
Identification of Affine Linear Parameter Varying Models for
Adaptive Interventions in Fibromyalgia Treatment

P. Lopes dos Santos*, Sunil Deshpande†,**, Daniel E. Rivera**, T-P Azevedo-Perdicoúlis‡, J.
A. Ramos***, and Jarred Younger††

P. Lopes dos Santos: pjsantos@fe.up.pt; Sunil Deshpande: sdeshpa2@asu.edu; Daniel E. Rivera:
Daniel.rivera@asu.edu; T-P Azevedo-Perdicoúlis: tazevedo@utad.pt; J. A. Ramos: jr1284@nova.edu; Jarred Younger:
jarred.younger@stanford.edu
*Universidade do Porto Faculdade de Engenharia, Porto, Portugal
†Sunil Deshpande is a doctoral student in the electrical engineering program at Arizona State
University, Tempe, AZ, USA
**Control Systems Engineering Laboratory (CSEL), School for Engineering of Matter, Transport,
and Energy, Arizona State University, Tempe, AZ, USA
‡ISR—Coimbra & Departamento de Matemática, UTAD, Vila Real, Portugal
***Farquhar College of Arts and Sciences, Division of Mathematics, Science, and Technology,
Nova Southeastern University, Florida, USA
††Adult and Pediatric Pain Laboratory, Department of Anesthesia, School of Medicine, Stanford
University, Palo Alto, CA, USA

Abstract
There is good evidence that naltrexone, an opioid antagonist, has a strong neuroprotective role and
may be a potential drug for the treatment of fibromyalgia. In previous work, some of the authors
used experimental clinical data to identify input-output linear time invariant models that were used
to extract useful information about the effect of this drug on fibromyalgia symptoms. Additional
factors such as anxiety, stress, mood, and headache, were considered as additive disturbances.
However, it seems reasonable to think that these factors do not affect the drug actuation, but only
the way in which a participant perceives how the drug actuates on herself. Under this hypothesis
the linear time invariant models can be replaced by State-Space Affine Linear Parameter Varying
models where the disturbances are seen as a scheduling signal signal only acting at the parameters
of the output equation. In this paper a new algorithm for identifying such a model is proposed.
This algorithm minimizes a quadratic criterion of the output error. Since the output error is a linear
function of some parameters, the Affine Linear Parameter Varying system identification is
formulated as a separable nonlinear least squares problem. Likewise other identification
algorithms using gradient optimization methods several parameter derivatives are dynamical
systems that must be simulated. In order to increase time efficiency a canonical parametrization
that minimizes the number of systems to be simulated is chosen. The effectiveness of the
algorithm is assessed in a case study where an Affine Parameter Varying Model is identified from
the experimental data used in the previous study and compared with the time-invariant model.

I. Introduction
Fibromyalgia (FM) is a chronic pain disorder of neuromuscular origin which seems to
disproportionately affect women [2], [17]. Other symptoms include sleep disturbances,
gastric problems, fatigue among others. There is good evidence that naltrexone, an opioid
antagonist, has a strong neuroprotective role and may be a potential drug for the treatment of
FM. Towards this, a low dose of naltrexone intervention was conducted by Dr. Jarred
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Younger and colleagues [18] at the Systems Neuroscience and Pain Lab in Stanford
University of Medicine. The data was gathered from daily diary self-reports completed by
the participants. Deshpande et al. [4] used that data to identify input-output auto-regressive
exogenous (ARX) linear time-invariant (LTI) models that were used to extract useful
information about the effect of the drug on pain symptoms. Based on these models the
participants of the intervention were classified as responders or non responders to the drug.
Deshpande et al. also applied these models to design hybrid predictive controllers that can
automatically determine the dosage of naltrexone for each patient.

FM is unique among other medical disorders in that its etiology (i.e. causal mechanism) is
not well-understood [12]. Hence, there is lack of first-principles models explaining FM
symptoms; furthermore, the modeling problem is made difficult given that many of the
participants do not experience all of the symptoms. Therefore, there is great interest in
understanding the underlying mechanisms of FM and significant insights may be obtained
from a dynamical systems perspective. In Deshpande et al., the FM symptoms are
considered as the output, drug and placebo as primary inputs and several factors such as
anxiety, stress, mood, etc., secondary inputs of the ARX LTI model (see [4] for description
of the data). However, it seems reasonable to think the factors considered as secondary
inputs are not the cause of FM neither affect the drug actuation. They only influence the way
a subject perceives the FM symptoms. For instance, the same individual may report different
levels of FM symptoms for different levels of anxiety. Under this hypothesis, the drug
actuation could be described by an Affine Linear Parameter Varying (A-LPV) system, i.e,
by an affine system where the parameters are functions of scheduling signals that, in this
case, could be the secondary inputs identified by Deshpande et al.. Thus, A-LPV models
could be estimated instead to describe the effect of naltrexone.

