk

η
k

)T [
Qk 0
0 HT

k RkHk

](
xk

η
k

)
+ UT

k JT
k RkJkUk

= ξT
k

Q̃kξk
+ UT

k R̃kUk ,

where we used that E
{

HT
k Rk · Jk

}
= 0 and introduced the definitions

Q̃K =
[
QK 0
0 0

]
, Q̃k =

[
Qk 0
0 HT

k RkHk

]
, R̃k = JT

k RkJk .
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Starting at time step K, the minimal expected cost-to-go are given by (22)

J∗K = E{ξT
K

Q̃KξK
|IK} = E

{
ξT

K
KKξK

|IK

}

with KK = Q̃K . (24)

With (21), it holds for the minimal expected cost-to-go at time step K − 1

J∗K−1 = min
UK−1

E
{
ξT

K−1Q̃K−1ξK−1 + UT
K−1R̃K−1UK−1 + J∗K |IK−1

}
= E

{
ξT

K−1Q̃K−1ξK−1|IK−1
}

+ min
UK−1

[
E
{
UT

K−1R̃K−1UK−1|IK−1
}

+ E
{
ξT

K
KKξK

|IK−1
}]

(25)

= E
{
ξT

K−1Q̃K−1ξK−1|IK−1
}

+ min
UK−1

[
UT

K−1 E
{
R̃K−1|IK−1

}
UK−1

+ E
{(

ÃK−1ξK−1 + B̃K−1UK−1 + w̃K−1

)T
KK ×

(
ÃK−1ξK−1 + B̃K−1UK−1 + w̃K−1

)
|IK−1

}]
= E

{
ξT

K−1

(
Q̃K−1 + ÃT

K−1KKÃK−1
)
ξ

K−1|IK−1
}

+ min
UK−1

[
UT

K−1 E
{

R̃K−1 + B̃T
K−1KKB̃K−1|IK−1

}
UK−1

+ 2 · E
{
ξT

K−1|IK−1
}

E
{

ÃT
K−1KKB̃K−1|IK−1

}
UK−1

]
+ E

{
w̃T

K−1KKw̃K−1|IK−1
}
, (26)

where we used that E{E{g(ξ
k+1)|Ik+1}|Ik} = E{g(ξ

k+1)|Ik} for any function g(·). Furthermore, we
used the fact that if IK−1 is given, then ξ

K−1 is conditionally independent of θK−1 and, therefore,
of AK−1,BK−1, and KK . Differentiation of (26) with respect to UK−1 and setting equal to zero
yields

UK−1 = −
(
E
{

R̃K−1 + B̃T
K−1KKB̃K−1|IK−1

})†
× E

{
B̃T

K−1KKÃK−1|IK−1
}

E
{
ξ

K−1|IK−1
}

(27)

Remark 3 In (27), we have used the Moore-Penrose pseudoinverse instead of the regular inverse
as the expression M = E

{
R̃K−1 + B̃T

K−1KKB̃K−1|IK−1
}

is in general not regular but positive
semidefinite. This results from two facts: 1) if the network has a latency such that a control input
sequence cannot arrive before the first m ∈ N>0 time steps, i.e., q0 = · · · = qm−1 = 0 with qi as
defined in sec. 3.1, then the first m− 1 control inputs of each sequence will never be applied and
2) the last N control input sequences UK−N :K−1 contain control inputs such as uK+1|K−1 that
are supposed to be applied after the terminal time K. Therefore, the minimization problem is not
well-defined. One way to cope with this problem is to exclude the corresponding control inputs
from the system equations. For case 1) this can be easily done by reducing the vector η

k
by the

corresponding control inputs and adjusting the system matrices. In case 2) we have to gradually
increase the dimension of η

k
and the system matrices from time step K to K−N . Then, the system
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has reached the dimension of the model derived above and the dimensions stay constant. Another
way to solve this issue, is to use the Moore-Penrose pseudoinverse, which yields the same results
since the kernel of M†M is equal to the subspace corresponding to the dimensions of the undefined
entries of Uk. In this paper, we choose the latter description to obtain a concise expression for the
optimal controller, which is straightforward to implement.

