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A Tuning Procedure for ARX-based MPC of Multivariate Processes

Daniel Haugaard Olesen, Jakob Kjøbsted Huusom, John Bagterp Jørgensen

Abstract— We present an optimization based tuning proce-
dure with certain robustness properties for an offset free Model
Predictive Controller (MPC). The MPC is designed for multi-
variate processes that can be represented by an ARX model.
The stochastic model of the ARX model identified from input-
output data is modified with an ARMA model designed as part
of the MPC-design procedure to ensure offset-free control. The
MPC is designed and implemented based on a state space model
in innovation form. Expressions for the closed-loop dynamics
of the unconstrained system is used to derive the sensitivity
function of this system. The closed-loop expressions are also
used to numerically evaluate absolute integral performance
measures. Due to the closed-loop expressions these evaluations
can be done relative quickly. Consequently, the tuning may
be performed by numerical minimization of the integrated
absolute error subject to a constraint on the maximum of the
sensitivity function. The latter constraint provides a robustness
measure that is essential for the procedure. The method is
demonstrated for two simulated examples: A Wood-Berry
distillation column example and a cement mill example.

I. INTRODUCTION

Model Predictive Control (MPC) has evolved to become

an industrial standard in advanced process control [1]. Using

a model of the system to predict the process output over some

future horizon, MPC computes a trajectory of manipulated

inputs such that the predicted future output is as desirable

as possible. Only the inputs related to the first period in this

trajectory are implemented. As new measurements become

available, the estimation and regulation windows are shifted

and the estimation and optimization procedures are repeated.

In this paper we consider MPC based on ARX models. An

ARX model representation of the plant may be obtained from

input-output data using convex optimization methods [2]. To

ensure offset free control, integrators have to be introduced in

the plant model in case of persistent unmeasured disturbances

and/or plant model mismatch. In such cases, the observer

that guarantees offset free control introduces a plant model

mismatch. This plant model mismatch complicates the tuning

of the controller [3]–[6].

Despite the growing popularity of MPC, a systematic tun-

ing practice has not evolved, and only few guidelines exist.

The topic has not been short of research, as there are numer-

ous academic publications on the subject. A comprehensive

review of proposed tuning methods is presented by [7] and

loop transfer recovery procedures have also been investigated

[8], [9]. Our study relies on a closed loop description of the
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controller and the process model to assess the performance of

an MPC with a given tuning. It has previously been proposed

to use a closed loop description for synthesis of a MPC by

application of robust design techniques [10]. In this paper,

we state the tuning problem as an inequality constrained

optimization problem. We propose a deterministic tuning

objective function related to the integrated absolute error for

a number of pre-defined scenarios and use a bound on the

maximum sensitivity to ensure robustness.

The paper is organized as follows. Section II describes

an ARX-based MPC for multivariate processes. Section

III derives a state-space model for the closed-loop system

and uses this state space model for covariance computation

and sensitivity function computation. IAE measures and the

sensitivity function are used to formulate an optimization

problem for selecting the tuning parameters of the MPC.

Section IV demonstrates the procedure for a Wood-Berry

binary distillation example, while Section V provides a case

study for a simulated cement mill. Conclusions are presented

in Section VI.

II. ARX-BASED MPC FOR MIMO SYSTEMS

In this section, we derive a state space representation for an

unconstrained MPC based on MISO ARX-models modified

with a filtered integrated white noise stochastic model. First,

we represent the MISO ARX model as a state space model

in innovation form. Subsequently, we use this state space

model in innovation form to derive the correct control law

for the unconstrained MPC. As the control law is linear the

resulting controller may be represented in a state space form.

