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Model Predictive Control of Wind Turbines using Uncertain LIDAR
Measurements

Mahmood Mirzaei, Mohsen Soltani, Niels K. Poulsen and Hans H. Niemann

Abstract— The problem of Model predictive control (MPC)
of wind turbines using uncertain LIDAR (LIght Detection And
Ranging) measurements is considered. A nonlinear dynamical
model of the wind turbine is obtained. We linearize the obtained
nonlinear model for different operating points, which are
determined by the effective wind speed on the rotor disc. We
take the wind speed as a scheduling variable. The wind speed
is measurable ahead of the turbine using LIDARs, therefore,
the scheduling variable is known for the entire prediction
horizon. By taking the advantage of having future values of the
scheduling variable, we simplify state prediction for the MPC.
Consequently, the control problem of the nonlinear system is
simplified into a quadratic programming. We consider uncer-
tainty in the wind propagation time, which is the traveling time
of wind from the LIDAR measurement point to the rotor. An
algorithm based on wind speed estimation and measurements
from the LIDAR is devised to find an estimate of the delay and
compensate for it before it is used in the controller. Comparisons
between the MPC with error compensation, the MPC without
error compensation and an MPC with re-linearization at each
sample point based on wind speed estimation are given. It
is shown that with appropriate signal processing techniques,
LIDAR measurements improve the performance of the wind
turbine controller.

I. INTRODUCTION

In recent decades, there has been increasing interest in
green energies, of which wind energy is one of the most im-
portant. Horizontal axis wind turbines are the most common
wind energy conversion systems (WECS) and are hoped to
be able to compete with fossil fuel power plants on energy
price in near future. However, this demands better technology
to reduce the electricity production price. Control can play
an essential part in this context. This is because, on the
one hand improved control methods can decrease the cost
of energy by keeping the turbine close to its maximum
efficiency. On the other hand, they can reduce structural
fatigue and increase the lifetime of the wind turbine. There
are several methods of wind turbine control, ranging from
classical control methods, which are the most commonly
used methods in real applications [1], to advanced control
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methods, which have been the focus of research in the past
few years [2]. Gain scheduling [3], adaptive control [4],
MIMO methods [5], nonlinear control [6], robust control
[7], model predictive control [8], µ-Synthesis design [9]
and robust MPC [10] are just to mention a few. Advanced
model-based control methods are thought to be the future of
wind turbine control, as they can conveniently employ new
generations of sensors on wind turbines (e.g. LIDAR [11]),
new generation, of actuators (e.g. trailing edge flaps [12])
and they also treat the turbine as a MIMO system. Model
predictive control (MPC) has proved to be an effective tool
to deal with multivariable constrained control problems [13].
As wind turbines are MIMO systems [5] with constraints
on inputs and outputs, using MPC is reasonable. MPC has
been an active area of research and has been successfully
applied on different applications in the last decades [14]. In
this work, we extend the idea of linear MPC to formulate a
tractable predictive control of the nonlinear system of wind
turbines. To do so, we use future values of the effective
wind speed that acts as a scheduling variable in the model.
LIDAR measurements are used to calculate the effective
wind speed ahead of wind turbines [11]. Several works have
considered wind turbine control using LIDAR measurements
[15], [16] and [17]. However, it is also important to take
uncertainty in the measurements into account as small errors
in the calculations of the wind propagation time can severely
degrade performance of the controller.

The paper is organized as follows. In section II, modeling
of the wind turbine is explained, the nonlinear model is de-
rived and a linear model is given whose parameters vary as a
function of effective wind speed. In section III, our proposed
method for solving model predictive control of the system
is presented. Then, the control design is explained, and
control objectives are discussed. In section IV, uncertainty
in the LIDAR measurements are explained, and a method
is proposed to reduce the most severe source of uncertainty.
Finally, in section V, simulation results are given.