LPV system identification has been been an active area of research in the recent years. In
fact, many real systems can be approximated by LPV models which increased the interest
for this framework in many different areas such as aerospace [10], automotive [11], traffic
management [9], robotics [1], bio-engineering [13], gas transportation networks [7], web
applications [14], etc.. Fundamental theoretic aspects on LPV modeling and identification
can be seen in [15] and recent approaches to the problem are reported in [8].

In this paper the FM symptoms will be modeled by an affine state-space LPV model where
only the output equation parameters are dependent of the secondary inputs considered by
Deshpande et al.. The model dynamics is LTI reflecting the previous referred assertion that
secondary inputs do not affect the drug actuation but only the way that a subject perceives
the FM symptoms.

The paper is organized as follows: Section II presents the model and Section III formulates
the identification algorithm. In Section IV this algorithm is used to estimate an A-LPV
model with the clinical data clinical data used by Deshpande et al.. The A-LPV and the
ARX LTI models are compared. A transfer function (TF) describing the effect of naltrexone
on FM is also derived from this model and it is compared with the TFs derived by
Deshpande et al.. Conclusions and future work are presented in Section V.

II. A-LPV model
It is well known that the output of a linear system is zero when all inputs are zeros.
Consequently, a nonzero output of FM linear model implies that at least a nonzero input. If
the model is driven by the naltrexone, placebo and other secondary inputs like anxiety,
stress, mood, etc., then, according to this model, the FM symptoms are due to the secondary
inputs. Despite the cause of FM is currently unknown it will be admitted that the secondary
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effects will not be responsible for this disorder although they may be associated with it. As a
result, a constant accounting for the presence of a baseline of FM will be added to the output
of the model transforming it into an affine model. On the other hand, reflecting a possible
association between FM and the secondary inputs, these will be seen as scheduling signals
that modulate model parameters. Assuming the hypothesis that the drug and placebo
actuation dynamics is time invariant a state-space model will be adopted with an LTI state
equation and an affine LPV output equation, i.e.,

(1)

(2)

where y(k) ∈ ℝ is the FM symptoms, u(k) ∈ ℝ2 denotes the drug and placebo dosages, x(k)
∈ ℝnx, p(k) ∈ ℝnp is the scheduling signal consisting in a set of selected secondary inputs,
and, for the sake of simplicity, C[p(k)], and [p(k)], are linear combinations of basis
functions fi, i = 0, …, nf, i.e.,

(3)

(4)

where , i = 0, …, nf, gi ∈ ℝ, i = 0, …, nf and fi(p) are
functions p: ℝnp → ℝ.

III. A-LPV system identification algorithm
Several algorithms for state-space LPV system identification algorithms can be found in the
existing literature. However, as far as the authors know, all assume a full dependence on the
scheduling signal and they have to be modified to handle A-LPV models. On the other hand,
most of them were designed for large sets of stationary data. Unfortunately such large data
sets are impracticable for the FM problem and stationarity cannot be ensured as well. As a
result a new algorithm had to be developed. A subspace identification algorithm was first
considered. However, likewise most subspace LPV identification algorithms, it requires
large data sets. Since the objective is to estimate models for applying control techniques an
output algorithm was developed. This algorithm minimizes the cost function

(5)

where e(k, θ) is the error between the measured and model outputs and
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with . Here, vec{·} is the operator which forms a vector from
a matrix by stacking its columns on top of one another. Since state-space models are not
unique, a decision had to be made concerning its parametrization. The alternatives were
between fully or minimally parameterized structures. Fully parameterized structures lead to
better numerically conditioned models but, as they are over parameterized, the optimization
algorithm needs some mechanisms to deal with this over parametrization [16]. On the other
hand, the derivatives in order to the elements of A and B are calculated via the simulation of

LTI dynamical systems. As there are  elements in A and 2nx in B, it would be necessary to
simulate at least (nx+1)2 − 1 systems.

The choice was thus the minimal parameterized structure

(6)

(7)

with

(8)

In this parametrization θ becomes

(9)

Also equation (2) may be rewritten as

(10)

with

(11)

(12)

(13)
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where

(14)

and ⊗ stands for the Kronecker product operator [3]. From (10) it is clear that y(k) is a linear
function of θℓ. As a result, the minimization of V defined in (5) is a separable nonlinear least
squares problem (SNLS). From Theorem 2.1 of [5] and Theorem 1 of [6], V can be

minimized by alternatively fixing  and finding θnℓ by
simple linear least squares estimator. Then θℓ is found by any nonlinear minimization
method such as the Gauss-Newton gradient method with θℓ fixed. This algorithm isn’t very
efficient but it converges to a minimum of V.