Using (27) in (26) gives

J∗K−1 = E
{
w̃T

K−1KKw̃K−1|IK−1
}

+ E
{
ξT

K−1KK−1ξK−1|IK−1
}

+ E
{(
ξT

K−1 − E
{
ξT

K−1|IK−1
})

PK−1 ×
(
ξ

K−1 − E
{
ξ

K−1|IK−1
})
|IK−1 } ,

with

KK−1 = E
{

Q̃K−1 + ÃT
K−1KKÃK−1|IK−1

}
−PK−1 , (28)

PK−1 = E
{

ÃT
K−1KKB̃K−1|IK−1

}
×
(
E
{

R̃K−1 + B̃T
K−1KKB̃K−1|IK−1

})†
× E

{
B̃T

K−1KKÃK−1|IK−1
}

(29)

Considering one more time step, the minimal expected cost-to-go at time step K−2 can be calculated
by

J∗K−2 = min
UK−2

[
E
{
ξT

K−2Q̃K−2ξK−2 + UT
K−2R̃K−2UK−2 + J∗K−1|IK−2, UK−2

}]
(30)

= E
{
ξT

K−2Q̃K−2ξK−2|IK−2
}

+ min
UK−2

[
UT

K−2 E
{

R̃K−2|IK−2
}
UK−2

+ E
{
ξT

K−1KK−1ξK−1|IK−2, UK−2

}]
+ E

{(
ξT

K−1 − E
{
ξT

K−1|IK−1
})

PK−1

×
(
ξ

K−1 − E
{
ξ

K−1|IK−1
})
|IK−2, UK−2

}
+ E

{
w̃T

K−1KKw̃K−1|IK−2
}
. (31)

The term with PK−1 is excluded from the minimization since it is independent of UK−2 what is
justified in Lemma 1 at the end of this section. The structure of (31) and (25) is the same, besides
two additional terms that are independent of U0:k−1. Therefore, minimization over UK−2 will lead
to a J∗K−2 of the same structure, so that it follows by an inductive argument that

Uk =−
(
E
{

R̃k + B̃T
k Kk+1B̃k|Ik

})†
E
{

B̃T
k Kk+1Ãk|Ik

}
E
{
ξ

k
|Ik

}
(32)

with

Kk = E
{

Q̃k + ÃT
k Kk+1Ãk|Ik

}
− E

{
ÃT

k Kdk+1B̃k|Ik

}
×
(
E
{

R̃k + B̃T
k Kk+1B̃k|Ik

})†
E
{

B̃T
k Kk+1Ãk|Ik

}
. (33)

With (32) and (33), it follows for the minimal expected cost-to-go at time step k that

J∗k = E
{
ξT

k
Kk+1ξk

|Ik

}
+

K−1∑
i=k

E
{
w̃T

i Ki+1w̃i|Ii

}
+

K−1∑
i=k

E
{(
ξT

i+1 − E
{
ξT

i+1|Ii+1
})

Pi+1

×
(
ξ

i+1 − E
{
ξ

i+1|Ii+1
})
|Ii

}
. (34)
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The expected values in (32) and (33) referring to the matrices can be calculated by explicitly
conditioning on θk−1 = j. This is possible since θk−1 is part of the information set Ik and, therefore,
known at time step k. It holds

Uk = −
[

N+1∑
i=0

pji

(
R̃|i + B̃T

|i E {Kk+1|θk = i} B̃|i
)]†
·
[

N+1∑
i=0

pjiB̃T
|i E {Kk+1|θk = i} Ã|i

]
· E
{
ξ

k
|Ik

}
(35)

∆= Lk E
{
ξ

k
|Ik

}
(36)

with

E {Kk|θk−1 = j} =
[

N+1∑
i=0

pji

(
Q̃|i + ÃT

|i E {Kk+1|θk = i} Ã|i
)]
−
[

N+1∑
i=0

pjiÃT
|i E {Kk+1|θk = i} B̃|i

]

×
[

K+1∑
i=0

pji

(
R̃|i + B̃T

|i E {Kk+1|θk = i} B̃|i
)]†
·
[

N+1∑
i=0

pjiB̃T
|i E {Kk+1|θk = i} Ã|i

]
, (37)

where the notation X|i, with i ∈ N0, refers to the matrix X (dependent of θk), where θk is set to i.
The terms pji indicate the elements of transition matrix T from (14).