II. WIND TURBINE MODELING

In this section the nonlinear model and important degrees
of freedom are explained. Afterwards the linearization pro-
cedure is described and the linear parameter varying model
is given.

A. Nonlinear model

The dominant dynamics of the wind turbine come from
its flexible structure. Several degrees of freedom could be
considered to model the flexible structure, but for control



design a few important degrees of freedom are considered.
In this work we consider three degrees of freedom, namely
the rotational degree of freedom (DOF), the drivetrain torsion
and the tower fore-aft displacement. Nonlinearity of the wind
turbine model mostly comes from its aerodynamics. Blade
element momentum (BEM) theory is used to numerically
calculate aerodynamic torque and thrust on the wind turbine
[18]. Having aerodynamic torque and modeling the drivetrain
and the tower fore-aft degrees of freedom with simple mass-
spring-damper, the whole system equation with 3 degrees of
freedom becomes:

JrΩ̇r = Qr − Cd(Ωr −
Ωg
Ng

)−Kdψ (1)

(NgJg)Ω̇g = Cd(Ωr −
Ωg
Ng

) +Kdψ −NgQg (2)

ψ̇ = Ωr −
Ωg
Ng

(3)

Mẍt = Qt − Ctẋt −Ktxt (4)
Pe = QgΩg (5)

In which Qr and Qt are aerodynamic torque and thrust,
Jr and Jg are rotor and generator moments of inertia, ψ
is the drivetrain torsion, Qg and Ωg are the generator torque
and rotational speed, Ng is the gearbox ration, Cd and Kd

are the drivetrain damping and stiffness factors, respectively,
lumped in the low speed side of the shaft. The tower mass,
damping and stiffness factors are represented by M , Ct and
Kt, respectively, and Pe and xt are the generated electrical
power and tower displacement, respectively. Values of the
parameters can be found in [19].

B. Linearized model

To get a linear model of the system we need to linearize
the model (1-5) around its operating points, which are
determined by wind speed averaged on the rotor area. Wind
speed changes along the blades and with the azimuth angle
(angular position) of the rotor. This is because of wind shear,
tower shadow and stochastic spatial distribution of the wind
field. Therefore a single wind speed does not exist to be
used and measured in order to find the operating point. We
bypass this problem by defining a fictitious variable called
effective wind speed (Ve), which shows the effect of wind
on the rotor disc of the wind turbine. Using the linearized
aerodynamic torque and thrust, state space matrices for the
3 DOFs linearized model become:

ω̇r =
α1(ve)− c

Jr
ωr +

c

Jr
ωg −

k

Jr
ψ (6)

+
β11(ve)

Jr
θ +

β12(ve)

Jr
(ve − vt) (7)

ω̇g =
c

NgJg
ωr −

c

N2
g Jg

ωg +
k

NgJg
ψ − Qg

Jg
(8)

ψ̇ = ωr −
ωg
Ng

(9)

ẋt = vt (10)

v̇t =
α2(ve)

M
ωr +

β21(ve)

M
θ +

β22(ve)

M
(ve − vt) (11)

− Ct
M
vt −

Kt

M
xt (12)

Pe = Qg0ωg + ωg0Qg (13)

In which the lower-case variables are deviations away from
steady state of the upper-case variables given in the equations
(1-5). Consequently, the parameters of the linearized model
are functions of wind speed, which in our approach acts as a
scheduling variable. A detailed description of the model and
linearization is given in [9].

C. Linear parameter varying model

According to the model given in the equations (6-13),
matrices of the state space model become:

A(γ) =


α1(γ)−c

Jr
c
Jr

− k
Jr

0 −β12(γ)
Jr

c
NgJg

− c
N2

gJg
k

NgJg
0 0

1 −1 0 0 0
0 0 0 0 1

α2(γ)
Mt

0 0 −Kt

Mt
−Ct+β22(γ)

Mt


(14)

C(γ) =

 1 0 0 0 0
0 Qg0 0 0 0

α2(γ)
Mt

0 0 −Kt

Mt
−Ct+β22(γ)

Mt

 (15)

B(γ) =


β11(γ)
Jr

0

0 − 1
Jg

0 0
0 0

β21(γ)
Mt

0

 D(γ) =

 0 0
0 ωg0

β21(γ)
Mt

0


(16)

in which x =
(
ωr ωg ψ xt ẋt

)T
, u =

(
θ Qg

)T
and y =

(
ωr Pe v̇t

)T
are states, inputs and outputs

respectively.