A. State Space Model in Innovation Form

The MISO ARX model

Ai(q
−1)yi,k = Bi(q

−1)uk + εi,k i = 1, . . . , ny (1)

with yi,k ∈ R for i = 1, . . . , ny , uk ∈ R
nu , and εi,k ∈

R for i = 1, . . . , ny has been used in a number of MPC

applications. The advantage of this model parametrization is

that the parameters may be identified using standard system

identification techniques based on convex optimization. To

have offset-free control from the MPC based on this model,

the stochastic part of the model is modified to be a filtered

white noise process

εi,k =
1− αiq

−1

1− q−1
ei,k i = 1, . . . , ny (2)

where ei,k ∼ Niid(0, Ree). The coefficients αi are design

parameters of the MPC.
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The representation of the MIMO system from these MISO

systems is not unique. One straightforward representation

leading to a compact notation is

A(q−1)yk = B(q−1)uk +
(

I − Iq−1
)−1

(I −Aq−1)ek (3)

with A(q−1) = diag([A1(q
−1); . . . ; Any

(q−1)]), B(q−1) =
[B1(q

−1); . . . ;Bny
(q−1)], and A = diag([α1; . . . ;αny

]).
This model can be represented as an ARMAX model

Ā(q−1)yk = B̄(q−1)uk + C̄(q−1)ek (4)

with

Ā(q−1) = (I − Iq−1)A(q−1) (5a)

B̄(q−1) = (I − Iq−1)B(q−1) (5b)

C̄(q−1) = I −Aq−1 (5c)

Denote the coefficients of Ā(q−1) and B̄(q−1) as

Ā(q−1) = I + Ā1q
−1 + Ā2q

−2 + ...+ Ānq
−n (6a)

B̄(q−1) = B̄1q
−1 + B̄2q

−2 + ...+ B̄nq
−n (6b)

Then the system (1)-(2) may be represented as a state space

model in innovation form

xk+1 = Âxk + B̂uk + K̂ek (7a)

yk = Ĉxk + ek (7b)

with the state space matrices (Â, B̂, K̂, Ĉ) realized in ob-
server canonical form

Â =















−Ā1 I 0 0 0
−Ā2 0 I 0 0

.

.

.

.

.

.
. . .

.

.

.

−Ān−1 0 0 · · · I

−Ān 0 0 · · · 0















B̂ =















B̄1

B̄2

.

.

.

B̄n−1

B̄n















K̂ =















A − Ā1

−Ā2

.

.

.

−Ān−1

−Ān















Ĉ =
[

I 0 0 · · · 0
]

B. Unconstrained MPC for State Space Models in Innova-

tion Form

The filtered state estimation and the one-step prediction

may for state space models in innovation form (7) be

combined to give the following expressions for computation

of the innovation, ek [5]:

x̂k|k−1 = Âx̂k−1|k−2 + B̂uk−1 + K̂ek−1 (8a)

ŷk|k−1 = Ĉx̂k|k−1 (8b)

ek = yk − ŷk|k−1 (8c)

Initially, x̂0|−1 is known and the one-step prediction (8a) is

not needed. Knowing the innovation, ek, the predictions in

the state space model in innovation form may be represented

as [5]

x̂k+1|k = Âx̂k|k−1 + B̂ûk|k + K̂ek (9a)

x̂k+1+j|k = Âx̂k+j|k + B̂ûk+j|k, j = 1, . . . , N − 1 (9b)

ŷk+j|k = Ĉx̂k+j|k, j = 1, . . . , N (9c)

It is important to notice the term K̂ek in (9a). This term is

important for derivation of the correct control law [5]. Let

the objective of the MPC be

φ =
1

2

N−1
∑

j=0

∥

∥ŷk+j+1|k − rk+j+1|k

∥

∥

2

Q
+
∥

∥∆ûk+j|k

∥

∥

2

S
(10)

in which the second term,
∥

∥∆ûk+j|j

∥

∥

2

S
, is a regular-

ization term. We assume the reference parametrization,
{

rk+j|k

}N

j=1
= {rk, . . . , rk}. The tuning parameters in this

objective function are the matrices Q = diag([q1; . . . ; qny
])

and S = diag([s1; . . . ; snu
]). As indicated, these matrices

are restricted to diagonal matrices.
The unconstrained MPC may be represented as the convex

quadratic optimization problem

min
{ûk+j|j}

N−1

j=0

{

φ = φ(
{

ûk+j|j

}N−1

j=0
; x̂k|k−1, rk, uk−1, ek) : (9)

}

which has the solution Uk = [ûk|k, . . . , ûk+N−1|k] with [5]

uk = ûk|k = Lxx̂k|k−1 + Lwek + Luuk−1 + Lrrk (11)

The specific expressions for and derivation of Lx, Lw, Lu

and Lr are given in [5]. It must be emphasized that most

available expressions for linear-quadratic controllers misses

the term Lwek that arises due to the term K̂ek in (9a).