Given that the linear least squares estimator has an analytic expression, a more efficient
approach is to take θℓ as a function of θnℓ. Thus, the minimization of V becomes a nonlinear
least squares problem in a reduced space only involving θnℓ This is the so called Variable
Projection Method and it was first proposed by Golub and Pereyra [5]. Defining

(15)

(16)

then Y = Φ (θnℓ) θℓ, and the linear least squares estimator of θℓ is

(17)

where Φ† is the pseudoinverse of Φ. Replacing θℓ by (17), the cost function V becomes

(18)

where  is the operator of the orthogonal projection into the orthogonal complement
of the column-space of Φ(θ), given by

(19)

In [5], Golub and Pereyra derived the gradient and the Hessian approximation of (18) to be
used in a Gauss-Newton minimization algorithm. In [6], Linda Kaufmann simplified Golub
and Pereyra derivative formulas. Using Linda Kaufmann formulas θnℓ is updated by

(20)

with
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(21)

where , and  (θnℓ, θc) and (θnℓ, θc) are N × nx matrices whose
columns are

(22)

and

(23)

Defining w(k) as the first component of x(k), i.e., w(k) = x1(k), then, from (1) and (6)–(8),

(24)

and

(25)

where 1(τ) is the step function defined as

(26)

The derivatives ∂x(k)/∂bi have a similar expression but with ∂w(·)/∂ai and w(·) replaced by
∂w(·)/∂bi and u2(·), respectively. From (24),

(27)

were
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(28)

Similarly,

(29)

with

(30)

Consequently, each iteration of a gradient algorithm only requires the simulation of three
systems.

The identification algorithm can now be outlined as follows:

Algorithm 1

SNLS A-LPV System Identification

•
Initialize 

•

• Set i = 0

• Repeat

– K ← 1

– Set

Δθnℓ
= ΠΦ

⊥(θnℓ(i))H(θnℓ(i), Φ†(θnℓ(i))Y ) †ΠΦ
⊥(θnℓ(i))Y

– Repeat

♦
Set 

♦ K ← 2K

–
Until 

Until convergence.

IV. Case Study
In this section the A-LPV identification algorithm is applied to the data used by Deshpande
et al. in [4]. This data was gathered from a representative participant of the pilot study
conducted by Dr Jarred Young and colleagues [18]. The time series is split into baseline,
placebo, drug and washout phases with the number of data points equal to 80 sampled daily
(see Fig. 1). After a preliminary study, Deshpande et al concluded that Anxiety, Stress and
Mood were the disturbances that, together with the primary inputs, drug and placebo, help to
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better explain the FM symptoms. Based on this, ARX LTI models using the drug and
placebo dosages together with combinations of these disturbances as inputs were identified
and compared.

In this work, A-LPV models were identified using the SNLS A-LPV system identification
algorithm described in the previous section. These were second order models driven by the
naltrexone and placebo dosages with the combinations of disturbances considered by
Deshpande et al as scheduling signals. The scheduling signal was mean-subtracted because
it is assumed that the normal state of a patient corresponds to the mean value of these
signals. The basis function were f0[p(k)] = 1, and Fi[p(k)] = pi(k), i = 1, …, np which
correspond to an A-LPV model with affine dependence on the scheduling signal. The
following models were estimated:

1. Model 1 (input signals: Drug and Placebo, scheduling signal: Anxiety)

2. Model 2 (input signals: Drug and Placebo, scheduling signals: Anxiety, Stress)

3. Model 3 (input signals: Drug and Placebo, scheduling signals: Anxiety, Stress,
Mood)

Table I compares the percentage of fit (PF) of the A-LPV and LTI ARX models estimated
by Deshpande et al.. Here, PF is defined as

(31)

where Y is the vector of the measured outputs, Ŷ the vector of simulated outputs and σ(·) is
the standard deviation operator. It can be seen from this table that the indexes of fit of the A-
LPV models are significantly superior. This can be confirmed in Fig. 2 and Fig. 3.

Despite having good indexes of fit, the A-LPV model 1 and model 2 are unstable, with the
unstable eigenvalue close to 1. Model 3 is stable but also with an eigenvalue close to 1. The
existence of this unitary eigenvalue may be explained by the fact observed in Fig. 1 that,
after the vanishment of the drug dosage, the FM signal is kept almost constant at a value
around 8, denoting an integrating feature. In a stable model the output would converge to the
affine constant (63.7 for model M1, 66 for model M2 and 51.4 for model M3). This
eigenvalue is visible in Fig. 4 that shows the step responses of the LTI part of the estimated
models M1, M2 and M3 for the naltrexone input.