III. CONTROLLER DESIGN

Wind turbine control is a challenging problem as the
dynamics of the system changes based on wind speed which
has a stochastic nature. In this paper, we use the wind speed
as the scheduling variable. With the advances in the LIDAR
technology [11] it is possible to measure wind speed ahead
of the turbine and this enables us to have the scheduling
variable of the plant for the entire prediction horizon. As
it was mentioned in section II, wind turbines are nonlin-
ear dynamical systems and if we use the nonlinear model
directly in the MPC formulation, the optimization problem
associated with the MPC becomes non-convex. In general,
non-convex optimization problems are very complicated to
solve and there is no guarantee that we could achieve a
global optimum. One way to avoid complex and non-convex
optimization problems is to linearize the system around an
equilibrium point and use the obtained linearized model as
an approximation of the nonlinear model. However, for wind
turbines, assumption of the approximate linear model does



not hold for long prediction horizons. This is because the
operating point of the system changes as a function of wind
speed which, as mentioned, has a stochastic nature.

A. Problem formulation

The linear parameter varying (LPV) model of the nonlin-
ear system is of the following form:

x̃k+1 = A(γk)x̃k +B(γk)ũk (17)

This model is formulated based on deviations from the oper-
ating point. However we need the model to be formulated in
absolute values of inputs and states. Because in our problem
the operating point changes as a function of the scheduling
variable, we need to introduce a variable to capture its
behavior. In order to rewrite the state space model in the
absolute form we use x̃k = xk − x∗k, ũk = uk − u∗k, where
x∗k and u∗k are values of states and inputs at the operating
point. Therefore, the LPV model becomes:

xk+1 = A(γk)(xk − x∗k) +B(γk)(uk − u∗k) + x∗k+1 (18)

which could be written as:

xk+1 = A(γk)xk +B(γk)uk + λk (19)

with

λk = x∗k+1 −A(γk)x∗k −B(γk)u∗k (20)

Now having the LPV model of the system we proceed
to compute state predictions. In our method the predicted
state is a function of the current state xk, the control
inputs un, as well as the scheduling variable Γn =(
γk+1, γk+2, . . . γk+n

)T
for n = 1, 2, . . . , N − 1 and we

assume that the scheduling variable is known for the entire
prediction. Therefore, the predicted state could be written as:

xk+1(γk) = A(γk)xk +B(γk)uk + λk (21)

and for n ∈ Z, n ≥ 1:

xk+n+1(Γn) =
(∏n

i=0A
T (γk+i)xk

)T
+

n−1∑
j=0

(∏n−j
i=1 A

T (γk+i)
)T
B(γk+j)uk+j

+

n−1∑
j=0

(∏n−j
i=0 A

T (γk+i)
)T
λk+(n−1)−j

+B(γk+n)uk+n + λk+n

(22)

Using the above equations we can write down the stacked
predicted state as:

X = Φ(Γ)xk +Hu(Γ)U + Φλ(Γ)Λ (23)

After computing the state predictions as functions of control
inputs, we can write down the optimization problem similar
to a linear MPC problem as a quadratic program, more details
can be found in [20].