The results derived above can be summarized as follows:

Theorem 1 Consider the problem to find an admissible control law with given sequence length
N according to (9) that minimizes the cost (10) - (12) subject to the system dynamics (1), the
measurement equations (2) and (3), and the actuator logic (5) - (7). Then,

1. as in standard LQG control, the separation principle holds, i.e., the optimal control law at
time step k can be separated into a) an estimator that calculates the conditional expectation
E
{
ξ

k
|Ik

}
and b) into an optimal state feedback controller that utilizes the state feedback

matrix Lk.
2. the optimal control law is linear in the conditional expectation of the augmented state, i.e.,
Uk = Lk E

{
ξ

k
|Ik

}
.

3. the optimal state feedback matrix Lk can be calculated by (35), whereas the term E {Kk+1|θk = i}
is obtained by the recursion (37), which is evolving backwards in time, with initial condition
E {KK |θK−1 = i} = Q̃K .

Since η
k

in (18) is known at time step k, the conditional expectation E
{
ξ

k
|Ik

}
reduces to

E {xk|Ik}, which is equal to the minimum mean squared error estimate of the state xk. In the
literature, results on the minimum mean squared error estimator in presence of measurement
delays and measurement losses are available, see e.g., [25] and [26]. It was pointed out in [25] that
the optimal estimator is a time-varying Kalman filter that is extended by a buffer to store old
measurements. The buffered measurements are needed to incorporate delayed measurements that
are received after measurements with more recent information. This filter is of finite dimension (and,
therefore, can be implemented) when the required memory of the buffer is finite. This is the case if
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every measurement delay is either bounded or infinite2. In practice, however, it is computational
inefficient to process measurements that have been delayed for a very long time and, therefore, the
length of the buffer is treated as a design parameter.

For similar reasons, we assumed in the problem formulation that the length N of the control
input sequence is a given design parameter. Otherwise, if the minimization would be carried out
over N , and we consider networks with data losses, then the resulting length of the control input
sequence would be infinite.

Lemma 1 The term

E
{(
ξT

k
− E

{
ξT

k
|Ik

})
Pk ×

(
ξ

k
− E

{
ξ

k
|Ik

})
|Ik−1, Uk−1

}
,

is stochastically independent of the control sequence Uk−1.

Proof.
Consider the system (20) and the autonomous system, given by

ξ̂
k

= Ãk−1ξ̂k−1 + w̃k−1 , (38)

that has same system matrix, initial conditions, noise realizations w0:k−1, v0:k−1, and network delay
realizations τCA

0:k−1, τSE
0:k−1. Both systems evolve according to time-variant transformations, which

are linear, so that it is possible to find matrices Â, B̂, and Ĉ depending on the realizations of θ0:k−1
with

ξ
k

= Âξ0 + B̂
[
UT

0 , . . . , U
T
k−1

]T
+ Ĉ

[
wT

0 , · · · ,wT
k−1

]T
ξ̂

k
= Âξ0 + Ĉ

[
wT

0 , · · · ,wT
k−1

]T
,

It holds for the expected values

E
{
ξ

k
|Ik

}
= Â E

{
ξ0|Ik

}
+ B̂

[
UT

0 , · · · , UT
k−1

]T
,

E
{
ξ̂

k
|Ik

}
= Â E

{
ξ0|Ik

}
,

where Â and B̂ are known since the information vector Ik includes θ0:k−1. Defining the estimation
errors ek = ξ

k
− E

{
ξ

k
|Ik

}
and êk = ξ̂

k
− E

{
ξ̂

k
|Ik

}
, it holds that

ek = Â
(
ξ0 − E

{
ξ0|Ik

})
+ Ĉ

(
wT

0 · · · wT
k−1

)T
,

êk = Â
(
ξ0 − E

{
ξ0|Ik

})
+ Ĉ

(
wT

0 · · · wT
k−1

)T
.