The integrating feature of the A-LPV models means that the symptoms of the chosen
participant did not return to the baseline severity during washout. This suggests that there is
potentially continued beneficial action following cessation of the drug for this participant.
This agrees with the analyses on the outcome variables of Dr Jarred Younger and colleagues
study that revealed no difference between drug and washout [18] for the group of drug
responders. As a result, it may be argued that if the washout phase is removed from the
identification data the integrating feature of the model could disappear and this would lead
to a better fitting in the drug phase. The data of the washout phase was thus removed and
new A-LPV models (A-LPV2) were identified. In Fig. 5 which displays the step responses
of LTI part of these models for the NLD input it can be seen that they are all stable. On the
other hand Table II shows that A-LPV2 models have a slightly better accuracy than the
former A-LPV models (A-LPV1). However, the accuracy improvement is not significant
indicating the existence numerical of problems in the identification algorithm. These
problems are the lack of excitability of the input signal. Fig. 6 compares the simulated FM
of model M3 with the measured signal. The fit is very good before the washout phase. Due
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to the model stability, the simulated signal converges to the baseline in the washout phase.
In here the system is better described by the A-LPV1 model which suggests that a piecewise
A-LPV model would perform better.

It can also be seen in Table II that the A-LPV2 models have time constants and rising and
settling times greater than the ARX LTI models estimated by Desphande et al. However this
is compensated by a significant increase in the absolute value of the gain which causes that a
certain decrease in the FM signal is reached faster with the A-LPV model for the same dose
of naltrexone. This is illustrated in Fig. 7.

V. Conclusions and future work
In this paper a state-space A-LPV model structure was proposed to describe the effect of
naltrexone on FM symptoms. This model is driven by the drug and placebo dosages.
Additional secondary factors such as anxiety, stress and mood are seen as a scheduling
signal only acting at the parameters of the output equation. An algorithm for identifying
such a model was developed. This algorithm minimizes a quadratic criterion of the output
error. Since this error is a linear function of some parameters, the A-LPV system
identification is formulated as a SNLS problem. The A-LPV and LTI approach were
compared in a case study where A-LPV and ARX LTI models were identified from clinical
data. The A-LPV models have better accuracy. However they had an eigenvalue close to 1,
denoting an integrating feature indicating potentially continued beneficial action following
cessation of the drug. In order to improve the model fit in the actuation phase the washout
phase was removed from the identification data. New A-LPV models were identified. They
were all stable but the incease of accuaracy was not significant. The step responses of LTI
part these models for the naltrexone input was compared with the correspondent step
responses of the ARX LTI models. Despite having slower time constants the A-LPV models
are more responsive due to their higher gain. A cross validation of the models could not be
done because the available data set is small and it had to be entirely used as identification
data. In the future, hybrid MPC controllers will be developed based on the identified models
and then they will be compared with the controllers proposed by Desphande et al. In a first
step this can be done in a simulated environment but experiments in real cases supervised by
specialized physicians will be also considered. The case study phase suggests that piecewise
A-LPV models could be a better description for the naltrexone actuation. On the other hand,
there are experimental evidences that pain thresholds increase after the naltrexone
administration [18]. These factors will be considered in the model. Finally lack of excitation
of the input signals caused numerical problems in the identification algorithm. This problem
will be also addressed in the future.
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Fig. 1.
Measured FM signal versus Drug and Placebo dosages.
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Fig. 2.
Comparison of estimated versus measured FM symptoms output for A-LPV and ARX
Models 3 (anxiety, stress, mood as scheduling signal in the A-LPV model and as inputs in
the ARX model).
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Fig. 3.
Comparison of simulation errors of A-LPV and ARX Models 3 (anxiety, stress, mood as
scheduling signal in the A-LPV model and as inputs in the ARX model).
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Fig. 4.
LTI part of the estimated A-LPV models step responses for the drug-FM symptoms.
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Fig. 5.
LTI part of the second estimated A-LPV models step responses for the drug-FM symptoms.
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Fig. 6.
Comparison of estimated versus measured FM symptoms output for the second estimated A-
LPV Models 2 (anxiety, stress, mood as scheduling).
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Fig. 7.
Drug-FM step responses of the A-LPV (second estimated) and ARX models.

dos Santos et al. Page 17

Proc Am Control Conf. Author manuscript; available in PMC 2014 January 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

dos Santos et al. Page 18

TABLE I

% fit of A-LPV and LTI ARX models.

Model 1 2 3

A-LPV 76.9 77.9 78.9

ARX 64.7 71.8 73.9
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