B. Control objectives

The most basic control objective of a wind turbine is to
maximize captured power during the life time of the wind
turbine that is to to maximize captured power when wind
speed is below its rated value. This is also called maximum
power point tracking (MPPT). However when wind speed
is above rated, control objective becomes regulation of the
outputs around their rated values while trying to minimize
dynamic loads on the structure. These objectives should be
achieved against fluctuations in wind speed which acts as a
disturbance to the system. In this work we have considered
operation of the wind turbine in above rated (full load
region). Therefore, we try to regulate rotational speed and
generated power around their rated values and remove the
effect of wind speed fluctuations.

IV. UNCERTAIN LIDAR MEASUREMENTS

LIDAR measurements are used to have a preview of the
wind speed [11], however these measurements are erroneous
and uncertain. In this work, we have considered the uncer-
tainties to be the measurement noise and uncertainty in the
estimation of the wind propagation time. The propagation
time is the time that the wind travels between the LIDAR
measurement point to the rotor disc. The unknown delay
is the most important uncertainty in the wind propagation
time estimation. Lead or lag errors in the wind speed
measurement, which is fed to the controller, severely re-
duce the performance of the controller. In order to bypass
this problem, in this work, we have designed an Extended
Kalman filter which estimates the effective wind speed on
the rotor plane. Then this estimate is compared against the
filtered information that comes from LIDAR measurements.
Cross-covariance of the estimated wind speed and LIDAR
measurements are used to get an estimate of the delay
between the two signals. Subsequently, the estimated delay is
compensated for in LIDAR measurements and the resulting
wind speed information is fed to the controller.

A. Wind speed estimation

Wind speed estimation is essential in our control algo-
rithm. A one DOF model of the wind turbine, including
only rotor rotational degree of freedom is used for wind
speed estimation. This model is augmented with a linear
model of the effective wind speed. The effective wind
speed can be modeled as a complicated nonlinear stochastic
process. However, for practical control purposes, it could be
approximated by a linear model [21]. In this model, the wind
has two elements, mean value term (vm) and turbulent term
(vt). The mean wind speed varies relatively slowly and could
be considered constant during one simulation. The turbulent
term could be modeled by the following transfer function:

vt =
k

(p1s+ 1)(p2s+ 1)
e; e ∈ N(0, 1) (24)

The parameters p1, p2 and k which depend on the mean wind
speed vm could be found by second order approximation
of the wind power spectrum [21]. This state space model
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Fig. 1: Wind speed estimation (red-dashed line is the esti-
mated wind speed and solid-blue line is the effective wind
speed)

is augmented with the following model to be used in the
extended Kalman filter:

Ω̇ =
1

Jr
Qr(Ω,Θ,Ve)−

1

Jr
Qg (25)

y =
(
Ω Pe

)T
(26)

Figure 1 shows wind speed and its estimate.

B. Lead-lag error estimation and compensation

For lead-lag error estimation, cross covariance of the
estimated wind speed and measurements from the LIDAR
for a window of size m-seconds is found. The result is
a sequence which has (2m − 1) elements. By finding the
maximum of the cross covariance, an estimate of the lead-
lag error can be found. The window size is important as it
should be long enough to avoid erroneous results. The errors
especially emerge when the window of effective wind speed
signal has big autocorrelation values. By choosing a window
with sufficiently large size this problem could be avoided.
However, choosing a too big window size will result in slow
delay detection which reduces performance of the controller.
Cross covariance of the estimated wind speed and LIDAR
measurements, can be found using the following formula:

φv̂v(t) = E{(v̂n+t − µv̂)(vn − µv)T } (27)

in which v̂ is the estimated wind speed and v is the LIDAR
measurements. Having the sequence of φv̂v(t), one can
calculate lead-lag error by the following formula:

te = arg max
t
φv̂v(t) (28)