Define the controller states as xc
k = [x̂k|k−1;uk−1] such

that the unconstrained MPC consisting of (8) and (11) may

be represented in the state space form

xc
k+1 = Acx

c
k +Bcyyk +Bcrrk (12a)

uk = Ccx
c
k +Dcyyk +Dcrrk (12b)

with

Ac =

[

(Â− K̂Ĉ) + B̂(Lx − LwĈ) B̂Lu

Lx − LwĈ Lu

]

(13a)

Bcy =

[

K̂ + B̂Lw

Lw

]

Bcr =

[

B̂Lr

Lr

]

(13b)

Cc =
[

Lx − LwĈ Lu

]

(13c)

Dcy = Lw Dcr = Lr (13d)

In addition to the model (1), this controller representation

depends on the tuning parameters

A = diag([α1; . . . ;αny
]) (14a)

Q = diag([q1; . . . ; qny
]) (14b)

S = diag([s1; . . . ; snu
]) (14c)

III. CLOSED-LOOP SYSTEM AND MEASURES

Let the system be a LTI system in the form

xk+1 = Axk +Buk + Edk +Gwk (15a)

zk = Cxk (15b)

yk = zk + vk (15c)

where xk is states, uk is manipulated inputs, dk is un-
known disturbances, wk ∼ Niid(0, Rww) is process noise,
zk is outputs, vk ∼ Niid(0, Rvv) is measurement noise,
and yk is measurements, i.e. the outputs, zk, corrupted by
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Fig. 1. Closed-loop system. The transfer functions Cur(z) and Cuy(z)
forms the unconstrained MPC. The controlled outputs of the process is
described by Gzu(z), Gzw(z) and Gzd(z).

measurement noise, vk. This model (A,B,E,G,C) is not

necessarily identical to the model (Â, B̂, Ĉ, K̂) used by the
MPC. Using the system model (15) and the MPC state
space representation (12), the closed-loop system may be
represented as

x
cl
k+1 = Aclx

cl
k +Bwclwk +Bvclvk +Brclrk +Bdcldk (16a)

zk = Cclx
cl
k (16b)

yk = Cclx
cl
k + vk (16c)

uk = Cuclx
cl
k +Dvclvk +Drclrk (16d)

with xcl
k = [xk;x

c
k] and

Acl =

[

A+BDcyC BCc

BcyC Ac

]

, Bwcl =

[

G
0

]

,

Bvcl =

[

BDcy

Bcy

]

, Brcl =

[

BDcr

Bcr

]

, Bdcl =

[

E
0

]

,

Ccl =
[

C 0
]

, Cucl =
[

DcyC Cc

]

,

Dvcl = Dcy, Drcl = Dcr.

(17)

This representation depends on the MPC tuning parameters,

(A, Q, S), and is used extensively to compute measures

for the controller performance. An obvious measure is the

eigenvalues of the closed-loop system, λ = eig(Acl), as

acceptable tunings must provide stable closed loop systems.

A. Covariance

The covariance of the outputs, (zk, yk, uk), for the closed-

loop system as response to the exogenous stochastic signals,

wk and vk, is one measure for the performance of the MPC.