Therefore, the errors are identical and since

ek = êk = ξ̂
k
− E

{
ξ̂

k
|Ik

}
= ξ̂

k
− E

{
ξ̂

k
|z0:k,θ0:k−1

}
,

2This formulation is consistent with the one in [25], where it is required for the finite optimal filter to exist that a
measurement, that is not lost, will arrive within a maximal time.
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it holds that the error ek is independent of Uk−1 and that

E
{
eT

k ek|Ik−1, Uk−1

}
= E

{
eT

k ek|z0:k−1,θ0:k−2
}
. (39)

If θk−2 is given, then θk−1 and θk are conditionally independent of zk−1, Uk−2 and Uk−1. It follows
that

E {Pk|Ik−1, Uk−1} = E {Pk|θk−2} (40)

and finally

E
{
eT

k Pkek|Ik−1, Uk−1

}
= E

{
eT

k Pkek|z0:k,θ0:k−1
}

concludes the proof. �
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Figure 3: Probability density functions of the arrival probability of data packets over time delays.
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4. SIMULATIONS

In this section, we compare the performance of the proposed optimal controller with the
approaches presented in [13] and [21] by means of simulations with a double integrator. For
simulation, the system parameters of (1) and (2) are chosen with

A =
[
1 1
0 1

]
, B =

[
0
1

]
, C =

[
1 0

]
,

and the weighting matrices of the cost function (10), the initial condition and the noise covariances
are set to

Q =
[
1 0
0 1

]
, R = 1 , x̄0 =

[
100
0

]
, P̄0 =

[
0.52 0

0 0.52

]
,

E
{
wT

kwk

}
=
[
0.12 0

0 0.12

]
, E

{
vT

k vk

}
= 0.22 .

In the simulation, we use two different models of the network connections. The probability density
functions of the delay distributions of both networks are depicted in fig. 3. Thereby, Network A
has a better transmission quality than Network B as, first, the probability of a small time delay
is significantly higher and, second, the loss probability, i.e. the probability of an infinite delay, is
much smaller. We assume that the probability density function of the controller-actuator network is
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Figure 4: Resulting averaged cumulated LQG cost for Network A and Network B for different lengths of the control
input sequences.

the same as the one of the sensor-controller network. To obtain the minimum mean squared error
estimate of the state, i.e., the conditional expectation in (36), we employed the filter described in
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[26]. The filter is chosen so that it can process measurements with a delay of more than 10 time
steps and, therefore, yields the optimal state estimate. If the buffer of the actuator runs empty the
actuator applies the default control input ud = 0.

For each controller and network and for different length N of the control input sequence, we
conduct 500 Monte Carlo simulation runs over 40 time steps and calculate the average of the
cumulated cost (10). The results are shown in fig. 4. The proposed controller leads to the lowest cost
for both networks. For Network A, the difference between the three controllers is only small. This
results from the good transmission quality of the network, in particular, from the high probability
that a data packet will arrive at the actuator without any delay. This is extremely beneficial for the
approach in [13], where only undelayed packets can be used by the actuator, and for the approach
in [21], which is based on the approximation that the controller uses only the state information
deemed available to the actuator (see [21] for more details).

For Network B the approach of [21] is not depicted as it is not able to stabilize the system, i.e.,
leads to cost that are several magnitudes higher than the cost of the other controllers. Compared to
Network A the cumulated cost of the proposed controller and the controller from [13] are higher,
what results from the worse transmission quality, which unavoidably degrades the performance.
However, for a sequence length of N > 1 the proposed approach leads to half of the cost compared
to the approach of [13].

5. CONCLUSIONS

We presented an optimal solution to the sequence-based LQG control problem for NCS with
TCP-like network connections. In contrast to former work, we were able to optimally consider
time-varying packet delays in the sequence-based controller design.

Future work will be concerned with a derivation of stability conditions for the proposed controller.
It seems reasonable to assume that the stability region is larger than the one of the approaches in
[13] and [21], but this has still to be proved. Furthermore, we seek to include a simple cost model
of the network into the cumulated cost function so that the controller also considers the power
consumption of a transmission. This way, the minimization is also carried out over the length of
the control input sequences and the controller may, e.g., decide not to send a sequence since the
buffered sequence is still good enough. Finally, it is an aim to relax the assumptions of the TCP-like
network connection in favor of realistic TCP connections with possibly delayed acknowledgements.
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