in which te = tmeasurment − tactual wind speed. te is then passed
through a low pass filter to remove fluctuations due to
numerical errors and possible autocorrelations. Then it is
used to shift LIDAR measurements. Afterwards the shifted
signal is used in the controller. Figure 2 shows a comparison
of the effective wind speed and the wind speed measured
by LIDAR. There is a 4 seconds lead error at time 100s
(in which the measurement is lead) and then at time 300s
the same amount of lag error. Figure 3 shows a comparison
between the introduced delay in the measurements and its
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Fig. 2: Effective wind speed and LIDAR measurement with
lead-lag errors (solid-blue is the effective wind speed, dotted-
red is the LIDAR measurement)
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Fig. 3: Comparison of introduced delay and its estimation
(solid-blue is the estimated delay, dashed-red is the intro-
duced delay)

estimation. The lead-lag error estimation is delayed, how-
ever it follows the shape of the actual delay. In the worst
cases, when the LIDAR measurements does not give a good
correlation with the wind speed estimation on the turbine,
the measurements could be discarded and the turbine can
operate without LIDAR measurements.

V. SIMULATIONS

In this section, simulation results for the obtained con-
trollers are presented. The controllers are implemented in
MATLAB and tested on a high fidelity wind turbine simula-
tion software FAST [22] using the model of the reference
wind turbine [19]. The results of the proposed approach
with lead-lag error estimation are compared against two
controllers with the same tunings. An MPC with the same
LIDAR measurements but without error compensation and
an MPC with re-linearization at each sample point based on
estimated wind speed. Simulations are done using turbulent
wind speed, with Kaimal model [23]. And TurbSim [24] is
used to generate the wind profile. In order to stay in the full
load region, a realization of turbulent wind speed is used
from category C of the turbulence categories of the IEC
61400-1 [23] with the mean wind speed of 18m/s. Control
inputs are collective pitch of the blades θ and generator
reaction torque Qg . System outputs are rotor rotational speed
ωr, electrical power Pe and tower fore-aft acceleration ẍt



TABLE I: Performance comparison (SD stands for standard
deviation)

Parameters MPC+LIDAR+ MPC+ Linear
Compensation LIDAR MPC

SD of ωr (RPM) 0.198 0.264 0.431
SD of Pe (M Watts) 0.108 0.123 0.179
Pitch travel (degrees) 554.8 606.5 842.9
SD of shaft moment (k N.M.) 0.702 0.812 1.159
SD of tower fore-aft acc.(m/s2) 0.233 0.240 0.311

that are plotted in figures 4-8. Table I shows a comparison
of the results between the proposed approach with lead-
lag error estimation, the linear MPC based on estimated
wind speed, the linear MPC with LIDAR measurements
and without compensation. For comparisons, we have used
pitch travel to take into account an approximation of the
damage on the pitch actuator. Standard deviations (SD) of
the rotational speed and generated power are also compared.
As it in the table I and figures 4-8, the proposed approach
gives better regulation on rotational speed and generated
power (smaller standard deviations) while maintaining a
smaller pitch activity and less deviations on tower fore-aft
acceleration and drivetrain torsion.

VI. CONCLUSIONS

LIDAR measurements are improve performance of wind
turbines. However, errors in the calculation of the wind
propagation time severely degrade the performance of the
controller. In this work, we have shown that using appropriate
signal processing techniques, these errors can be removed
form the measurements and even in the worst cases, when
LIDAR measurements are not reliable, the turbine can oper-
ate without using the data from the LIDAR.
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Fig. 6: Rotor rotational speed (RPM, solid-blue line is MPC
with LIDAR and delay compensation, top figure: dashed-
red line is MPC with LIDAR, without delay compensation
and bottom figure: dashed-green line is linear MPC using
estimated effective wind speed)
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Fig. 7: Electrical power (M Watts, solid-blue line is MPC
with LIDAR and delay compensation, top figure: dashed-
red line is MPC with LIDAR, without delay compensation
and bottom figure: dashed-green line is linear MPC using
estimated effective wind speed)
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Fig. 8: Tower top velocity (m/s2, solid-blue line is MPC
with LIDAR and delay compensation, top figure: dashed-
red line is MPC with LIDAR, without delay compensation
and bottom figure: dashed-green line is linear MPC using
estimated effective wind speed)