Provided that Acl is stable, the covariance of the states of

the closed loop system, Rxx, may be computed by solution

of the discrete Lyapunov equation

Rxx = AclRxxA
T
cl +BwclRwwB

T
wcl +BvclRvvB

T
vcl (18)

The corresponding output covariances are

Rzz = CclRxxC
T
cl (19a)

Ryy = CclRxxC
T
cl +Rvv (19b)

Ruu = CuclRxxC
T
uc +DvclRvvD

T
vcl (19c)

B. Sensitivity

Fig. 1 illustrates the transfer functions in the process model

and the model predictive controller. The transfer function

model of the open-loop system (15) is

Y (z) = Gzu(z)U(z) +Gzd(z)D(z) +GzwW (z) + V (z)
(20)

and the transfer function model of the MPC control law (12)

may be represented as

U(z) = Cuy(z)Y (z) + Cur(z)R(z) (21)

Gzu(z), Gzd(z), Gzw(z), Cuy(z), and Cur(z) may be

computed from the associated state-space representations in

the standard way. Combining (20) and (21) yields a transfer

function for the closed-loop system (16)

Y (z) = S(z)D̄(z) + T (z)R(z) (22)

with D̄(z) = Gzd(z)D(z) +Gzw(z)W (z) + V (z) and

S(z) = Ccl(zI −Acl)
−1Bvcl + I (23a)

T (z) = Ccl(zI −Acl)
−1Brcl (23b)

S(z) is the sensitivity function and T (z) is the complemen-

tary sensitivity function. The sensitivity function, S(z), is

related to the robustness of the system in relation to model-

plant mismatch as well as process and measurement noise

[11]. In particular the H∞ norm of S(z)

MS = ‖S(z)‖∞ = max
ω

σ̄(S(ejωTs)) (24)

has been used as a measure of robustness. σ̄ denotes the

maximum singular value and Ts denotes the sampling time.

C. Integrated Absolute Error

The integrated absolute error (IAE) is a classical way to

measure control systems performance for certain reference

and disturbance scenarios of systems without noise (wk =
0 and vk = 0). Consider a scenario starting from steady

state and specified by [r(t)]
tf
t0

= {rk}
nf−1
k=0 and [d(t)]

tf
t0

=

{dk}
nf−1
k=0 with r(t) = rk and d(t) = dk for tk ≤ t < tk+1

using tk = t0 + kTs and tf = t0 + nfTs. The IAE of this

scenario is approximated by euler integration to be:

Ji =

nf−1
∑

k=0

|yi,k − ri,k| i = 1, . . . , ny (25)

Equation (25) is evaluated by simulation using the determin-

istic part of (16), the initial steady state, xcl
0 = 0, and the

specified scenario, {rk}
nf−1
k=0 and {dk}

nf−1
k=0 .

The scenarios, j ∈ S , for evaluation of the IAE-measures,

Jij with i = 1, . . . , ny can be chosen according to the

tasks of a given control system. In this paper we consider

two standard type of scenarios. The first type of scenarios

are related to individual set-point changes and consist of

a set of ny scenarios, Sr, with unit step changes in each

individual reference, (rj)k = 1 for 0 ≤ k < nf and j ∈ Sr.

We denote the performance matrix associated with these

scenarios Jr = [Jij ] for i = 1, . . . , ny and ∀j ∈ Sr. The

second type of scenarios are related to disturbance rejection.

1723



This set of scenarios, Sd, consists of nd scenarios with

a unit step in each individual disturbance, (dj)k = 1 for

0 ≤ k < nf and j ∈ Sd. The performance matrix associated

with these scenarios is denoted Jd = [Jij ] with i = 1, . . . , ny

and j ∈ Sd.

D. Tuning

In the tuning of the MPC, the control and prediction

horizon, N , is chosen sufficiently large such that the re-

sulting controller for all practical purposes corresponds to

an infinite horizon controller. The remaining tuning param-

eters, (A, Q, S), are chosen by solution of the constrained

optimization problem

min
A,Q,S

J = ‖Jr(A, Q, S)‖2 + ‖Jd(A, Q, S)‖2 (26a)

s.t. MS(A, Q, S) ≤ MS,max (26b)

0 ≤ A ≤ I (26c)

0 ≤ Q ≤ Qmax (26d)

0 ≤ S ≤ Smax (26e)

The objective minimizes some measure related to the IAE

of the chosen scenarios. In the cases studied in this paper,

we have used the sum of the 2-norms of the matrices

associated with the IAE of setpoint changes and disturbance

rejections. One could also use the sum of all scenarios,

J =
∑

j∈S

∑ny

i=1 Jij with S = Sr ∪ Sd, and expect

similar results. It is critical for the usefulness of the resulting

tuning that the robustness constraint (26b) is included in

the optimization problem. Useless results are obtained if

the robustness constraint (26b) is discarded by using a large

upper bound. In such cases, the resulting controller is far too

aggressive and useless in practice. MS,max is a user selected

parameter used for deciding how robust the resulting closed

loop system should be. Smaller values gives a less aggressive

and more robust controller.

Equation (26) is a constrained nonlinear optimization

problem which is not necessarily convex. Accordingly, we

cannot guarantee location of the global optimum of (26)

when using solvers such as fmincon, KNITRO, IPOPT,

NLOPT, or SNOPT.

IV. WOOD-BERRY DISTILLATION COLUMN

We consider a Wood-Berry binary distillation column that

has the input-output description

Y (s) = Gu(s)U(s) +Gd(s)(D(s) +W (s)) + V (s) (27)

with u(t) = uk, d(t) = dk and w(t) = wk ∼ Niid(0, Rww)
being piecewise constant in the interval tk ≤ t < tk+1 and

v(tk) = vk ∼ Niid(0, Rvv). The transfer functions are [12]

Gu(s) =

[ 12.8
16.7s+1e

−s −18.9
21.0s+1e

−3s

6.6
10.9s+1e

−7s −19.4
14.4s+1e

−3s

]

(28a)

Gd(s) =

[ 3.8
14.9s+1e

−8.1s

4.9
13.2s+1e

−3.4s

]

(28b)

The Wood-Berry binary distillation column separates water

and methanol. Y1 is the methanol mole fraction in the

TABLE I

PERFORMANCE METRICS FOR THE CLOSED-LOOP WOOD-BERRY

SYSTEM USING THE TUNING OBTAINED FROM (26).

Design Simulation

Jr
9.78 1.78
2.85 12.08

11.14 3.19
4.39 13.45

Jd
7.22
20.27

8.403
21.54

Ryy
1.34 · 10−4 0.19 · 10−4

0.19 · 10−4 1.78 · 10−4

1.28 · 10−4 0.14 · 10−4

0.14 · 10−4 1.52 · 10−4

Ruu
9.26 · 10−6 1.01 · 10−6

1.01 · 10−6 5.31 · 10−6

8.93 · 10−6 0.51 · 10−6

0.51 · 10−6 4.43 · 10−6

distillate [mol%], Y2 is the methanol mole fraction in the

bottom product [mol%], U1 is the reflux flow rate [lb/min],
U2 is the steam flow rate [lb/min], and D is the unmeasured

feed flow rate [lb/min].
The sampling time of the system is Ts = 1 [min]. The

process and measurement noise covariance for the system

are: Rww = 0.0001 and Rvv = 0.0001 · I . The resulting

system is realized as a discrete LTI state space system (15).

The control and prediction horizon for the MPC is selected

to 400 min, i.e. N = 400. A(q−1) and B(q−1) in (1) are

identified such that there is an exact match to Gu(s) in (27).

Using a robustness bound of MS,max = 1.775, the described

tuning procedure, i.e. solution of (26), yields the following

tuning parameters

A = diag([0.963; 0.933])

Q = diag([87.3; 57.8])

S = diag([4.87 · 104; 6.88 · 104])

Table I shows the metrics, Jr and Jd, obtained by solution

of (26) for the nominal system with the specified scenarios,

S . The corresponding theoretical covariances, Ryy and Ruu,

are also illustrated. The simulation-column in Table I shows

the metrics, Jr and Jd, for the scenarios simulated with

additional process and measurement noise. It is evident that

for the chosen tuning, these measures, Jr and Jd, do not

deteriorate significantly. The covariances Ryy and Ruu in the

simulation-column of Table I are computed empirically by a

Monte Carlo method from a finite sequence of process and

measurement noise applied to the closed-loop system without

deterministic disturbances and set-point changes. The nice

properties of the selected tuning of the controller manifest

itself by covariance-matrices having the same size as the

covariance matrices for the design case.

We have made an additional simulation using an operating

scenario from [12]. The reference for top methanol (distil-

late) is changed from 96.25 [mol%] to 97 [mol%] and at

t = 100 [min], a change in the feed occurs. Fig. 2 shows

a nominal and a plant-model mismatch simulation for this

scenario. For the nominal simulation we assume that Gu(s)
is exactly known and the model used for the controller design

is identical to the model used for simulation. In the mismatch

case, the time constants in Gu(s) are 75% of the nominal

values for the simulation model. The tuning is robust, since

the deviations between the nominal and mismatch case is
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Fig. 2. Nominal and plant-model mismatch simulation of the Wood-Berry
distillation column controlled by the ARX based MPC tuned using (26).

marginal. Furthermore, it can be concluded, that the MPC

with the selected tuning rejects the disturbance nicely and

have good tracking properties.

V. CEMENT MILL CIRCUIT

In this section, we illustrate the tuning procedure and

the role of MS,max, for the cement mill system described

by [13]. The cement mill is modeled as a continuous-time

stochastic input-output model (27) with piecewise constant

input signals, i.e. u(t) = uk, d(t) = dk and w(t) =
wk ∼ Niid(0, Rww) in the interval tk ≤ t < tk+1 and

v(tk) = vk ∼ Niid(0, Rvv). The transfer functions are

Gu(s) =





0.62e−5s

(45s+1)(8s+1)
0.29(8s+1)e−1.5s

(2s+1)(38s+1)

−15e−5s

60s+1
5e−0.1s

(14s+1)(s+1)



 (29a)

Gd(s) =





−1.0e−3s

(32s+1)(21s+1)

60
(30s+1)(20s+1)



 (29b)

The variables in the model are: Y1 is the elevator load [kW ],
Y2 is the cement fineness [cm2/g], U1 is the feed flow rate

[TPH], U2 is the separator speed [%], and D is the clinker

hardness [HGI].
The continuous-time input-output model (27) is converted

to a discrete-time state space model (15) using a sample time

of Ts = 2 [min]. The covariances of the process and mea-

surement noise are: Rww = 1.0 and Rvv = diag([0.1; 100]).
The ARX-based MPC is designed for a sampling time

of Ts = 2 [min] with a prediction and control horizon

of 800 [min], i.e. N = 400. To illustrate the role of the

robustness bound, the tuning is performed using two different

values for MS,max.

In the first case, we use MS,max = 1.775. The tuning

parameters obtained by solution of (26) are

A = diag([0.985; 0.000])

Q = diag([14.1; 91.6])

S = diag([9.68 · 105; 9.29 · 103])

TABLE II

PERFORMANCE METRICS FOR A CEMENT MILL CONTROLLED BY AN

ARX BASED MPC TUNED WITH MS,max = 1.775 IN (26).

Design Simulation

Jr
81.63 2.35
0.85 7.15

212.35 176.35
3769.40 3769.00

Jd
42.54
22.70

184.26
3766.80

Ryy
0.40 0.77
0.77 154.16

0.30 0.86
0.86 136.41

Ruu
460.01 −452.10
−452.10 446.00

416.46 −410.12
−410.12 405.50

Table II lists the associated performance metrics for the

cement mill controlled by an ARX based MPC using these

parameters. The design-column lists the metrics obtained for

the nominal system used in selecting the tuning parameters

(A, Q, S). The simulation-column lists the metrics obtained

by simulating the closed-loop system with stochastic pro-

cess and measurement noise using the determined tuning

parameters. By inspection of the design-column, Jr, Jd and

Ryy look reasonable. The only exception should be the

high variance on the cement fineness, Y2. However, Ruu

is very large and suggests that the proposed controller is

sensitive to process and measurement noise. This suggestion

is confirmed by the simulation-column. When the system is

simulated for the scenarios S with additional process and

measurement noise, the integrated absolute error measures,

Jr and Jd, deteriorates significantly. The empirically ob-

tained covariances obtained by a stochastic simulation do

not change significantly. This illustrates the usefulness of

these covariances in assessing the sensitivity of the system.

In particular, the sensitivity is often revealed through the

magnitude of the input covariances, Ruu.

To illustrate how useless the proposed tuning with

MS,max = 1.775 is, the system is simulated for a scenario in

which the elevator load is initially changed from 26 [kW ] to

30 [kW ] and a change in the clinker hardness is introduced at

t = 800 [min]. Fig. 3 illustrates closed-loop simulations for

the nominal case and a plant-model mismatch case where

the dead times of Gu(s) is increased by 50%. In both

cases, the tuning gives variances of the input signals that

are ridiculous large. Accordingly, the resulting controller is

useless in practice.

To improve the robustness of the system and make it

less sensitive to noise, the robustness bound is reduced to

MS,max = 1.3 and a new tuning is computed from (26)

A = diag([0.992; 0.852])

Q = diag([382; 706])

S = diag([9.91 · 105; 4.87 · 105])

Table III illustrates the performance metrics of the controlled

system with this tuning. From a deterministic point of view,

the reduced robustness bound, MS,max, results in worse

disturbance rejection and reference tracking. However, the

associated input covariance, Ruu, is significantly lower for

the tuning with MS,max = 1.3 compared to the tuning with

1725



0 500 1000 1500 2000
20

25

30

35
E

le
v
a

to
r 

L
o

a
d

 [
k
W

]

 

 

1.5Td

Td

0 500 1000 1500 2000
3000

3050

3100

3150

3200

F
in

e
n

e
s
s
 [

c
m

2
/g

]

0 500 1000 1500 2000
0

100

200

300

F
e

e
d

 [
T

P
H

]

t [min]
0 500 1000 1500 2000

−50

0

50

100

150

200

S
e

p
e

ra
to

r 
S

p
e

e
d

 [
%

]

t [min]

Fig. 3. Nominal and plant-model mismatch simulations of a cement mill
controlled by an ARX-based MPC using a tuning with MS,max = 1.775.

TABLE III

PERFORMANCE METRICS FOR A CEMENT MILL CONTROLLED BY AN

ARX BASED MPC TUNED WITH MS,max = 1.3 IN (26).

Design Simulation

Jr
97.78 2.13
2.52 10.69

179.90 128.30
3245.60 3245.50

Jd
155.49
139.75

199.50
3277.40

Ryy
0.17 0.20
0.20 121.26

0.17 0.27
0.27 108.95

Ruu
3.45 −6.29
−6.29 12.24

3.19 −5.77
−5.77 11.18

MS,max = 1.775.

The typical working scenario is also simulated for a system

using an MPC with this tuning. This simulation is illustrated

in Fig. 4. The controller with this tuning is less aggressive.

The tracking and disturbance rejection properties are slightly

affected, but the system is much less sensitive to stochastic

process and measurement noise. By inspection of Fig. 3

and Fig. 4, it is obvious that the tuning obtained with

MS,max = 1.3 gives the best controller and a controller with

acceptable performance. For this controller, the deviations

between the nominal and the mismatch case are nearly in-

distinguishable. This illustrates the nice robustness properties

of the controller.

VI. CONCLUSION

In this paper, we have presented a procedure to tune

an ARX-based MPC for multivariate processes. The ARX-

based MPC has been designed such that it gives offset-

free control for type I disturbances (steps). The suggested

tuning is obtained by minimizing a measure related to

the integrated absolute error for a set of pre-determined

scenarios. Robustness of the resulting tuning is obtained by

restricting the maximum of the sensitivity function by an

upper bound. The method has been demonstrated for a binary

distillation column and for a cement mill example.

The setup in this paper, using disturbance scenarios, has

been used for illustrative purposes. In practice the model
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Fig. 4. Nominal and plant-model mismatch simulations of a cement mill
controlled by an ARX-based MPC using a tuning with MS,max = 1.3.

from the unknown disturbance to the output is not necessarily

known. In such cases the disturbance rejection scenarios are

replaced by scenarios in which parameters of the ARX model

is varied; i.e. the gain, the time delay, or the time constants

of the corresponding transfer function model are varied.
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